not a MANual Tool

for Risk Analysis
'S

Risk Analysis Report [Design Constraints]

This document describes the featur es needed to be implemented in the design step to avoid the most
risky threatsto the system

* Report Generated by: guifre

* Date: Fri Oct 26 10:25:54 CEST 2012

* |ssued by: Computer Architecture and Operating Systems (CAQS)
Universitat Autonoma de Bar celona.

.-'I;l:.o——.' .:.-——.‘ |
A O .; .
Universitat A utonoma
Department of Architecture
de Barcelona

and Operating Systems

Thisisan apharelease, if for some arbitrary reason this got to you and have any comment suggestion question idea, you can ping

euifre.ruiz at the gmail dot com server ;-).
| UnB

Universitat Autdnoma

Department of Architecture
and Cperating Systems deBarcelona

1. Cross Site Request Forgery (CSRF)

1.1. Affected Components

* Path[0] Threat Agent[Anonymous User] Asset Element[VO Admin].

* Path[1] Threat Agent[Anonymous User] Asset Element[ldentified User].
* Path[2] Threat Agent[ldentified User] Asset Element[VO Admin].

* Path[3] Threat Agent[ldentified User] Asset Element[ldentified User].

1.2. Description

Summary
An attacker crafts malicious web links and distributes them (via web pages, email, etc.), typicaly ina
targeted manner, hoping to induce users to click on the link and execute the malicious actionagainst some
third-party application. If successful, the action embedded in the malicious link will be processed and
accepted by the targeted application with the users' privilege level. Thistype of attack leverages the
persistence and implicit trust placed in user session cookies by many web applications today. In such an
architecture, once the user authenticates to an application and a session cookie is created on the user’s
system, all following transactions for that session are authenticated using that cookie including potential
actionsinitiated by an attacker and simply "riding” the existing session cookie.

Example

The foll owi ng code executes arbitrary HITP requests in the users' broser
<f or m name="badf or i et hod="post"

action="http://bank/Transfer">

<i nput type="hi dden" nane="desti nati onAccountld" val ue="2" />

<i nput type="hi dden" name="anount" val ue="1000" />

</ fornmp

<script type="text/javascript">

docunent . badf orm subm t () ;

</script>

On the other hand, the code of the bank site is:
String id = response. get Cooki e(“user”);
user Acct = Get Acct (i d);
If (userAcct != null) {
deposi ts. xfer(userAcct, toAcct, anount);

Since the credential is stored in the cookie, the victimw ||l automatically be | ogged
in and the transfermcarried out.

References
http://capec.mitre.org/data/definitions/62.html
http://cwe.mitre.org/data/definitions/352.html
https://www.owasp.org/index.php/Cross-Site Request_Forgery (CSRF) Prevention Cheat Sheet
http://www.codeguru.com/forum/showthread.php?=371569
http://en.wikipedia.org/wiki/Cross-site_request_forgery

1.3. Softwar e Specifications (AK A counter measur es)
Summary: Synchronizing a Secret token pattern in all HTML form requests

In order to facilitate a” transparent but visible” CSRF solution, developers are encouraged to adopt the
Synchronizer Token Pattern (http://www.corej 2eepatterns.com/Design/PresoDesign.htm). The synchronizer
token pattern requires the generating of random " challenge” tokens that are associ- ated with the user’s
current session. These challenge tokens are the inserted within the HTML forms and links associated with
sensitive server-side operations. When the user wishes to invoke these sensitive operations, the HTTP
request should include this challenge token. It is then the responsibility of the server application to verify the
existence and correctness of thistoken. By including a challenge token with each request, the devel oper has
astrong control to verify that the user actually intended to submit the desired requests. Inclusion of a
required security token in HT TP requests associated with sensitive business functions helps mitigate CSRF
attacks as successful exploitation assumes the attacker knows the randomly generated token for the target
victim’s session. Thisis analogous to the attacker being able to guess the target victim'’ s session identifier.
The validity of the token can also be limited to a small window of time, such as five minutes.For instance:
<form action="/transfer.do" method="post">

<input type="hidden" name="CSRFToken"
value="OWY 4ANmMQWODE4ODR]N2Q2NTIhMmzZIY WEwY zZU1Y WQWM TVhM2IMNGY xYjJMGI4M]J
ZDE1ZDZjMTViIMGYWMGEWOA==">

</form>

2. Insecure Cryptographic Storage

2.1. Affected Components
* Path[0] Threat Agent[Anonymous User] Asset Element[config].
* Path[1] Threat Agent[Anonymous User] Asset Element[Relational Database].

405/ unB

Universitat Autbonoma
Department of Architecture
and Operating Systems deBarcelona

2.2. Description

Summary
Protecting sensitive data with cryptography has become a key part of most applications. Simply failing to
encrypt sensitive datais very widespread. Applications that do encrypt frequently contain poorly designed
cryptography, either using inappropriate ciphers or making serious mistakes using strong ciphers. These
flaws can lead to disclosure of sensitive data and compliance violations.

Example
> select * fromusers;
i d username password
1 Brett 5f4dcc3b5aa765d61d8327dehb882cf 99
2 Dan 3c3662bch661d6de679c636744c66b62
The passwords in these table are 32 characters |long. Could these passwords be M5
hashes?

As with all hashing algorithms, MD5 hashes can't be reversed. However, they can be pre-
conputed. Using a hash table | ookup we can identify what the password is before it was
ran through the MD5 hashi ng al gorithm

After inserting 5f4dcc3b5aa765d61d8327deb882cf99 into the hash table | ookup the
resulting password is returned. In this exanple, the password is "password."

References
http://cwe.mitre.org/data/definitions/326.html
https://www.owasp.org/index.php/Top_10 2007-Insecure_Cryptographic_Storage
http://cwe.mitre.org/data/definitions/327.html
http://bretthard.in/2009/09/insecure-cryptographi c-storage/

2.3. Softwar e Specifications (AK A counter measur es)
Summary: Using strong cyptographic algorithms to encrypt sensitive data

Select awell-vetted algorithm that is currently considered to be strong by expertsin the field Carefully
manage and protect cryptographic keys

305/ UrB

Universitat Autbonoma
Department of Architecture
and Operating Systems deBarcelona

	1. Cross Site Request Forgery (CSRF)
	1.1. Affected Components
	1.2. Description
	1.3. Software Specifications (AKA countermeasures)

	2. Insecure Cryptographic Storage
	2.1. Affected Components
	2.2. Description
	2.3. Software Specifications (AKA countermeasures)

