
1

Vulnerability Assessment and
Secure Coding Practices

for Middleware
Part 1

James A. Kupsch
Computer Sciences Department

University of Wisconsin

© 2007-2008, James A. Kupsch. All rights reserved.

2

Tutorial Objectives

• Show how to perform the basics of a
vulnerability assessment

• Create more people doing vulnerability
assessments

• Show how different types of vulnerabilities
arise in a system

• Teach coding techniques that can prevent
certain types of vulnerabilities

• Make your software more secure

3

Roadmap
• Part 1: Vulnerability Assessment Process

– Introduction
– Evaluation process
– Architectural analysis
– Computer process
– Communication channels
– Resource analysis
– Privilege analysis
– Data Flow Diagrams
– Component analysis
– Vulnerability Discovery Activities

• Part 2: Secure Coding Practices

4

Security Problems Are Real

Everyone with a computer knows this.

If you’re not seeing vulnerability reports and
fixes for a piece of software, it doesn’t

mean that it is secure. It probably means
the opposite; they aren’t looking or aren’t

telling.

The grid community has been largely lucky
(security through obscurity).

5

Many Avenues of Attack

Internet
Firewall:

Attack web using
www protocols

Compromised host Internal bad guy

www
server

We’re looking for attacks that
exploit inherent weakness

in your system.

6

Impact of Vulnerabilities

FBI estimates computer security incidents cost
U.S. businesses $67 billion in 2005

[CNETnews.com]

Number of reported vulnerabilities each year is
increasing [CERT stats]

0

2000

4000

6000

8000

1994 1998 2002 2006

7

Security Requires Independent
Assessment

Fact #1:
Software engineers have long known that testing
groups must be independent of development
groups

Fact #2:
Designing for security and the use of secure
practices and standards does not guarantee
security

Independent vulnerability assessment is crucial…
…but it’s usually not done

8

Security Requires Independent
Assessment (cont.)

• You can have the best design in the world,
but can be foiled by …
– Coding errors
– Interaction effects
– Social engineering
– Operational errors
– Configuration errors
– …

9

Project Goals
• Develop techniques, tools and procedures for

vulnerability assessment focusing on Grid software
• Apply to production software
• Improve the security of this software
• Educate developers about best practices in coding and

design for security
• Increase awareness in the grid and distributed systems

community about the need for vulnerability assessment
• Train and build a community of security specialists

10

Systems Investigated

• Univ. of Wisconsin’s Condor Project
– Batch queuing workload management system

– 600K lines of code, began 15 years ago

– http://www.cs.wisc.edu/condor

• SDSC’s Storage Resource Broker (SRB)
– Distributed data store, with metadata and federation

capability

– 275K lines of code, began 9 years ago

– http://www.sdsc.edu/srb

• NCSA’s Myproxy (just starting)

11

Security Evaluation Process

• Architectural analysis

• Resource and privilege analysis

• Component analysis

• Codification of techniques and
dissemination

• Overview
– Insider - full access to source, documents, developers

– Independent - no agenda, no blinders

– First principles - let the process guide what to
examine

12

Goal of Vulnerability Analysis

• Audit a software system looking for
security problems

• Look for vulnerabilities
• Make the software more secure

“A vulnerability is a defect or weakness in system
security procedures, design, implementation, or
internal controls that can be exercised and result in a
security breach or violation of security policy.”

- Gary McGraw, Software Security

i.e., A bad thing

13

Attacker Supplied Data

• All attacks ultimately arise from attacker
(user) communicated data

• If not, your system is malware
– The mere installation causes a security

violation

• It is important to know where the system
can potentially get user supplied data

14

Get Application Overview
• Goal of architectural, resource and privilege

analysis is to learn about the application
• Meet with the developers to get an overview

– What does application do
– How does it work
– What documentation exists

• End-user
• Internal design documents

– What external libraries or environment is needed

15

Building and Running

• How to obtain source code
• How to build
• How to install and configure

– What is a typical installation and configuration

• How to control
– Start
– Stop
– Reconfigure
– Get status

16

Testing and Debugging

• How to test / What tests exist
• How to debug

– Any special build options
– How to control logging

• What gets logged
• Where it gets logged

– Any debugging techniques used in development

• Get access to bug database, find out if there are
recurring bugs

• Find out about prior security problems

17

General Analysis Techniques

• Applies to architectural, resource and
privilege analyses

• Find needed information
– Use existing documentation

• Often incomplete, out of date, or just wrong

– Talk to developers
– Experiment with the system
– Look at the code - most precise, but most time

consuming (later slides will have hints on what
to look for)

18

Analysis By Observing
Running Process

• Useful as a starting point
• Will only reveal information about exercised

paths in the process
• System monitoring tools

– ps - information about the process
– lsof netstat - information about files/network
– ptrace strace dtrace truss - trace of system

calls
– ltrace - trace of library calls
– diff tripwire - can show what objects in the file

system were modified

19

Architectural Analysis

• Create a detailed big picture view of the
system

• Document and diagram
– What executables exist and their function
– How users interact with them
– How executables interact with each other
– What privileges they have
– What resources they control and

access
– Trust relationships

20

Hosts in the System

• Each host that software was installed on or
external software was configured should be
accounted for here

• Types of different hosts in the system
– Client hosts
– Server hosts for system executables
– Hosts running servers used by the system
– Single host may be in multiple categories

• Classes of hosts: same software running on
multiple hosts with only minor configuration
differences

21

Executables in the System

• Find all the executables in the system
– If install directories are known

find installDirs -type f -perm +0111
– Look at startup scripts or instructions

• Note high level functionality of each
• If any are not documented ask developers

about their function
• Note what executables run on what hosts

or classes of hosts

22

Process Configuration

• How is an executable configured
– Configuration file

• Format
• Other instructions in file such as process another

configuration file
• Search path to find
• Processing language

– Hard coded
– Other

• What can be configured
– How does it affect the application
– Often reveals functional and architectural information

23

Process Attributes

• What user/group is the process started as
• Is the process setuid/setgid

– find installDirs -type d -perm +06000
– Use ps on running process looking for

different effective and real ids

• Any unusual process attributes
– chroot

– Limits set
– Uses capabilities

24

Process uid/gid Use

• uid/gid switching
– For what purpose
– Must be setuid/getgid or started as root
– Signs in the code: setuid setgid seteuid
setegid setreuid setregid setresuid
setresgid setfsuid setfsgid

• Is uid/gid sensitive processing done
– For what purpose
– Signs in the code: getlogin cuserid getuid
getgid geteuid setegid / environment variables
LOGNAME USER USERNAME

25

External Programs Used

• How are external programs used
• External servers

– Database
– Web server
– Application server
– Other

• External executables launched
– Signs in the code: popen system exec*
– What executables

26

User Interaction with System

• How do users interact with the system
– Client executables
– API

• What type of interaction can they have
• What data do the inject into the system

27

Process Communication
Channels

• What exists between…
– Servers
– Client and server
– Server and external programs

• DBMS
• Network services

– DNS
– LDAP
– Kerberos
– File services: NFS AFS ftp http …

• Shows interaction between components

28

Communication Methods

• OS provides a large variety of
communication methods
– Command line – Environment
– Files – Sockets
– Creating processes – Signals
– IPC – Directories

• Pipes – Symbolic links
• FIFO's or named pipes
• System V IPC
• Memory mapped files

29

Command Line

• Null-terminated array of strings passed to
a starting process from its parent

• Convention is that argv[0] is the path to
executable file

• Signs in code
– C/C++: argc argv
– Perl: @ARGV $0
– Sh: $0 $1 $2… $# $@ $*
– Csh: $0 argv

30

Environment
• Null-terminate array of string passed to a

process from its parent
• Convention is that each string is of the form
key=value, and key can not contain an equal
sign

• Program can change environment
• Contents can affect program behavior
• Inherited by children
• Signs in code:

– C/C++: environ getenv setenv putenv
– Perl: @ENV
– bash/csh: not easy to tell uses

31

Files

• Represented by a path to a file in the file
system

• Can be created or opened, or inherited
from parent process

• Contents can be data, configuration,
executable code, library code, scripts

• Signs in code:
– C/C++: open creat fopen

32

Standard File Descriptors

• Convention is creating process opens file
descriptors 0, 1 and 2 for use by the
created process to be used as standard in,
out, and err

• Functions and libraries often implicitly use
these and expect them to be opened

• Signs in code
– C/C++: stdin stdout stderr
STDIN_FILENO STDOUT_FILENO
STDERR_FILENO getchar gets scanf
printf vprintf vscanf cin cout cerr

33

Sockets

• Allows creating a communication path
– local to the system
– between hosts using protocols such as TCP/IP

• Can be stream or message based
• Signs in code

– C/C++: socket bind connect listen accept
socketpair send sendto sendmsg recv
recvfrom recvmsg getpeername getsockname
setsockopt getsockopt shutdown

– Bash: /dev/tcp/host/port
/dev/udp/host/port

34

Creating a Process
• When a process is created man properties of the

original are inherited such as
– User and group ids
– File descriptors without close-on-exec
– Current and root directories
– Process limits
– Memory contents

• Exit status communicated back to parent
• Signs in code

– C/C++: fork popen system exec* exit _exit
wait waitpid wait3 wait4

– Perl: open system qx ` exit _exit wait
waitpid wait3 wait4

35

Signals

• Asynchronous notification to a process
generated from the operating system, run-
time events or sent from related
processes

• Essentially a 1 bit message
• Signs in code

– C/C++: kill raise signal sigvec
sigaction sigsuspend abort

36

IPC

• Intra-host communication methods
• Some can pass file descriptors between

processes
• Signs in code:

– Pipes: pipe
– SysV Message Q: msgget msgctl msgsnd msgrcv
– SysV Semaphore: semget shmctl semop
– SysV Shared Mem: shmget shmctl shmat shmdt
– Memory mapped files: mmap

37

Directories

• Directories contain a list of file system
objects such as files and directories

• Directory can be read to get list of names
or updated by creating, renaming or
deleting existing entries

• Signs in code:
– C/C++: opendir readdir closedir creat
open(with O_CREATE) fdopen mkdir mkfifo
mknod symlink link unlink remove
rename rmdir

38

Symbolic Links

• Symbolic links are an entry in a directory
that contain a path (referent)

• When evaluating a path the operating
system follows the referent in the link

• Referent can be read and used by a
program

• Signs in code:
– C/C++: any function taking a path, symlink
readlink

39

Messaging & File Formats

• Document messaging protocols
– This is really an API between executables
– What is the format and purpose of each

message
– How are message boundaries and individual

pieces of data determined

• Document file formats
– Same thing as for messages
– You can think of files as persistant

asynchronous messages

40

Libraries Used

• What libraries does the executable use
– Run ldd on executable

– Look at link command line
– Look for uses of dlopen in the code

• Need to check it for vulnerabilities and for
safe use
– Audit the library
– Rely on reports from others

41

Resource Analysis

• A resource is an object that is useful to a
user of the system and is controlled by the
system
– Physical things

• Disk space
• CPU cycles
• Network bandwidth
• Attached devices

– Data

42

Documenting Resources

• What resources exist in the system
• What executables/hosts control the

resource
• What operations are allowed
• What privileges are required
• What does an attacker gaining access to

the resource imply

43

Privilege Analysis

• Privilege is the authorization for a user to
perform an operation on a resource

• Role is a set of privileges assigned to
multiple users to create types of user such
as admin

• How is authentication performed, if an
attacker can authenticate as another user
they gain their privileges

44

Privileges in the System

• What privileges exist in the system
• Do they map appropriately to operations

on resources
• Are they fine grained enough
• How are they enforced

45

Interactions with OS privileges

• What OS user/group account are used and
what is their purpose

• Does the system use the operating system
to enforce its privilege model

• File system privileges can be used to
enforce files being read or written by
attackers

• If process is run as root it can change
privilege to an OS user to restrict
privileges to that user

46

External Server Privileges

• DMBS
– How is authentication performed

• How is password stored

– DBMS accounts used
• privilege granted to each

– Are the privileges granted the minimum
necessary

• Other external servers
– Privilege model
– Interaction with internal

47

Trust

• An executable trusts another when
– It relies on a behavior in the other
– Doesn't or can't verify the behavior

• Implicit trust
– The operating system
– Process with root privilege on the same host

• they can do anything

– Processes with same uid on the same host
• they can do anything to each other

– All the code in your executable including libraries

48

Bad trust

• Not validating data from another trust
domain for proper form (form, length,
range)

• Bad assumptions
– User entered data in proper form
– Data passed to client is returned unchanged

• Need a cryptographic signature
• Happens with hidden input field and cookies in

HTML

49

More Bad Trust

• Bad assumptions
– Client validated data

• Client can be rewritten or replaced
• Good to validate on the client, but server validation

is required

• Best to validate data even from trusted
executables as it provides security in
depth
– One server could be used as a conduit for an

attack

50

Use/Abuse Cases

• Use cases
– Document typical use scenarios for the

software
– Often times created by testing team

• Abuse cases
– Anti-use case, what an attack might do to

break the system

• Both will reveal the architecture and
potential security problems

51

Data Flow Diagrams

• Takes information from previous analyses
• Turns a use/abuse case into a diagram

showing
– Hosts
– Components such as processes
– Privileges
– Message flows
– Steps in the case

52

Data Flow Diagrams

• Colors represent privilege
• Hosts are represented by rectangles
• Processes by circles
• Communication flow by lines with arrows

indicating direction of flow
– Labels indicate contents of message or operation

• Other symbols can be used for other important
objects in the case such as files

• We’ve noted that developers often learn things
when presented with just these diagrams

53

Privileges - Root Install

Submit Host

Central Manager

User

submit

startd

schedd

shadow

Execute Host

startd

schedd

starter

User Job

collectornegotiator

1. Job Description File

2. Job ClassAd

1. Machine ClassAd

5. Report
Match

6. Claim Host

7. Fork
Shadow

8. Establish Communication Path 9. Set policy and
fork User Job

4. Negotiation
Cycle

7. fork
Starter

root
condor
user

Real UIDs

4.Negotiation
Cycle

5. Report
Match 3. Job ClassAd

Compromise of
anything in red implies,
compromise of the host
and all processes on it

54

Privileges - Non-Root Install

Submit Host

Central Manager

User

submit

startd

schedd

shadow

Execute Host

startd

schedd

starter

User Job

collectornegotiator

1. Job Description File

2. Job ClassAd

1. Machine ClassAd

5. Report
Match

6. Claim Host

7. Fork
Shadow

8. Establish Communication Path 9. Set policy and
fork User Job

4. Negotiation
Cycle

7. fork
Starter

root
condor
user

Real UIDs

4.Negotiation
Cycle

5. Report
Match 3. Job ClassAd

55

Submit Host

Shadow

OS Kernel

Vanilla Universe Execution

Execute Host

Starter

OS Kernel

User Job

1. System Call 2. Return

56

Execute Host

Starter

OS Kernel

User Job

Condor C Library
6. Return

1. System Call

Standard Universe Execution

2. RPC system call

5. RPC return

Submit Host

Shadow

OS Kernel

4. Return

3. System Call

57

Submit Host

User

startd

schedd

Shadow

Execute Host

startd

schedd

Checkpointing a Job

root

condor

user

Real UIDs
Checkpoint Server A

ckpt_server

1. ckpt
signal

Starter

User Job

libcondorsyscall.a2. checkpoint
location query

3. checkpoint to
Checkpoint Server A

4. Checkpoint File:
•Process Stack and Data Registers
•Shared Library Code and Data
Mapped into address space

•State of all open files
•Signal handlers and pending
signals

Ckpt file

58

Private Network A Public Network Private Network B

Internal
Condor Host B

(ipX:portY)

Internal
Condor Host A

(ipV:portW)

Central Manager
(ipE:portF)

GCB Server B
(ipB)

GCB Server A
(ipA)

Condor Traffic

GCB-Modified
Condor Traffic

GCB Control Traffic

1. bind ipX:portY
and maintain TCP
connection

2. bound ipB:portD

3. Job ClassAd
ipA:portC

4. connect to ipB:portD

5. use PASSIVE mode

6. CONTACT ipE:portF

7. initiate connection

8. notify of match with ipA:portC

3. Machine ClassAd
ipB:portD

9. connect to ipB:portD

10. use ACTIVE mode
ipB:portR1

10. CONTACT
ipB:portR2

11. initiate
connection

11. initiate connection

portR1 portR2

Generic Connection Brokering

59

Firewall / Gateway

DPF Server

NAT

Pass-Through

Private NetworkPublic Network

External
Condor Host

(ipC:portD)

Internal
Condor Host

(ipX:portY)

Central Manager

Condor Traffic

DPF-Modified
Condor Traffic

DPF Control Traffic

1. bind ipX:portY

2. set rule
ipA:portB -> ipX:portY 3. ok

4. bound ipA:portB

5. Machine ClassAd
ipA:portB

6. Job ClassAd 7. Notify of match
with ipA:portB

7. Notify of match
with ipC:portD

8. Claim resource and
initiate connection

Dynamic Port Forwarding

60

Drilling In / Drilling Out

• Drill in to focus on sub systems that are more
likely to be vulnerable and lead to large security
failures …
– Deal with security
– Control resources
– Validate input

• Drill out to analyze how this system interact with
others
– Systems can be secure, but insecure when combined

61

Component Analysis

• Audit the source code of a component…
… the audit is directed by earlier analyses

• Look for vulnerabilities in a component
• Need to connect user input to a place in

the code where a vulnerability can be
triggered by it

• Finds deeper problems than black box
testing
– Penetration testing
– Fuzzing

62

Categories of Vulnerabilities
• Design Flaws

– Problems inherent in the design
– Hard to automate discovery

• Implementation Bugs
– Improper use of the programming language, or of a

library API
– Localized in the code

• Operational vulnerabilities
– Configuration or environment

• Social Engineering
– Valid users tricked into attacking

 Occur about
 equally

63

Many Types of Vulnerabilities
Buffer overflows
Injection attacks

Command injection
(in a shell)

Format string attacks
(in printf/scanf)

SQL injection
Cross-site scripting or XSS

(in HTML)

Directory traversal
Integer vulnerabilities

Race conditions
Not properly dropping

privilege
Insecure permissions
Denial of service
Information leaks
Lack of integrity checks
Lack of authentication
Lack of authorization

64

Focusing the Search
• It's impossible to completely analyze a system

for vulnerabilities
• From places where vulnerabilities can occur in

the code
• From the point of view of an attacker's goal and

try to think of ways the threat can be realized
• If there were prior security problems look for

similar problems
• Focus on subsystem that are one of

– Important – Security related
– Poorly written – Poorly tested (little used)
– Developer/Testing functionality

65

Difficulties

• Need to trace function call graphs to trace
data flows to determine potential values

• It is difficult in C++ to determine function
call graphs using a textual analysis, due to
the ambiguity of identifiers; the name
alone is insufficient to determine the
actual function

• The use of function pointers also
complicate this analysis

66

Code Browsing Tools

• cscope
– Doesn’t understand C++

• ctags
– Useful for finding definitions of global variables and

functions, but not uses

• eclipse
– Doesn’t handle size of code and style well

• Hand written perl scripts to search code
– Useful, but really need to parse C/C++

67

Static Code Analysis Tools
• Require a human to analyze the results for false positives
• Won't find complex problems
• They aid the assessor, but they're not one-click security
• Commercial analyzers

– Coverity http://www.coverity.com
– Fortify http://www.fortifysoftware.com
– Secure Software http://www.securesoftware.com
– Grammatech http://www.grammatech.com

• Freely available analyzers
– Flawfinder http://www.dwheeler.com/flawfinder
– RATS (Rough Auditing Tool for Security)

http://www.securesoftware.com/rats
– ITS4 http://www.citigal.com/its4

• Compiler warnings

68

Vulnerability Report

• One report per vulnerability
• Provide enough information for developers

to reproduce and suggest mitigations
• Written so that a few sections can be

removed and the abstracted report is still
useful to users without revealing too much
information to easily create an attack.

69

Condor Vulnerability Report

70

Vulnerability Report Items

• Summary
• Affected version(s) and platform
• Fixed version(s)
• Availability - is it known or being exploited
• Access required - what type of access

does an attacker require: local/remote
host? Authenticated? Special privileges?

• Effort required (low/med/high) - what type
of skill and what is the probability of
success

71

Vulnerability Report Items

• Impact/Consequences (low/med/high) -
how does it affect the system: minor
information leak is low, gaining root
access on the host is high

• Full details - full description of vulnerability
and how to exploit it

• Cause - root problem that allows it
• Proposed fix - proposal to eliminate

problem
• Actual fix - how it was fixed

72

Vulnerability Disclosure Process

• Disclose vulnerability reports to
developers

• Allow developers to mitigate problems in a
release

Now here’s the really hard part:
• Publish abstract disclosures in

cooperation with developers. When?
• Publish full disclosures in cooperation with

developers. When?

73

When a Vulnerability Is Found

• Don’t Panic!!! Have a plan.
• Plan what, how, when and to whom to announce
• Plan how to fix, and what versions
• Separate security release or combine with other

changes?
• When to release full details

– are details known or being exploited
externally

– open/closed source projects
– allow time for users to upgrade

