

Risk Analysis Report [Implementation Constraints]

This document describes the features needed to be implemented in the implementation step to avoid

the most risky threats to the system

* Report Generated by: guifre

* Date: Fri Oct 26 10:25:54 CEST 2012

* Issued by: Computer Architecture and Operating Systems (CAOS)

 Universitat Autonoma de Barcelona.

This is an alpha release, if for some arbitrary reason this got to you and have any comment suggestion question idea, you can ping

me at guifre.ruiz at the gmail dot com server ;-).

1. Time of Check to Time Of Use (TOCTOU)

1.1. Affected Components
* Path[0] Threat Agent[Anonymous User] Asset Element[config].

* Path[1] Threat Agent[Anonymous User] Asset Element[Logs].

* Path[2] Threat Agent[Identified User] Asset Element[config].

* Path[3] Threat Agent[Identified User] Asset Element[Logs].

1.2. Description

 Summary
It is fairly common for an application to need to check some condition before undertaking an action. For

example, it might check to see if a file exists before writing to it, or whether the user has access rights to

read a file before opening it for reading. Because there is a time gap between the check and the use, an

attacker can sometimes use that gap to mount an attack. Temporary Files: A classic example is the case

where an application writes temporary files to publicly accessible directories. You can set the file

permissions of the temporary file to prevent another user from altering the file. However, if the file already

exists before you write to it, you could be overwriting data needed by another program, or you could be

using a file prepared by an attacker, in which case it might be a hard link or symbolic link, redirecting your

output to a file needed by the system or to a file controlled by the attacker.

 Example
if (access("file", W_OK) != 0) {

 exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

If an attacker executes symlink("/etc/passwd", "file") after access() and before

open(), a succesful attack will be performed.

 References
http://capec.mitre.org/data/definitions/29.html

http://cwe.mitre.org/data/definitions/367.html

1.3. Software Specifications (AKA countermeasures)

Summary: Recheck the resource after the use call to verify that the action was taken appropriately.

Recheck the resource after the use call to verify that the action was taken appropriately.

2. SQL Injection Attacks

2.1. Affected Components
* Path[0] Threat Agent[Anonymous User] Asset Element[Relational Database].

* Path[1] Threat Agent[Identified User] Asset Element[Relational Database].

2.2. Description

 Summary
A SQL injection attack consists of insertion or injection of a SQL query via the input data from the client to

the application. A successful SQL injection exploit can read sensitive data from the database, modify

database data (Insert/Update/Delete), execute administration operations on the database (such as shutdown

the DBMS), recover the content of a given file present on the DBMS file system and in some cases issue

commands to the operating system. SQL injection attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in order to effect the execution of predefined SQL commands..

 Example
sql_query= "SELECT ProductName, ProductDescription FROM Products WHERE ProductNumber =

" & Request.QueryString("ProductID")

It expects users to define the parameter ProductID with a number such as 123. However,

an attacker can execute arbitrary SQL queries by using SQL syntax to change the meaning

of the query.For example: '123 ;DROP ALL tables' would execute

SELECT ProductName, ProductDescription FROM Products WHERE ProductNumber = 123; DROP

all tables

 References
http://cwe.mitre.org/data/definitions/89.html

https://www.owasp.org/index.php/SQL_injection

http://www.unixwiz.net/techtips/sql-injection.html

2.3. Software Specifications (AKA countermeasures)

Summary: Allowing only alphanumeric characters in all fields of this payload

The fields used for this aim should only allow alphanumeric characters.

you can make sure it does no contain other types of characters by matching the user-controllable data with a

regular expression such as "^[a-zA-Z0-9_]*$". For more information refer to http://msdn.microsoft.com/en-

us/library/ms525361(v=vs.90).aspx and

http://www.informit.com/articles/article.aspx?p=102193&seqNum=12

3. Reflected Cross Site Scripting (RXSS)

3.1. Affected Components
* Path[0] Threat Agent[Anonymous User] Asset Element[VO Admin].

* Path[1] Threat Agent[Anonymous User] Asset Element[Identified User].

* Path[2] Threat Agent[Identified User] Asset Element[VO Admin].

* Path[3] Threat Agent[Identified User] Asset Element[Identified User].

3.2. Description

 Summary
Cross-Site Scripting attacks are a type of injection problem, in which malicious scripts are injected into the

otherwise benign and trusted web sites. Cross-site scripting (XSS) attacks occur when an attacker uses a web

application to send malicious code, generally in the form of a browser side script, to a different end user.

Flaws that allow these attacks to succeed are quite widespread and occur anywhere a web application uses

input from a user in the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end user’s browser has no

way to know that the script should not be trusted, and will execute the script. Because it thinks the script

came from a trusted source, the malicious script can access any cookies, session tokens, or other sensitive

information retained by your browser and used with that site. These scripts can even rewrite the content of

the HTML page.

 Example
<% String eid = request.getParameter("eid"); %>

 ...

Employee ID: <%= eid %>

In the previous example the eid parameter is displayed to the web browser without

escaping or validating HTML characters.

 References
http://capec.mitre.org/data/definitions/32.html

http://cwe.mitre.org/data/definitions/79.html

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

3.3. Software Specifications (AKA countermeasures)

Summary: Allowing only alphanumeric characters in all fields of this payload

The fields used for this aim should only allow alphanumeric characters.

you can make sure it does no contain other types of characters by matching the user-controllable data with a

regular expression such as "^[a-zA-Z0-9_]*$". For more information refer to http://msdn.microsoft.com/en-

us/library/ms525361(v=vs.90).aspx and

http://www.informit.com/articles/article.aspx?p=102193&seqNum=12

4. E-mail Headers Injection

4.1. Affected Components
* Path[0] Threat Agent[Anonymous User] Asset Element[Email server].

* Path[1] Threat Agent[Identified User] Asset Element[Email server].

4.2. Description

 Summary
An attacker manipulates the headers and content of an email message by injecting data via the use of

delimeter characters native to the protocol. Many applications allow users to send email messages by filling

in fields. For example, a web site may have a link to "share this site with a friend" where the user provides

the recipient's email address and the web application fills out all the other fields, such as the subject and

body. In this pattern, an attacker adds header and body information to an email message by injecting

additional content in an input field used to construct a header of the mail message. This attack takes

advantage of the fact that RFC 822 requires that headers in a mail message be separated by a carriage return.

As a result, an attacker can inject new headers or content simply by adding a delimiting carriage return and

then supplying the new heading and body information. This attack will not work if the user can only supply

the message body since a carriage return in the body is treated as a normal character.

 Example
A common function to send emails is the following one:

<?php mail($to,$subject,$message,"From: $from

"); ?>

As we can see, the subject is user-controllable data. A maliciou user can trick the

SMTP server by providing the following string as $from header:

haxor@attack.com%0AContent-

Type:text/html%0A%0AMy%20%New%0A<u>HTML%20Anonymous%20Message.</u>%0A

The resulting e-mail would look like:

To: buddy@pal.xxx

Subject: Visit our site www.website.xxx !

From: haxor@attack.com

Content-Type:text/html

My New

<u>HTML Anonymous Message.</u>

Hello,

A friend thought you might want to see this page : www.website.xxx.

Bye Bye

 References
http://capec.mitre.org/data/definitions/41.html

https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection

http://www.securephpwiki.com/index.php/Email_Injection

4.3. Software Specifications (AKA countermeasures)

Summary: Allowing only alphanumeric characters in all fields of this payload

The fields used for this aim should only allow alphanumeric characters.

you can make sure it does no contain other types of characters by matching the user-controllable data with a

regular expression such as "^[a-zA-Z0-9_]*$". For more information refer to http://msdn.microsoft.com/en-

us/library/ms525361(v=vs.90).aspx and

http://www.informit.com/articles/article.aspx?p=102193&seqNum=12

	1. Time of Check to Time Of Use (TOCTOU)
	1.1. Affected Components
	1.2. Description
	1.3. Software Specifications (AKA countermeasures)

	2. SQL Injection Attacks
	2.1. Affected Components
	2.2. Description
	2.3. Software Specifications (AKA countermeasures)

	3. Reflected Cross Site Scripting (RXSS)
	3.1. Affected Components
	3.2. Description
	3.3. Software Specifications (AKA countermeasures)

	4. E-mail Headers Injection
	4.1. Affected Components
	4.2. Description
	4.3. Software Specifications (AKA countermeasures)

