
CREAM Vulnerability Assessment*1

Manuel Brugnoli, Maxime Frydman, Joe Carrión, and Elisa Heymann
Universitat Autònoma de Barcelona

September, 2013

Introduction

The CREAM (Computing Resource Execution And Management) Service is a simple,
lightweight service for job management operation at the Computing Element (CE)
level [1].

This report presents the results of the vulnerability assessment of CREAM, version
1.14.0, as part of a Quality Control process within EGI InSPIRE. For this task we have
used the First Principles Vulnerability Assessment (FPVA) methodology [2] proposed
by the University of Wisconsin and Universitat Autònoma de Barcelona Middleware
Security and Testing Group.

This report is structured as follows. The first section presents the architectural, resource
and privilege analysis of CREAM. The component evaluation of CREAM is discussed
in the second section, and the final section provides the results of the vulnerability
assessment performed.

Architectural, Resource and Privilege Analysis

In this section, we describe the steps of the FPVA methodology as applied to CREAM.
We also show the resulting diagrams for each step.

Architectural Analysis

CREAM is a system designed to manage a CE in a Grid environment. CREAM is
mainly composed by an interface based on Web Services, which enables a high degree
of interoperability with clients, currently Java and C++ clients are provided, but it is
possible to use any language with a Web Service framework.

CREAM is written in Java, and runs as an extension of a Java-Axis servlet inside the
Apache Tomcat application server. Requests from users and components come solely
through SOAP web services. This offers a single unified interface offering all the
features supported by CREAM.

All requests sent to CREAM are first authorized before being processed, when a
specific user sends a request the authorization framework will contact VOMS to verify

* This research was funded in part by NATO grant ICS.MD.CLG 984138 and the European Commission
(contract number: RI-261323), through the EGI-InSPIRE (Integrated Sustainable Pan-European
Infrastructure for Researchers in Europe) project.

whether the user has sufficient privileges to carry out that request. This mechanism
serves both for regular users and administrators of the system.

Figure 1 shows the generic architecture of CREAM, this is a high level view showing
just the processes and their communication protocols. The architectural diagrams
provide the analyst with a great deal of information on the attack surface, attack vector
and the general structure of the software.

Figure 1. CREAM Architecture Diagram.

The hosts shown are the User, CE, VOMS and the Worker Nodes (WN). The Host
details the processes running (these are the components of the middleware), whether a
component belongs to CREAM and its privileges. Components that are external to
CREAM are not part of the assessment and are not reviewed for vulnerabilities, they
can however be used to perform attacks if they can be manipulated to perform malicious
actions.

Each communication between hosts is labeled with its protocol. This offers a first
insight into attack surfaces, for example the CE communicates with the client using
HTTPS encrypted SOAP web services and the GLOBUS FTP protocol. The first is used
to offer the functionalities of the CE to the client, while the second is used for the
transfer of job files. This gives an initial feeling for possible attacks, particularly
communications and API attacks.

CE Host WN Host

WN job

CREAM 1.14.0 Architecture

OS privileges

user External Component

root

User Host

User
Interface Tomcat

CREAM‐CE

SOAP/
HTTPS

CREAM
DataBase

DB privileges

DB_Admin

Job

BLAH

LRMS

VOMS Host

VOMS
Server

GridFTP

Tomcat Batch user

SOAP/
HTTPS

SOAP/
HTTPS

GSIFTP

Job submission is one of the core services offered by CREAM and involves the
interaction of all of its components. This is why the job submission was used to present
the CE's interactions as it gives a general idea of how data flows within CREAM. Other
services offered by the CE follow the same general pattern of interactions.

Figure 2. CREAM Client-Server Interactions.

Figure 2 presents all the steps involved in the submission of a job on the CE. This
diagram provides the analyst with information over which component accesses the data
sent to the CE and how that data is used. Where the overview diagram gave information
about possible attack surfaces the interaction diagram gives information on attack
vectors. Knowing where specific input sent to the CE will be used and what actions are
triggered guides the analyst in the assessment of a component to evaluate if it is
vulnerable to an attack.

The steps involved in the submission of a job are the following:

 Certificate Acquisition: To submit jobs on the CE a proxy certificate is required.

This certificate is generated by the VOMS component and serves to authorize the
user on the CE. Proxy certificates are a temporary form of authentication, by default
they last 24 hours, and are used to mitigate the security risk of sending the real user
certificate to the CE. If the CE is compromised or the proxy certificate is intercepted
it is only of very limited value due to its short-lived nature.

CE Host WN Host

WN job

CREAM Client‐Server Interactions

OS privileges

user External Component

root

Tomcat

CREAM‐CE

CREAM
DataBase

DB privileges

DB_Admin

Job

BLAH

LRMS

VOMS Host

GridFTP

Tomcat Batch user

1.2 Return
proxy cert

1.1 Request
proxy cert 2. Send Job

+ proxy cert

VOMS
Server

3.1 Check
cert

3.2 Return
privileges

4. Add job
to database

5 Get files

User Host

User
Interface

6.1 Create LRMS
Specific job from JDL
(Using BLAH client)

6.2 Send
Job and files

6.4 Create
user process

6.3 Send
to nodes

6.5 Return
result

 Certificate Delegation and Job submission from the client to the CE: The
certificate and the job description are sent to the CE. The CE will store the
certificate associated to a delegation identifier, this identifier can then be used to
send multiple jobs using the same certificate. The information over the job
submitted to the CE is only the JDL file that describes the various parameters of the
job like the location of the executable, the location of the data and the files that have
to be retrieved as output.

 User Authentication and Authorization: The CE will immediately contact VOMS

before storing any of the information over the jobs to confirm the user identity and
establish whether the user has the privileges required to create jobs. The
authentication is done using the user real certificate signing the data with his private
key on the client side. The CE will then verify that this data is correct by comparing
it to the information sent by VOMS. If everything checks out the job creation will
proceed.

 Database Storage: When the user has been authenticated the CE will then store the

information over the job and the proxy certificate inside its database and call
GLOBUS to launch file transfers.

 File Transfer: GLOBUS is required to transfer the executable and input files from

the client to the CE. The authentication of GLOBUS uses the certificate previously
delegated and then transfers the requested les for storage on the CE. The files will
reside on the CE until the job is sent to the worker nodes.

 Job Submission from the CE to the Resources: When the CE is notified that there

are free resources on the worker nodes the JDL is sent to BLAH. BLAH will
translate the generic commands described in the JDL file into commands specific to
the LRMS. BLAH will also generate a wrapper executable that will be executed on
the worker nodes. The purpose of the wrapper is to launch the executable specified
in the JDL with all the parameters requested by the user. This deals with site
specific configurations like the location of the input data for an executable and
authentication on storage resources, it can be modified if needed by the
administrator to adapt to the specifics architectural details of a CE.

The submission of the files from the CE to the worker nodes is left to the LRMS.
When all the files have been transferred to the resources the LRMS will launch the
wrapper execution. When the execution is finished the LRMS will transfer the
results back to the CE so that the user can retrieve the results.

Also, the interactions diagram shows the order in which tasks are handled and the
responsibilities of each component. It also details the general steps of the job
submission process. The whole process is not a single user action, for example step 1
which acquires the proxy certificate is handled by the VOMS client while step 2 is
carried out by the CREAM client and are separate actions by the user.

For example, in the second step of the submission the user sends the certificate and the
JDL to the CE, some of this information is then stored inside the database. This
indicates the possibility of SQL injection attacks from these inputs.

The last diagram that is part of the architectural analysis is the component diagram as
shown in Figure 3. This diagram is not always included in the analysis but is useful
when analyzing software which runs within a virtual environment like java's Tomcat
used by CREAM. The purpose of the component diagram is to show the various
packages and their responsibilities in treating requests.

Figure 3. CREAM Component Diagram.

The component diagram provides a great deal of information over the structure of the
code, this gives the analyst a precise idea of where each section of code is located and
what type of information is passed on from one package to the other. This information
is useful when the code is reviewed and serves as a road map when specific
functionalities are assessed to locate the relevant sections of code.

The described components are the following:

 WebService: The WebService package is the front end of the CREAM application,

it offers the web services of the two underlying packages that represent the core
functionalities of the CE. It is also the only direct means of communication with the
CE for users, administrators and schedulers alike.

It offers SOAP web services over the encrypted HTTPS protocol, each web service
takes a number of arguments depending on the precise service and additionally a
proxy certificate for authentication.

CREAM‐CE

CREAM Component Diagram

CE Host

Tomcat

BLAH client

Job
Management

Delegation
Management

AuthorizationWebService

Activity
Management

User Host

User
Interface

WN Host

WN job

Job

CREAM
DataBase

BLAH

LRMS
DB privileges

DB_Admin

OS privileges

user

External Component

root Tomcat

Batch user

 Authorization: The authorization package is the first one called after a request is
sent to the CE. It serves to authentify the request by communicating with VOMS to
ensure that the identity submitted is legitimate and that the right privileges are met
to execute a specific command. If it is successful then the CE will transmit the
request further to the appropriate package while if it fails the operation is terminated
and the user notified.

This package also facilitates further operations for the CE, since all request have
obligatorily passed through authentication and were carried on only if the
requirements were met no further verification is required in other packages.

 Job Management: Job management is the first package containing the core
functionalities of the CE, it deals with all the commands that interact with jobs and
includes job creation, job cancellation and job output retrieval. The package is called
by the web service package when job related commands are called after the
authorization process. The package includes all the logic for in memory and
database storage for the tables that are related to jobs. Instructions that will be
transmitted to the LRMS are stored inside the database before creating a new
activity which will invoke the BLAH client. Also included in this package are the
operations for automated job cancellation due to certificate expiration.

 Delegation Management: Delegation Management is the second package
containing the core functionalities of the CE, it handles all the operations involving
proxy certificates like proxy delegation and renewal. The package is called by the
web service package when certificate operations are used.

The package includes database operations to store and retrieve certificates, when a
certificate is delegated it is stored inside the database to be used when new jobs are
created by associating the job with its corresponding proxy certificate.

 Activity Management: The activity management package handles a pool of Java
threads used to communicate with processes that are external to CREAM like
BLAH. When a job management command requires interaction with BLAH a new
activity is created, this activity runs in its own thread and will create a new BLAH
client.

This mechanism is used so that the request of a client can be directly answered
while operations that can incur delays are processed independently. Since the BLAH
component is external to CREAM and therefore information over its state is not
always accurate the package also handles multiple retries of a command until it is
successfully processed.

 BLAH Client: The BLAH client is a package used by the activity management
package to communicate with BLAH. BLAH is an external process independent of
CREAM and all the logic to interface with it is held within this package. Commands
to be transmitted to BLAH are stored within the database and then passed on to the
BLAH client which passes this information on to the actual BLAH process that will
handle the conversion of the generic command to one that is specific to the LRMS.

Resource Analysis

Resource diagrams focus on identifying all the resources used by a specific component
and how they are accessed. This includes configuration files, logs and databases.
Resources are an important part of vulnerability assessment and gaining access to them
is often what leads to successful attacks.

The Figure 4 focuses on the resources of the CE. As seen previously the CE runs within
the Tomcat environment, the resource shown are all those accessed by the Tomcat
process relating to CREAM during the operations of the CE.

Figure 4. CREAM CE Resources Diagram.

The CE uses relatively few resources and relies heavily on the database to store content
with the exception of the CREAM configuration, logs, certificates and job files.

 CE Configuration: The CE configuration file holds all the information necessary to

launch the CE, it holds information on the location and credentials of the database,
information over the VOMS server and other configuration settings required to
launch the CE. Only the CE process reads this file, this is reflected in its permissions
by being owned and only accessible by the TOMCAT user.

 Job Sandbox: The job sandbox contains all the files submitted by the user for a job
and after execution the outputs of those jobs. Each user of the VO has his own
folder containing the data from all the jobs he has submitted. On the CE each user is

CREAM CE Resources

CREAM CE host

logs/etc/
grid_security

CE

hostcert.pem

host
has key

signed,

hostkey.pemcertificates

/etc/
glite-ce-cream

Cream-config.xml

/var/
Cream_sandbox

User 1 User N vomsdir

Owner
World

File ownership

-rw-------

-r--------rw-r--r-

OS privileges

root

DB privileges

DB_AdminTomcat

Batch user

CREAM
DataBase

assigned a CE batch user from a pool of users created for that purpose, these users
also exist on all the worker nodes and serve for execution.

Each sandbox is owned by its corresponding batch user, which was assigned to a
VO user.

 Logs: There are a number of log files on the CE that describe the operations that
were executed. These files contain some information about the jobs submitted but
do not hold sensitive information. Gaining access to them would be of little value to
an attacker. These are low-value assets.

 Host Certificates: The CE holds a number of public certificates to authenticate the
hosts it communicates with and its own public and private certificate. These
certificates are used to guarantee the identity of hosts, when a client connects to the
CE it will use the public certificate of the CE (which is publicly available) to ensure
the data was signed using the private certificate (which is only available to the CE).

Gaining read access to the public certificates holds no value to an attacker as these
are meant to be shared. However being able to modify the public keys could allow
certain attacks like host replacement. The private key of the CE however is an
extremely valuable asset, if this key is compromised then attackers could replace the
CE with a custom host without alerting the clients. This makes the public
certificates low-value assets while the private certificate of the CE is a high-value
asset.

 The Database: The CREAM-CE uses the database for most of its operations. The
database is used to hold the state of the CE holding information like job information
and proxy certificates but also for communication between the components of the
CE like commands that will be sent to BLAH. The database has a single user for
both reading and writing, if an attacker was to gain access to the database he would
gain control over most aspects of the CE. This makes the database a high value-
asset.

The second resource diagram produced, Figure 5, focuses on the resources of the client.

When analyzing the client resources the objective is twofold, the client can both be the
target and the source of an attack. First, similarly to the CE, understanding what
resources on a client can be compromised and the type of damage that would result
highlights the most valuable resource to target when attacking the client. Second a
number of the resources located on the client will be transmitted to the CE and are
potential vectors of attack.

When assessing the client's security there are some specific use cases taken into
account. If the client is totally isolated, having only one user that has total control over
his machine and there no specific services running on the client host that would allow
access to his resources then there isn't much that can be done with this information.
However if there are situations where clients coexist on a single host or where access to
the resources is possible then this information becomes relevant.

Figure 5. CREAM CE Resources Diagram.

The CREAM client allows interactions with the CE, it does so by implementing simple
commands that call one or multiple of the web services offered by the CE. The client is
less complex than the CE but still uses a number of files that are required for its
operations.

The client has resources specific to the user like his certificate, job files and logs while
certificates that identify the various hosts of the Grid are shared across a client host.

 Proxy Certificate: The proxy certificate is required to authenticate with the CE,
without it no commands can be executed. This certificate produced by the VOMS
client is a requirement on the CREAM client host. The proxy is stored on the client
host in the temporary folder (/tmp), it is owned and can only be read by the user
who has created it.

 Logs: Similarly to the logs contained on the CE, the client logs contain information
over the transactions between the client and the CE. They hold no data of particular
value to an attacker and make them low-value assets.

CREAM Client Resources

Client Host

Client

/tmp/
/home/user

proxy client logs Job input files JDL file

/etc/
grid_security

Job output files Certificates

Owner
World

File ownership

-rw------ -rw-r--r-- -rw-r--r* -rw-r--r* -rw-r--r*

*default permissions
can be modified by user

-rw-r--r--

OS privileges

user

root

 User Files: To submit jobs on the CE the user will have to place all the files and
executables related to a job on the client and the output of jobs will be stored on the
client when the user retrieves them. All these files are by default stored in the user
home directory with the permissions of that user. These files are outside of the
control of CREAM; they fall under the responsibility of the user and are not
considered during the assessment. They are however relevant to the attacker as a
vector of attack as these files will be submitted to the CE and could potentially be
used to exploit the CE.

 Host Certificates: Similarly to the CE the client holds a number of certificates to
authenticate the hosts that he will communicate with. These include the public keys
for VOMS, the CE and any other hosts configured in the client. They are stored in a
special folder on the client owned by root but readable by all users. The client hosts
does not require its own certificate as authentication is based on the certificates of
the users.

Privilege Analysis

The privilege analysis focuses on the user permissions that execute running processes
and resource permissions. This information is gathered last and used to enrich the
architectural and resource diagrams. The diagrams presented previously are the final
versions and already include this information.

First the privilege analysis adds a very important layer of information to the analysis,
when elaborating attacks on a particular component knowing which assets can be
accessed and in what way is critical. Where the architecture and resource diagrams
highlights from which component and to what end an attack can be elaborated the
privileges limit the possibilities by clearly defining whether it would be possible to
interact with the resource.

Second it also serves to spot erroneous permissions which are a common type of
vulnerability. The latest statistics on vulnerabilities by OWASP for 2013 [3] list security
configuration as the fifth most common type of vulnerability, these are simple errors
that can lead to severe data exposure but are easily rooted out through the privilege
analysis.

Component Analysis

The vulnerabilities found were presented in the form of reports sent to the developers,
these reports are presented here in a redacted format meant to respect the confidentiality
that binds the assessors and the software producer.

Following are five vulnerability reports describing the findings produced during the
assessment, each of these vulnerabilities are currently undergoing fixing.

 Vulnerability Report 1: The Client Proxy Certificates Attack

The first vulnerability report sent to the developers concerns the CREAM client. When
a client host is shared amongst multiple users, certain condition allows a malicious user
to get complete control over jobs submitted by other user by tampering with certificate
files. When successful this allows a malicious user to force the execution of other user’s
jobs under the malicious user identity.

This vulnerability is based on the assumption by the developers that attackers would
attempt to steal certificate files but in this case an attacker gains unauthorized access by
sharing his certificate with users.

Full details about this were reported in the vulnerability report CREAM-2013-0001.

 Vulnerability Report 2: SQL Injections and Denial of Service Attacks

The second vulnerability report concerns direct SQL injections from the client on the
CE. A total of 17 vulnerable SQL queries were found on the CE, these findings were
grouped in one report that provides examples for a selected few. These examples
included listing the jobs of all users on the CE, DoS attack on the CE that requires a
reboot to resume operations and a DoS that prevented any operations and persisted
through reboots.

Full details about this were reported in the vulnerability report CREAM-2013-0002.

 Vulnerability Report 3: Arbitrary Job Cancellation Through Indirect Injection

The third vulnerability report submitted showed how a user could cancel any and all
jobs on the CE regardless of his privileges. This attack allowed all jobs to be canceled at
once or to target specific jobs and users. The report included a complete program that
would automate this attack and use information obtained in the vulnerabilities shown in
report 2 to get full control over which jobs to be cancel.

Full details about this were reported in the vulnerability report CREAM-2013-0003.

 Vulnerability Report 4: Access to the CREAM databases and throughout the
information stored there access to: output and input files of other users,
complete list of Job ID, delegations, and JDL files

The fourth vulnerability report sent to the developers concerns a malicious user can gain
access to all the information contained inside the CREAM database for which they do
not have permission, including certificates created for delegations, job ID, JDL files and
job files of all users. This is performed by submitting a malicious job register command
to the CREAM CE through a custom CREAM Client created using the CREAM API.

Full details about this were reported in the vulnerability report CREAM-2013-0004.

 Vulnerability Report 5: Reducing Availability of the CREAM CE Through
Denial of Service Attacks

The fifth vulnerability report submitted showed how a malicious user can submit a job
capable of submitting false status notifications directly to CREAM CE. These false
notifications consume operating system resources, such as memory, and other limited
resources in the operating system causing the CREAM CE to deny client requests.

This vulnerability is possible because the CREAM CE receives job status notification
by the LRMS daemon. However, CREAM CE has no established limit on the maximum
number of simultaneous connections from the LRMS daemon. This lack of control can
result in the reduced availability of the CREAM CE.

Full details about this were reported in the vulnerability report CREAM-2013-0005.

Results and Recommendations

After completing the analysis described in this document we have discovered several
security problems in CREAM 1.14.0, these security problems were reported to the
developers on five reports.

In general the code was of good quality and numerous security measures are in place to
prevent attacks. The consistent use of prepared statements and authorization, the use of
standard Grid toolkits like GLOBUS and proper use of users and privileges on the
Linux operating system made the system robust and more difficult to attack.

Some of the features that made CREAM a robust system are the following:

 The attack surface in CREAM is very small. It is limited to the component that
receives requests from the clients.

 Local administration permissions were secure and no way was found to escalate
a user to an administrator on the system.

 Each web service request passes through the authentication framework before
being handled, the authentication mechanism that works in combination with the
VOMS server is well implemented and prevented any unauthorized access to
services and could not be bypassed.

 Encryption between the client and the CE is well implemented and cannot easily
be broken, this prevents eavesdropping on the information sent. Host spoofing
techniques are thwarted by the authentication mechanisms using host certificates
and without access to these certificates are not possible.

 Certificate in the client hosts are well isolated between users and host certificates
cannot be modified.

 CREAM is written in Java. This prevents possible vulnerabilities that we can
find in other languages (e.g. C and C++), such as those related to the memory
allocation and management.

References

[1] Cristina Aiftimiei, Paolo Andreetto, Sara Bertocco, Simone Dalla Fina, Alvise Dorigo,
Eric Frizziero, Alessio Gianelle, Moreno Marzolla, Mirco Mazzucato, Massimo Sgaravatto,
Sergio Traldi, and Luigi Zangrando. Design and implementation of the gLite CREAM job
management service, Future Generation Computer Systems, Vol. 26, Issue 4, April 2010,
Pages 654-667.

[2] James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann. First Principles
Vulnerability Assessment, 2010 ACM Cloud Computing Security Workshop (CCSW),
Chicago, IL, October 2010. URL http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

[3] OWASP. Owasp list of top ten most common vulnerabilties in 2013. last checked july
2013. URL https://www.owasp.org/index.php/Top_10_2013-Top_10.

