
VOMS Core Vulnerability Assessment*1

Manuel Brugnoli and Elisa Heymann
Universitat Autònoma de Barcelona

February, 2012

Introduction

Virtual Organization Membership Service (VOMS) serves as a central repository for
user authorization information, providing support for sorting users into a general group
hierarchy, keeping track of their roles, etc.

This report presents the results of the vulnerability assessment of VOMS Core [1],
version 2.0.2, as part of a Quality Control process within EMI. For this task we have
used the First Principles Vulnerability Assessment (FPVA) methodology [2] proposed
by the University of Wisconsin and Universitat Autònoma de Barcelona Middleware
Security and Testing Group.

Although VOMS is divided in VOMS Core and VOMS Admin components, in this
report only is reported the results of VOMS Core component, given that VOMS Admin
was previously evaluated by our group.

In our evaluation of VOMS Core we did not find any serious security issues. Only a
Denial of Service vulnerability was found, and was caused by a lack of limits on the
number of simultaneous connections from clients that can result in reduced availability
of the VOMS server.

This report is structured as follows. The first section presents the architectural, resource
and privilege analysis of VOMS Core. The component evaluation of VOMS Core is
discussed in the second section, and the final section provides the results of the
vulnerability assessment performed.

Architectural, Resource and Privilege Analysis

In this section, we describe the steps of the FPVA methodology as applied to VOMS
Core. We also show the resulting diagrams for each step.

Architectural Analysis

Figure 1 shows the generic architecture of VOMS. VOMS is divided in two main
components, VOMS Core and VOMS Admin.

* This research was funded in part by NATO grant ICS.MD.CLG 984138 and the European Commission
(contract number: RI-261323), through the EGI-InSPIRE (Integrated Sustainable Pan-European
Infrastructure for Researchers in Europe) project.

VOMS Core is written mainly in C++. Its main functionality is to listen for user
requests and create attribute certificates. VOMS Core follows a client/server
architecture, and consists of:

 a server (VOMS daemon) that receives requests from a VOMS client and returns
information about the user

 the VOMS client (voms-proxy-init) that contacts the standalone voms daemon
process that queries the authorization database and generates the actual VOMS
attribute certificates

 locally-executed utilities:
o voms-proxy-info: Once a VOMS proxy certificate has been created,

this command allows the user to retrieve several information from it.
o voms-proxy-destroy: this command erases an existing VOMS proxy

certificate from the system.
o voms-proxy-list: this command displays a list of all available

attributes from a specified proxy server. This information can also be
obtained using the list option of the voms-proxy-init command (i.e.
voms-proxy-init -voms VO_NAME -list).

o voms-proxy-fake: this command generates a proxy containing arbitrary
attributes without contacting the VOMS server. It is intended as a tool for
testing and debugging software.

Figure 1. VOMS Architecture Diagram.

VOMS 2.0.2 Architecture

VOMS Server Host

DB

VOMS Admin
(Tomcat)

VOMS
daemon

User Host

Web
Browser

VOMS
Client

VOMS Admin
Client

HTTPS

SOAP over SSL

Ancillary
Utilities

GSI Connection

OS privileges

user daemon

root

DB privileges

VO_Server

Command Line

Command Line

Web

Command Line

As shown in Figure 1, to connect and authenticate to the VOMS daemon, users must
have a valid end entity certificate that is signed by a trusted CA, and has not been
revoked. This certificate is used to sign a time limited proxy certificate that is used for
authentication to the VOMS daemon. To gain access to the VOMS daemon services the
client software uses the authentication proxy certificate to negotiate a SSL connection
using mutual authentication between the client and the VOMS daemon.

On the other hand, the VOMS Admin component consists of a VOMS Admin server,
which is a Java application that runs under Tomcat; a web user interface, which is used
by users for daily administration tasks; and a SOAP interface for remote clients, called
voms-admin that can perform most of the main actions using a SOAP interface to
VOMS Admin.

The VOMS database stores the membership of the virtual organization, their roles and
attributes, and data only used by VOMS Admin. The VOMS daemon only reads the
database, while VOMS Admin component both reads and writes the database.

Figure 2. VOMS Client-Server Interaction Diagram.

All interactions between the VOMS server and a VOMS client follow a pattern shown
in Figure 2. To begin the client-server interaction, the client process makes a connection
to the VOMS daemon. When the connection is made, the VOMS server uses a forking
server model to handle all requests, so a forked copy of the VOMS daemon is created
that handles the interaction with this connection. Next, the VOMS daemon checks the

VOMS Client‐Server Interaction

VOMS Server Host

DB

VOMS daemon

User Host

V
O
M
S

C
l
i
e
n
t

OS privileges

user daemon

root

DB privileges

VO_Server

VOMS
pseudo

certificate

voms‐proxy‐init

4. Accept Connection

VOMS daemon
child process

3. Wait for Connection

12. End Child Process

8. Query the database to
verify the assertion against User DN

7. Request AC with
attributes X, Y, Z

10. Send the
Attribute Certificate

1. Send Request

13. Create a proxy
certificate with
embedded AC

5. Fork

11. Close Connection

9. Create Attribute Certificate,
Sign with VOMS certificate

6. Mutual Auth. & Create Secure
Communication Channel via GSI

2. Connect to Port

user’s authentication certificate DN for authorization, and that the requested attributes
are valid. If authorized, the VOMS daemon returns an attribute certificate binding the
user’s DN with the requested attributes, and the client creates a new proxy certificate
with the returned attribute certificate embedded. After servicing the request, the forked
VOMS daemon exits.

The above sequence of steps may be repeated any number of times. The forked server
model allows concurrent execution of request, and isolates requests from each other.

Resource Analysis

The main resource that the VOMS daemon manages is the VOMS database, which
contains all the information about users in a VO with their roles and attributes. The
database also contains data used by VOMS Admin. VOMS can use an Oracle or
MySQL database. In our assessment we used a MySQL database.

Figure 3. VOMS Core Resources Diagram (VOMS daemon).

As shown in Figure 3, the VOMS daemon also uses other files such as the
TRUSTED_CA directory that contains files describing all the trusted Certificate
Authorities (CA) including the CA certificates and signing policy files of the CAs
trusted by the Grid Security Infrastructure (GSI). The /etc/grid-security directory
contains the X.509 host certificate and private key. The CONFIG_DIR VO_NAME

VOMS Core 2.0.2 Resources

VOMS Server Host

$CONFIG_DIR
VO_NAME

logsTRUSTED_CA /etc/
grid_security

Readable

Owner
World

VOMS
daemon

DB

hostcert
.pem

host
has key

signed,

hostkey
.pem

certificates

OS privileges

daemon

root

DB privileges

VO_Server

voms.conf voms.pass
vomsdir

directory contains the configuration files of VOMS, including a file with the database
user and password. Finally, the log files are used to keep track of the activity performed
by VOMS Core.

Figure 4. VOMS Core Resources Diagram (VOMS Client).

On the client side, as shown in Figure 4, the main resource that the VOMS Client
manages is the user certificate/key, called respectively usercert and userkey. Both
PKCS12 and PEM formatted credentials are acceptable.

Privilege Analysis

The VOMS server runs under root privileges in the operating system and the VOMS
client runs with the same privileges as the user who is executing it.

The proxy certificate file generated by VOMS Client is stored by default in the /tmp/
directory. The proxy file is user owned by user executing the client program, and has
permissions such that only that user can read, write and delete the file. Also, this
exposure is somewhat muted because proxy certificates should have a short life and the
credential used to generate the proxy is not at risk.

VOMS Core 2.0.2 Resources

User Host

$HOME/ /tmp/ /TRUSTED_CA /etc/

Readable

Owner
World

VOMS
Client

certificates

OS privileges

user

root

usercert.pem userkey.pem

x509up_u<user_id>/user/.globus/ grid_security/ vomses/

vomsdir

/opt/

glite/etc/vomses

Component Analysis

In this section we explain the different tests carried out during the vulnerability
assessment of VOMS Core. In summary, the design of VOMS Core seemed secure and
did not contain obvious serious vulnerabilities. The problems that we did find were
more minor implementation flaws, and these flaws are described in this section.

Resource permissions

Due to the sensitive information passing through a VOMS server, it is intended to be
run on highly secured host with limited local user access and other services. This should
reduce the chances of an attack from another account on the machine.

We checked the permissions of files that have a high security value, including the
certificate private keys, and the database configuration files. The permissions of these
files appeared to be correct.

Denial of Service Attacks

A common problem in client-server architectures is dealing with denial of service
(DOS) attacks. The only vulnerability discovered a Denial of Service vulnerability that
was reported to the VOMS developers.

This vulnerability is caused by lack of limits on the number of simultaneous
connections. Full details about this were reported in the vulnerability report VOMS-
CORE-2011-0001.

User privileges

Since the client commands run with the privilege of the user, and the user initiates the
use of the command, an attacker has limited options in carrying out an attack through
the command line interface. We did not find privilege problems in the client commands.

On the server side, we found that voms daemon runs with root operating system privileges
in order to access the resources which are only readable by root, such as hostkey.pem.
Thus, we have checked the source code looking for flaws that may compromise the
server and no privilege problems were found.

Check for dangerous functions

We checked for the use of functions that commonly result in security problems, such as
system or exec functions. No vulnerabilities related to dangerous functions were found.

Authentication Issues

As explained in the Architecture Analysis, mutual authentication is performed between
the client and server. This design makes the system quite strong, and reduces many
possible threats.

Network Layer Security

Data sent over a network is both susceptible to eaves-dropping and to modification if
precautions are not taken. The VOMS server creates a secure communication channel
via Globus GSI with the VOMS Clients to handle the client requests.

This encrypted channel provides strong end-to-end data encryption and integrity. We
considered these mechanisms and encryption secure, and we did not perform other tests
at this regard.

Injection Attacks

We have checked for the possibility of injection attacks in the VOMS command line
client in two ways.

Firstly by checking the source code to ensure VOMS correctly parses and checks the
arguments passed through the command line. Secondly, through the command line by
performing injection attacks using special elements, such as sequence of bytes,
characters, or words that is used to separate different portions of data within a particular
representation or language. Appropriate parsing is performed to protect against
command injection vulnerabilities and no such vulnerabilities were found.

Buffer overflows

As VOMS Core is written in C/C++, we evaluated several potential buffer overflow
problems in key parts of the code. However, we did not detected any dangerous
behaviour.

Results and Recommendations

After completing the check described in this document we have found only a
vulnerability caused by lack of limits on the number of simultaneous connections in
VOMS Core 2.0.2.

We did not discover any serious security problems in VOMS Core 2.0.2, nor did we see
any security problem with the architecture and implementation. Some of the different
features that made VOMS Core strong and secure are the following:

 The attack surface in VOMS Core is very small. It is limited to the component
that receives requests from a VOMS client and returns information about the
user.

 VOMS Core correctly parses and checks the arguments sent from the client.
 The VOMS server uses a forking server model to handle all requests from

VOMS clients. The forked server model provides isolation from faults, and
contamination of the process that could affect future requests.

 The recommended operational configuration of a VOMS server node is a highly
secured host with limited local user access and other services. This reduces the
chances of an attack from another account on the machine.

 All communication between the VOMS server and VOMS clients is secure
using secure communication channel via GSI and a mutual authentication is
performed. This prevents exposure of sensitive data.

References

[1] Virtual Organization Membership Service (VOMS), https://twiki.cnaf.infn.it/
twiki/bin/view/VOMS/

[2] James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann. First Principles
Vulnerability Assessment, 2010 ACM Cloud Computing Security Workshop (CCSW),
Chicago, IL, October 2010. http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

