
1

Vulnerability Assessment:
The Assessors Experience

Barton P. Miller
James A. Kupsch

Computer Sciences Department

University of Wisconsin

Elisa Heymann

Computer Architecture & Operating

Systems Department

Universitat Autònoma de Barcelona

OGF27, Banff, Canada

October 12, 2009

2

Session Objectives

What to expect:

• Getting started – there are many reasons to
say “no”.

• The vulnerability assessment process – what
makes our life easy or difficult.

• When the first vulnerability reports come
in – what do you do?

Remember that we’re on your side.

3

Just say “no”.
 (Nancy Reagan)

4

There are Lots of Reasons to Say No

Even the best programmer makes mistakes.
• The interaction between perfect components

often can be imperfect: falling between the
cracks.

• Even in the best of cases, only works with formal
specification and verification.

“We use best practices in secure software
design, so such an effort is redundant.”

There's many a slip ‘twixt cup and lip…

 (old English proverb based on Erasmus)

5

There are Lots of Reasons to Say No

• Yes, is it expensive.
• And, yes, if you are successful, you will only see an

expense.
• However the cost to recover after a serious

exploit is prohibitive.

The best defense is a

good offense.
 (old sports adage)

The only real defense is

active defense.
 (Mao)

“It’s too expensive.”

6

There are Lots of Reasons to Say No

• Tools like Fortify and Coverity are worthwhile to use…
• …however, don’t let them give you a false sense of

security. Our recent study demonstrates their
significant weaknesses:
 J.A. Kupsch and B.P. Miller, “Manual vs. Automated Vulnerability Assessment: A

Case Study”, First International Workshop on Managing Insider Security Threats,
West Lafayette, IN, June 2009.

The era of procrastination, of half-
measures, of soothing and baffling
expedients, of delays is coming to its
close. In its place we are entering a
period of consequences.

 (Winston Churchill, August 1941)

“I’ll just run some automatic tools.”

7

There are Lots of Reasons to Say No

• All software has bugs.
• If a project isn’t report the bugs, either they are

not checking or not telling.
• Our experience shows that users (and funding

agencies) are more confident when you are
checking and report.

A life spent making mistakes is not only

more honorable, but more useful than

a life spent doing nothing.

George Bernard Shaw (1856 - 1950)

“If we report bugs in our software, we will look

incompetent.”

8

And the assessment team arrives…

9

During the Assessment

What makes our job harder:

• Incomplete or out-of-date documentation.

• Complex installation procedures, especially
ones that are not portable and require
weird configuration file magic.

• Lack of access to full source code.

• Lack of access to development team.

10

During the Assessment

What you can expect from us:

• We work independently: crucial for an unbiased
assessment.

• We will ask you lots of question.
• We won’t report any vulnerabilities until we’re

done…
…however we will release our intermediate products –

diagrams from the architectural, resource, and privilege
analyses.

• It will take longer than you think…
… we don’t report a vulnerability until we can construct an

exploit.

11

And then the vulnerabilities arrive…

12

We do Find Vulnerabilities

System Origin Language(s) Size (loc) Vuln. Found

Condor Wisconsin C++ 600K 15

SRB SDSC C, SQL 275K 6

MyProxy NCSA C 25K 5

gLExec Nikhef C 43K 5

13

How do You Respond?

When In Danger, When In Doubt, Run In Circles,

Scream And Shout

14

How do You Respond? (really)

• Denial: “That’s just not possible in our code!”

• Anger: “Why didn’t you tell me it could be so
bad?!”

• Bargaining: “We don’t have to tell anyone, do
we?”

• Depression: “We’re screwed. No one will use our
software and our funding agencies will cut us off.”

• Acceptance: “Let’s figure out how to fix this.”

15

How do You Respond?
• Identify a team member to handle vulnerability

reports.
• Develop a remediation strategy:

– Study the vulnerability report.
– Use your knowledge of the system to try to identify other

places in the code where this might exist.
– Study the suggested remdiation and formulate your

response.
– Get feedback from the assessment team on your fix – very

important for the first few vulnerabilities.

• Develop a security patch release mechanism.
– This mechanism must be separate from your release

feature/upgrade releases.
– You may have to target patches for more than one version.

16

How do You Respond?
Develop a notification strategy:
• What will you tell and when?

• Users are nervous during the first reports, but then
become your biggest fans.

• Often a staged process:
1. Announce the vulnerability, without details at the time

you release the patch.

2. Release full details after the user community has had a
chance to update, perhaps 6-12 months later.

• Open source makes this more complicated!
 The first release of the a patch reveals the details of the

vulnerability.

17

How do You Respond?
A change of culture within the development team:
• When security becomes a first-class task, and when

reports start arriving, awareness is significantly
increased.

• This effects the way developers look at code and
the way that they write code.

• A major landmark: when your developers start
reporting vulnerabilities that they’ve found on their
own.

• Open source makes this more complicated!
 The first release of the a patch reveals the details of the

vulnerability.

18

Discussion

http://www.cs.wisc.edu/mist

bart@cs.wisc.edu

