
Vulnerability Assessment as Vulnerability Assessment as
Part of a Security Strategy

Barton P. Miller

James A. Kupsch Elisa Heymann
Eduardo César

Computer Sciences Department
University of Wisconsin

Eduardo César
Computer Architecture & Operating

Systems Department
U i it t A tò d B lUniversitat Autònoma de Barcelona

OGF28, München
March 16 2010

1

March 16, 2010

The Obligatory Scary Slide

• The bad guys are trying to do
really bad things to usreally bad things to us.

• They are smart, dedicated and
persistentpersistent.

• No single approach to security
can be sufficientcan be sufficient.

• The attackers have a natural advantage over the
defendersdefenders.

We have to approach the defense of our systems as
security in depth.

2

y p

Our Piece of the Solution Space
A brief story…
• We started by trying to do something simple:y y g g p

Increase our confidence in the security of some
critical Grid middleware.

• We ended up developing a new
manual methodology:gy
First Principles Vulnerability

AssessmentAssessment
• We found some serious vulnerabilities … and more

vulnerabilities and more

3

vulnerabilities … and more.

Studied Systems
Condor, University of Wisconsin

Batch queuing workload management system
15 vulnerabilities 600 KLOC of C and C++

SRB, SDSC
Storage Resource Broker - data grid
5 vulnerabilities 280 KLOC of C

M P NCSAMyProxy, NCSA
Credential Management System
5 vulnerabilities 25 KLOC of C

glExec NikhefglExec, Nikhef
Identity mapping service
5 vulnerabilities 48 KLOC of C

Gratia Condor Probe, FNAL and Open Science
G idGrid

Feeds Condor Usage into Gratia Accounting System
3 vulnerabilities 1.7 KLOC of Perl and Bash

Condor Quill University of Wisconsin

4

Condor Quill, University of Wisconsin
DBMS Storage of Condor Operational and Historical Data
6 vulnerabilities 7.9 KLOC of C and C++

In Progress Systems

Wireshark, wireshark.org
Network Protocol Analyzer Network Protocol Analyzer
in progress 2400 KLOC of C

Condor Privilege Separation, Univ. of Wisconsin
Restricted Identity Switching Module
in progress 21 KLOC of C and C++in progress 21 KLOC of C and C++

VOMS Admin, INFN
Web management interface to VOMS data (role

mgmt)g)
in progress 35 KLOC of Java and PHP

CrossBroker, Universitat Autònoma de Barcelona
Resource Mgr for Parallel & Interactive Applications
in progress 97 KLOC of C++in progress 97 KLOC of C++

5

An Example Vulnerability Report

Our Piece of the Solution Space
First Principles Vulnerability Assessment:
• An analyst-centric (manual) assessment process.y p
• You can’t look carefully at every line of code so:

We don’t start with known threats We don t start with known threats …
… instead, identify high value assets in the
code and work outward to derive threats.

then identify key resources and
• Start with architectural analysis,

then dent fy key resources and
privilege levels, component interactions
and trust delegation, then focused component

7

g , p
analysis.

Our Piece of the Solution Space
A b i f (’d)A brief story… (con’d)
• Finding vulnerabilities was only the beginning of

the process.
The reporting to the software p g

team, developing remediation,
and announcing to users and the

bli ll b it lpublic can all be quite complex.
• Development teams complained

 l t h ’t f a lot: why can’t we use one of
the well-regarded automated
tools?

8

tools?

Manual vs. Automated
Vulnerability AssessmentVulnerability Assessment

The literature on static analysis tools is selfThe literature on static analysis tools is self-
limiting:
Mi i i i d h• Missing comparison against a ground truth

• Tool writers write about what they have y
found

Every valid new problem that a tool find is Every val d new problem that a tool f nd s
progress, but it’s easy to lose perspective
on what these tools are not able to doon what these tools are not a le to do

Case Study: Methodology
• Previously assessed Condor using our FPVA
• Identified the best-regarded automated tools:Identified the best regarded automated tools

– Coverity Prevent 4.1.0
– Fortify SCA 5.1.0016fy

• Applied these tools to the same version of
Condor as was used in the FPVA studyy

• Goal: to evaluate the ability of these tools to
find serious vulnerabilities …
o … keeping a low false negative rate, and …
o … having a low false positive rate (non-g p (

exploitable and limited value exploits).

Manual Assessment:
FPVA Condor ResultsFPVA Condor Results

15 significant vulnerabilities discoveredg
http://www.cs.wisc.edu/condor/security/vulnerabilities

– 7 implementation bugs
 d l l d d • easy to discover - localized in code

• use of troublesome functions:
exec, popen, system, strcpy, tmpnam

– 8 design flaws
• hard to discover in code - higher order problems
• defects include:• defects include:

– injections, directory traversals, file permissions, authorization &
authentication, and
a vulnerability in third party libraryy p y y

Automated Tools Results

Coverity Fortify

Defects Found: 2,986 15,466 total
3 critical

2 301 hot2,301 hot
8,101 warm
5,061 info

Manual Defects
Found:

1
1
0

6 total
6 impl. bug
0 design flaw0 0 design flaw

Automated Tools Results

– Coverity found 1
• Simple implementation bugs found

Coverity found 1
• errs on the side of false

negatives
• only flags certain functions when input can be

proven to come from untrusted sources
– Fortify found 6Fortify found 6

• errs on the side of false positives
• will always flag certain functions

• No design flaw defects found
• We could find no actual additional

y g

We could find no actual additional
vulnerabilities in their reports.

Manual Tool Comparison Study

• Showed limitations of current tools
E h i d th d f l l bilit • Emphasized the need for manual vulnerability
assessment as a required part of a
comprehensive security assessmentcomprehensive security assessment

• Created a reference set of vulnerabilities to
perform apples-to-apples comparisonsperform apples to apples comparisons

• Tests on additional tools by the NSA show the
same results.same results.

• Tests on additional software by UAB (on
Crossbroker) show the same results.)

A Research Opportunity?
Study the vulnerabilities that the tools are not

finding: can we formally characterize them?
If we can characterize them, we can design detection

algorithms. And from these algorithms, we can build
toolstools.

Automate parts of the FPVA analysis task to make
this go quickerthis go quicker.
Use techniques like “self propelled instrumentation” to

extract architecture, privilege levels, and resources.
We (UW and UAB) are currently working on these

problem areas.

Automatically Extracted
Architectural InformationArchitectural Information

Some Experiences as Analysts

It is difficult to get a group started on
conducting such assessmentsconducting such assessments.

• There are many reasons to say “no”.
• And, if you do say “yes” …

 when the first vulnerability reports come … when the first vulnerability reports come
in – what will you do?

17

Just say “no”.Just say no .
(Nancy Reagan)

18

There are Lots of Reasons to Say No
“We use best practices in secure software
design, so such an effort is redundant.”

There's many a slip ‘twixt cup and lip…
(old English proverb based on Erasmus)

Even the best programmer makes mistakes.

(old English proverb based on Erasmus)

• The interaction between perfect components
often can be imperfect: falling between the
crackscracks.

• Even in the best of cases, only works with formal
specification and verification.

19

p f f .

There are Lots of Reasons to Say No
“We are really good at debugging and
testing our own code, so this is redundant.”

Testing your own code is about as
effective as tickling yourself (Bart)

This is a bad idea for several reasons.

effective as tickling yourself. (Bart)

• Our ability to test is hampered by our
biases and expectationsbiases and expectations.

• There is an inherent conflict of interest in
evaluating your own work

20

evaluating your own work.

There are Lots of Reasons to Say No

“It’s too expensive.”

The best defense is a
good offense.

(old sports adage)

The only real defense is
active defense.

(Mao)

• Yes it is expensive

(old sports adage) (Mao)

• Yes, it is expensive.
• And, yes, if you are successful, you will only see an

expense.expense.
• However the cost to recover after a serious

exploit is prohibitive.

21

There are Lots of Reasons to Say No

The era of procrastination, of half-

“I’ll just run some automatic tools.”
f p f f

measures, of soothing and baffling
expedients, of delays is coming to its
close. In its place we are entering a p g
period of consequences.

(Winston Churchill, August 1941)

• Tools like Fortify and Coverity are worthwhile to use…
• …however, don’t let them give you a false sense of

i O d d h i security. Our recent study demonstrates their
significant weaknesses.

22

There are Lots of Reasons to Say No
“If t b i ft ill l k“If we report bugs in our software, we will look
incompetent.”
A life spent making mistakes is not only
more honorable, but more useful than a
life spent doing nothing

All s ft h s b s

life spent doing nothing.
George Bernard Shaw (1856 - 1950)

• All software has bugs.
• If a project isn’t reporting the bugs, either they

are not checking or not tellingare not checking or not telling.
• Our experience shows that users (and funding

agencies) are more confident when you are

23

g) y
checking and reporting.

And the assessment team arrives…

24

During the Assessment
What makes our job harder:

• Incomplete or out-of-date documentation.
• Complex installation procedures, especially p p , p y

ones that are not portable and require
weird configuration file magic.g g

• Lack of access to full source code.
• Lack of access to development team• Lack of access to development team.

25

During the Assessment
What you can expect from us:
• Our assessments follow the FPVA methodology• Our assessments follow the FPVA methodology.
• We work independently: crucial for an unbiased

assessment.
W ill k l t f ti• We will ask you lots of questions.

• We won’t report any vulnerabilities until we’re done…
however we will release our intermediate products …however we will release our intermediate products –
diagrams from the architectural, resource, and privilege
analyses.

I ill k l h hi k• It will take longer than you think…
… we don’t report a vulnerability until we can construct an

exploit.

26

exploit.

And then the vulnerabilities arrive…

27

How do You Respond?
When In Danger, When In Doubt, Run In Circles,

Scream And ShoutScream And Shout

28

How do You Respond? (really)
• Denial: “That’s just not possible in our code!”

A “ h did ’ ll i ld b• Anger: “Why didn’t you tell me it could be so
bad?!”

• Bargaining: “We don’t have to tell anyone, do
we?”

• Depression: “We’re screwed. No one will use our
software and our funding agencies will cut us off ”software and our funding agencies will cut us off.

• Acceptance: “Let’s figure out how to fix this.”

29

How do You Respond?
• Identify a team member to handle vulnerability

reports.
• Develop a remediation strategy:• Develop a remediation strategy:

– Study the vulnerability report.
– Use your knowledge of the system to try to identify other

l h d h h h places in the code where this might exist.
– Study the suggested remediation and formulate your

response.
– Get feedback from the assessment team on your fix – very

important for the first few vulnerabilities.
• Develop a security patch release mechanism.Develop a security patch release mechanism.

– This mechanism must be separate from your release
feature/upgrade releases.

– You may have to target patches for more than one version

30

– You may have to target patches for more than one version.

How do You Respond?
Develop a notification strategy:
• What will you tell and when?
• Users are nervous during the first reports, but then

become your biggest fans.
• Often a staged process:

1. Announce the vulnerability, without details at the time
you release the patchyou release the patch.

2. Release full details after the user community has had a
chance to update, perhaps 6-12 months later.

• Open source makes this more complicated!
The first release of the patch reveals the details of the

vulnerability

31

vulnerability.

How do You Respond?
A change of culture within the development team:
• When security becomes a first-class task, and when

reports start arriving, awareness is significantly
increased.
Thi ff t th d l l k t d d• This effects the way developers look at code and
the way that they write code.

• A major landmark: when your developers start A major landmark: when your developers start
reporting vulnerabilities that they’ve found on their
own.

32

An Ongoing Effort
Our team continues to:
• Assess new software
• Train analysts in the assessment and security

coding techniques.
• Consult with organizations in this area.
• Research to improve the state of tools for both p

automated code analysis and faster manual
analysis.

We encourage you to join in!

33

Thank you.

Questions?Questions?

http://www.cs.wisc.edu/mist

bart@cs.wisc.edu

34

What about Automated TOOLS?
– Everyone asks for them
– They may help but They may help but …

... they are definitely not enough!

Our Piece of the Solution Space
A b i f (’d)A brief story… (con’d)
• This last point required us to do a careful

study of these tools, in a way that had not
been done previously.p y
Our suspicions as to the

limitations of these tools were f
confirmed!

• And this has led to an interesting new research • And this has led to an interesting new research
agenda.

36

First Principles Vulnerability Assessment
d d h

p y
Understanding the System

Step 1: Architectural Analysis
– Functionality and structure of the system Functionality and structure of the system,

major components (modules, threads,
processes), communication channels p),

– Interactions among components and with users

First Principles Vulnerability Assessment
d d h

p y
Understanding the System

Step 2: Resource Identification
– Key resources accessed by each component
– Operations allowed on those resources

Step 3: Trust & Privilege Analysisp & g y
– How components are protected and who can

access them
– Privilege level at which each component runs
– Trust delegationTrust delegation

First Principles Vulnerability Assessment
h f V l bili iSearch for Vulnerabilities

Step 4: Component EvaluationStep 4: Component Evaluation
– Examine critical components in depth

G id h i– Guide search using:
Diagrams from steps 1-3
Knowledge of vulnerabilitiesKnowledge of vulnerabilities

– Helped by Automated scanning tools (!)

First Principles Vulnerability Assessment
T ki A iTaking Actions

Step 5: Dissemination of Results
– Report vulnerabilitiesReport vulnerabilities
– Interaction with developers
– Disclosure of vulnerabilities– Disclosure of vulnerabilities

Example Results: Condor
OS privileges

Condor execute host
master

condor & root

OS privileges

user
negotiator collector

1. fork 1. fork

master

Condor submit host
master

Condor execute host

5. Negotiator
cycle

master

1. fork

master

1. fork
2. machine

Cl Ad

5. Negotiator
cycle

6. Report
match

6. Report
match

schedd

8. fork

starter

8. fork Stork server host

ClassAd

4. job
ClassAd

7. claim host

shadow

3. submit job

startd

10. start job

master

1. fork9. establish

submit
ClassAd

job

j
stork_serverchannel

(a) Common Resources on All Condor Hosts (b) Unique Condor Checkpoint Server Resources

Example Results: Condor

condor

OS privileges

root
user

generic Condor daemon
ckpt_server

C d C d
etc

O ti l
spool

O ti l
log

ckptSend and ReceiveCondor
Binaries &
Libraries

Condor
Config

Operational
Data &

Run-time
Config Files

Operational
Log Files Checkpoint Directory

ckptSend and Receive
Checkpoints
(with Standard
Universe Jobs)

(d) Unique Condor Submit Resources

shadow

(c) Unique Condor Execute Resources

User Job starter

System Call
Forwarding andForwarding and

Remove I/O
(with Standard
Universe Jobs)

User’s Files
user

Job Execution
Directories

execute

OS i il

Example Results: SRB

srb
postgresql

OS privileges

user SRB master

SRB server host

SRB client host MCAT host

SRB client process MCAT PostgreSQL1. connect

2. fork

SRB agent

3. authenticate
3&4. use MCAT

4. do work

OS privileges SRB server host

Example Results: SRB

srb
postgresql

OS privileges

user
SRB master & agents

SRB server host

SRB client process

SRB client host MCAT host

SRB client process

MCAT PostgreSQL

SRB config files

db config files db data store

SRB data
Store 1

SRB data
Store 2

client home dir
& config files

SRB tape
storage

Submit
user condor

OS privileges
root

Submit

Submit job with

Master Evil
Program

Start
daemon

j
invalid email addr

Start

Schedd

Read config without checking
CONDOR-2005-0004

daemon

Send mail to user
using popen Command injection

allows execution

Read config without checking
trust of files. Contains

daemons to start as root

CONDOR-2005-0003

Mail
Program

(or not)

of arbitrary code
from email addr.
Attack creates

ti fi fil(or not)
Config FilesRuntime

Config Files
(optional)

runtime config file
with option to start

evil program.

User controls shared
library loaded into

GLEXEC-2005-0003

E l

User
Program

gLExec using
environment variable glexec

user
OS privileges

root

Exec glexec
(setuid root)Environment

…
Environment

…
Environment

…
LCAS_CONFIG=

Environment
…

LCAS_CONFIG=
user root… …

Read Config Load Plugin

Read Config

Load Plugin

…
plugin=

…
plugin=

Read Config Load PluginLoad Plugin

Default LCAS
Config File

…

LCAS Plug-in
Shared Library

Attacker LCAS
Config File

…

Attacker
Shared Library

user condor
OS privileges

root
Submit

Data in history files is used
to create a Python program

GRATIA-CONDOR-2010-0003

G ti

Submit

Submit job with

to create a Python program
allowing a code injection

Gratia
Condor
Probe

j
invalid attribute

Schedd
Read attributes
of each history

Create Python program
from unchecked attributes
allowing a code injection

of each history
file to create

records in Gratia
Write job

history files

Condor Job
History Files Python

We do Find Vulnerabilities

System Origin Language(s) Size (loc) Vuln. Foundy g g g

Condor Wisconsin C++ 600K 15

SRB SDSC C, SQL 275K 6

MyProxy NCSA C 25K 5

gLExec Nikhef C 43K 5

48

