
Argus Vulnerability Assessment*1

Manuel Brugnoli and Elisa Heymann
Universitat Autònoma de Barcelona

June, 2011

Introduction

Argus is the gLite Authorization Service. It is intended to provide consistent
authorization decisions for distributed services (e.g. compute elements, portals) in the
Grid Environment.

This report presents the results of the vulnerability assessment of Argus [1], version 1.2,
as part of a Quality Control process within EMI. For this task we have used the First
Principles Vulnerability Assessment (FPVA) methodology [2] proposed by the
University of Wisconsin and Universitat Autònoma de Barcelona Middleware Security
and Testing Group.

This report is structured as follows. The first section presents the architectural, resource
and privilege analysis of Argus. The component evaluation of Argus is discussed in the
second section, and the final section provides the results of the vulnerability assessment
performed.

Architectural, Resource and Privilege Analysis

In this section, we describe the steps of the FPVA methodology as applied to Argus. We
also show the resulting diagrams for each step.

Architectural Analysis

As Figure 1 shows, Argus consists of 3 main components: (a) the Policy Administration
Point (PAP) is the component used to create, store and manage the policies used by the
Authorization Service; (b) the Policy Decision Point (PDP) to evaluate the authorization
requests received from the Policy Enforcement Points against authorization policies
retrieved from the PAP; and (c) the Policy Enforcement Point (PEP) to enforce policy
decisions.

The PEP component is separated in a client/server architecture, the PEP Server handles
the lightweight PEP Client requests, and runs on the Argus host. Lightweight PEP
Client libraries are available to authorize requests from the application side, and to
enforce decisions locally.

* This research was funded in part by NATO grant ICS.MD.CLG 984138 and the European Commission
(contract number: RI-261323), through the EGI-InSPIRE (Integrated Sustainable Pan-European
Infrastructure for Researchers in Europe) project.

Figure 1. Argus Architecture Diagram.

CE Host

authZ service Host

PDP

WN Host

PEP Server
WN job

gLExec

PAP Admin
Tool (Edit Policy)

Administrator

2

3

4

5
6

9

10a

LRMS

WMS

CREAM

User (UI)

1a

RB Host

1b

Argus 1.2 Architecture

PAP

7 8

D’ E’

PAP (Policy Administration Point) → Manage Policies.
PDP (Policy Decision Point) → Evaluate Authorization Requests.
PEP (Policy Enforcement Point) → Process Client Requests and Responses.

B

A

C’

Admin data‐flow

User data‐flow

F’

Dt

H
TT
P
S

PEP Client (Lib)

CLI

Et

/etc/init.d/pdp
reloadpolicy

/etc/init.d/pepd
clearcache

Ft

10b

Run job Exit gLExec

OS privileges

user batch user

External Component

Administrator & root

root

User: X’ = Optional steps
Xt = Periodic steps

1. User submits a job described as a JDL expression.
2. CREAM receives a job execution request from WMS (1a) or the User (1b) directly.
3. CREAM sends the job execution request to the LRMS.
4. LRMS sends the job to the WN for its execution.
5. WN sends an authorization request to gLExec, and gLExec interacts with PEP Server using an LCMAPS

plug‐in which uses the PEP Client library to check if the mapping request can be satisfied.
6. PEP Client sends the request to the PEP Server.
7. PEP Server sends the authorization request (XACML) to PDP for evaluation.
8. PDP evaluates the authorization request and sends the response to PEP Server.
9. PEP Server sends to PEP Client the authorization response which can be allowed (10a) or denied (10b).
10. gLExec runs job using local identity only if the authorization response is allowed.

Admin:

A. Administrator edits policies using the command line interface (CLI).
B. PAP Admin Tool writes policies and policy sets and make them available at PAP.

C’. Administrator forces reload of policies since Argus updates the policies in regular intervals.
D’. PDP sends a retrieve policies request to PAP.
E’. PAP sends policies (XACML) to PDP.
F’. Administrator sends a clear cache request to PEP Server for clearing the response cache.

Dt. PDP connects periodically to the remote PAP to refresh the repository policy.
Et. PAP sends the policies (XACML) to PDP.
Ft. PEP Server clears periodically its cache, since PEP Server keeps a short response cache.

Argus 1.2 Architecture

The PAP Admin Tool is used to perform all of the Argus policy management operations
as well as to set most of the configuration information of the PAP including
authorization settings. A valid X.509 certificate or proxy certificate is needed in order to
run the PAP Admin Tool.

All interactions between the PAP, PDP, and PEP components can be done over HTTPS.
The PEP Server may reuse an existing connection or SSL session when communicating
with the PDP in order to minimize the connection overhead.

Furthermore, the PEP Server and the PEP client libraries communicate using the
Hessian protocol [3]. It is self-describing (i.e. all information being transmitted is
encoded into the messages), and supports binary serialization with many primitives. The
Hessian encoded messages are transmitted to the PEP Server by using an HTTP POST,
and the body of the POST document is the Base64 encoded.

The use of these secure channels protects sensitive information from being seen or
modified by an attacker.

Resource Analysis

The resources used by Argus are shown in Figures 2, 3 and 4. The main resource that
Argus manages is the set of policies stored in individual files. All policies are stored in
the same directory ($PAP_HOME/repository) and the policy files are stored in XACML
language.

Figure 2. Argus Resources Diagram (PAP Component).

authZ service Host (PAP Component)

conf lib logsTRUSTED_CA etc/
grid_security

pap_
configuration.ini

pap_
authorization.ini

hostcert
.pem

host
has key

signed,

hostkey
.pem

Argus 1.2 Resources

Readable

Owner
World

certificates

PAP

logging

bin

pap-admin

repository sbin

pap-
standalone.sh

pap-
deploy.sh

XACML Policy
files

OS privileges

user batch user

External Component

Administrator & root

root

Figure 3. Argus Resources Diagram (PDP Component).

Figure 4. Argus Resources Diagram (PEP Server Component).

authZ service Host (PDP Component)

conf lib logsTRUSTED_CA etc/
grid_security

pdp.ini hostcert.pem

host
has key

signed,

hostkey.pem

Argus 1.2 Resources

certificates

sbin

env.sh logging.xml

Readable

Owner
World

pdpctl.sh

PDP
Repository
policy

OS privileges

user batch user

External Component

Administrator & root

root

authZservice Host (PEP Server Component)

conf lib logsTRUSTED_CA etc/
grid_security

pepd.ini

Argus 1.2 Resources

sbin

env.sh logging.xml

Readable

Owner
World

pepdctl.sh

hostcert
.pem

host
has key

signed,

hostkey
.pem

certificates grid-mapfile groupmap
file

gridmapdir vomsdir

PEP Server Cached
Policies

OS privileges

user batch user

External Component

Administrator & root

root

The PAP component is configured using two files: pap_configuration.ini and
pap_authorization.ini, both located in the $PAP_HOME/conf directory. Most of the
information contained in these files can also be set through the PAP Admin Tool
($PAP_HOME/bin/pap-admin).

The PDP and PEP components are configured throughout the use of the pdp.ini and
pep.ini files, respectively. These files are a standard INI file and located in the
$PDP_HOME/conf and $PEP_HOME/conf directories.

Argus also uses other files such as the host’s credential (public certificate and private
key), the set of trusted certificates, some libraries located in the
$COMPONENT_HOME/lib directory, and finally the log files located in the
$COMPONENT_HOME/logs are used to keep track of the activity performed by Argus.

Privilege Analysis

The PAP, PDP, and PEP Server run with root privileges in the operating system. The
PAP Admin Tool (pap-admin) runs with the same privileges as the user who is
executing it. If the user is root, the credentials of the host will be used when connecting
to the PAP component, otherwise the user’s credential or proxy credential will be used.

Internally the PAP component uses an Access Control List (ACL), composed of several
Access Control Entries (ACEs). Each ACE defines the actions that an administrator is
allowed to perform. Administrators' privileges are defined in terms of PAP permission
flags, whose meaning is the following:

 POLICY_READ_LOCAL: Allows read access to locally defined policies.
 POLICY_READ_REMOTE: Allows read access to policies imported from remote

PAPs.
 POLICY_WRITE: Allows write access to locally defined policies
 CONFIGURATION_READ: Allows read access to PAP configuration
 CONFIGURATION_WRITE: Allows write access to PAP configuration
 ALL: All of the above permissions.

The permission flags can be assigned to an administrator by defining an ACE in the
$PAP_HOME/conf/pap_authorization.ini file or by using the authorization management
commands provided by the PAP Admin Tool.

Component Analysis

In this section we explain the different tests carried out during the vulnerability
assessment of Argus.

Resource permissions

We checked the permissions of the files that have a high security value and the
permissions of these files appeared to be correct. The following table shows the main
resources with their permissions:

File Type Directory Permissions Owner Group
Configuration files $COMP_HOME/conf/ -rw-r----- root root
Libraries $COMP_HOME/lib/ -rw-r--r-- root root
Policy repository $PAP_HOME/repository/ -rw-r--r-- root root
BIN files $PAP_HOME/bin/ -rwxr-xr-x root root
SBIN files $COMP_HOME/sbin/ -rwxr-x--- root root
Log files $COMP_HOME/logs/ -rw-r--r-- root root

Client side checks replicated in the server

As explained in the Architectural Analysis, the PAP component has a client called PAP
Admin Tool (pap-admin). Using the Argus source code available in public repository,
we have modified the ServiceCLI.java file with the objective of bypassing the
protection mechanisms and generated our own pap.jar file. We also replicated and
modified the pap-admin and pap-client-env.sh script files in our user home to change
the location of the PAP jar, achieving removing the client-side security checks entirely.
However, if an attacker can modify the client-side behaviour to bypass the protection
mechanisms, he cannot escalate its access level and perform malicious actions because
the security checks are duplicated on the server side code.

Authentication and Authorization Issues

As explained in the Privilege Analysis, the administrators are authenticated and
authorized by Argus. If they do not possess a PKI credential signed by a trusted identity
provider, or are not authorized to use the PAP, Argus does not permit access to the
service. This design makes the system quite strong, facilitates the user management, and
dramatically reduces possible threats.

We have tried to run the PAP component using false certificates, but we did not detect
any improper verification of X.509 certificates which allow an attacker access without
permission. However, we found a bug when an administrator using a valid X.509
certificate (and the corresponding private key) tries to run the PAP Admin tool and this
requests the password to decrypt the user's private key. The administrator tries to
provide their password, but the PAP Admin does not allow doing that because it asks
for the password again. This anomalous behavior happens non-stop. In other words,
PAP Admin does not permit to write the password to the administrator by using this
authentication method.

We also tried to change the Administrator permission flags to escalate privileges in the
PAP Admin tool, but the verification checks seem to be correct.

Network Layer Security

Data sent over a network is both susceptible to eaves-dropping and to modification if
precautions are not taken. We studied the architecture diagram in Figure 1 and this
showed us that the PEP Server establishes an SSL connection with the PEP Clients to
handle the PEP client requests.

This encrypted channel provides strong end-to-end data encryption and integrity. We
considered these mechanisms and encryption secure, and we did not perform other tests
at this regard.

Injection Attacks

We have checked for the possibility of injection attacks in the PAP Admin command
line client in two ways. Firstly by checking the source code to ensure Argus correctly
parses and checks the arguments passed through the command line. Secondly by
performing injection attacks using special elements2 through the command line.
Appropriate parsing is performed to protect against command injection vulnerabilities
and no such vulnerabilities were found.

Variable overflows

We tried to submit large amount of data (up to 3 MB) through the CLI (Command Line
Interface). However, we have monitored Argus when carrying out this test and did not
detect any dangerous behaviour. Argus also is written in Java, thus does not exist any
way to store data into memory that has not been properly allocated.

Revision of previous vulnerabilities documented

As part of our vulnerability assessment of Argus, we checked the security
vulnerabilities reported by the Grid Security Vulnerability Group (GSVG) [4]:

 ID #55971: Argus banning by CA does not work.
 ID #59718: Inadequate certificate Validation in Argus.
 ID #56768: Argus may allow a banned user under heavy load.

As result of our evaluation on Argus, we verified that these vulnerabilities were fixed.

Results and Recommendations

After completing the check described in this document we have not found any
vulnerabilities in Argus 1.2 at this time, and only a bug in the PAP Admin tool has been
reported.

We considered Argus 1.2 is secure enough in terms of architecture and implementation.
Some of the different features that made Argus stronger and secure are the following:

 Argus is written in Java. This prevents possible vulnerabilities that we can find
in other languages (e.g. C and C++), such as those related to the memory
allocation and management.

2 Sequence of bytes, characters, or words that is used to separate different portions of data within a
particular representation or language.

 The fact that a valid X.509 certificate or proxy certificate is needed in order to
run the PAP Admin Tool (pap-admin) prevents unauthorized users having
access to Argus and facilitates their identification and management.

 The use of a SSL handshake by Argus and their clients prevents exposing
sensitive data in the transport layer.

 The design of Argus is solid. The Argus functions are assigned to each
component in modular manner so that an attacker cannot access the value
information (policies) in unauthorized way or interfere in the authorization
process. This design causes that attack surface to be very small.

 The recommended operational configuration of an Argus node is a highly
secured host with limited local user access and other services. This reduces the
chances of an attack from another account on the machine.

References

[1] Argus Authorization Service, https://twiki.cern.ch/twiki/bin/view/EGEE/
AuthorizationFramework

[2] James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann. First Principles
Vulnerability Assessment, 2010 ACM Cloud Computing Security Workshop (CCSW),
Chicago, IL, October 2010. http://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

[3] Hessian Binary Web Service Protocol, http://hessian.caucho.com

[4] Grid Security Vulnerability Group – Advisories 2010, http://www.gridpp.ac.uk/
gsvg/advisories/

