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Chapter 43   
Memory Error Checking Tools 

Revision 1.0, February 2026. 

Objectives 
● Learn about history and background of memory checking tools. 
● Understand how these tools work. 
● Learn how to use and interpret the results from the popular 

AddressSanitizer memory checking tool. 

43.1 Introduction 
The use of pointers and arrays in languages like C and C++ is error prone. 
And memory errors can be extremely hard to diagnose and find. As we 
discussed in Chapter 9, there are a variety of ways that a programmer easily 
can make mistakes that allow their code to be exploited. And these errors 
have been the root cause of serious security problems since the 1980’s.  

As we saw in Chapters 26 and 27, compiler writers and operating system 
designers have been busy producing improvements that should make 
memory errors less frequent and more detectable. With the experience of 
more than 40 years of pointer and memory errors, and with the recent 
compiler and operating system improvements, we would expect this type of 
error to be a thing of the past. 

However, we can see from vulnerabilities found in real code that these 
memory errors (weaknesses) contribute to a worrisome number of recent 
vulnerabilities. The most recent Top 25 CWE data1 shows that memory 
errors are still widely present in modern code. As long as we use C and C++, 
this type of error does not seem to be going away. 

There is more than you can do, though, to reduce the likelihood that you will 
write code with such errors. You can get an additional layer of protection by 
using a dynamic memory checking tool such as AddressSanitizer2. This type 
of tool is also known as a memory debugger. 

Some of the types of errors that can be detected by these tools include 
• Buffer overflows and overruns for stack, global, and heap variables. 
• Use of a pointer after the memory to which it points is freed. 
• Double freeing of a pointer. 

 
1 https://cwe.mitre.org/top25/ 
2 https://github.com/google/sanitizers/wiki/AddressSanitizer 
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• Memory leaks, where your program allocates memory but never 
frees it. 

43.2 How Do These Tools Work? 
Memory checking tools are dynamic, so they actually run your program, 
checking it for erroneous use of dynamic memory allocation, deallocation, 
pointer use, and array subscript use. 

Memory checking tools work by augmenting both the allocated data and 
machine instructions that reference that data. Extra data fields are created 
around allocated memory to detect overflow, more detailed information 
about memory allocations is kept to detect errors in allocating and freeing 
memory, and extra instructions are inserted into the binary (machine 
language) output of the compiler. This extra code checks for a variety of 
errors such as buffer overflows on the stack, heap, or global memory, and 
memory allocation errors such as double free operations. 

The extra code inserted into your program helps detect these insidious 
memory errors, but also makes it run slower. As a result, memory checking 
is only enabled during the coding, debugging, and testing stages of program 
development. Most production releases of code have such checking disabled. 

43.3 Background on AddressSanitizer 
AddressSanitizer, also known as Asan, is an open source project started by 
Google and first described in the published literature in 20123. It has become 
enormously popular, being incorporated into well known and widely used 
compilers such as open source gcc and clang, and Microsoft MSVC. 

Since AddressSanitizer is free, easy to use, and widely available, we will use 
it to present examples of tool use. The concepts shown here apply to other 
similar tools. 

43.4 Building Your Program to Run AddressSanitizer 
When you compile your program with the clang or gcc compilers, you can 
add options that will control the insertion of AddressSanitizer functionality 
into your code. For example, if you were using gcc to compile a C program 
in file testprog.c, you could run the following command to enable memory 
checking with AddressSanitizer: 

gcc -g -O0 -o testprog -fsanitize=address testprog.c 

 
3 Konstantin Serebryany, Derek Bruening, Alexander Potapenko and Dmitry 
Vyukov, “Address Sanitizer: A Fast Address Sanity Checker”, 2012 USENIX 
Annual Technical Conference, Boston, Mass., June 2012. 
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Here is an explanation of each option and its purpose: 
-g AddressSanitizer will include file names and 

line numbers in its report if this debug flag is 
included. 

-O0 Reduces the amount of code optimization 
done by the compiler. Using this option can 
make the output of AddressSanitizer more 
closely correspond to the code as you wrote it. 

-o testprog Specifies the name of the object file for the 
program being compiled. 

-fsanitize=address Enables AddressSanitizer functionality. This 
is the minimum option that you must use to 
enable memory address checking.  

We make note of a couple of important points. First, AddressSanitizer works 
the same way for the clang compiler as it does for gcc, with the same 
options. Second, while AddressSanitizer has many options that can control 
detailed aspects of how it works, for most uses you do not need to understand 
these options. However, for large, complex systems, you might have to use 
some of these options. Programs that use multiple threads require special 
care. The full description of these many options can be found on the 
compiler’s manual page4. 

43.5 Examples of AddressSanitizer Reports 
We now work through a series of simple programs, looking at the error 
contained in the program and then the output generated by the 
AddressSanitizer to report that error. Each program will allocate a single 
array (often called a buffer) and then access the locations in the array in a 
loop, until it references past the end of the array. 

43.5.1 Example: Program with a Stack Buffer Overflow 

The first program, shown in Figure 1, allocates the array stack on the stack 
by declaring it as a local variable. The program is then compiled with 
AddressSanitizer enabled, as described above. 

When the program is run, the instrumentation inserted by AddressSanitizer 
checks each array reference and detects that there was a buffer overflow on 
the program’s stack. The report from this run is shown in Figure 2. The 
message on the first line (shown in red) reports the error. 

 
4 https://man7.org/linux/man-pages/man1/gcc.1.html 
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05: int main(int argc, char *argv[]) 
06: { 
07:    int stack[10]; 
08:    int i; 
09: 
10:    for (i=0; i<1000; i++) 
11:       stack[i] = 7; 
12:    exit (0); 
13: } 

Figure 1: Program with a Stack Variable Buffer Overflow 

Below this message is information that will help you locate the error. First, 
we see that this operation is a write to memory (as opposed to a read) of four 
bytes (which would be an int on this system). Second, we see a stack trace, 
much like one that would be provided by a debugger. The top of the stack 
(item #0) shows that the error was detected in function main at line 11 of file 
stack.c. The code shown in Figure 1 comes from stack.c and we can see that 
line 11 is where we are writing to an element of the array. 

The rest of the stack trace shows how we reached this line of code, including 
the various internal functions that were executed as part of starting this 
program. 

==2855737==ERROR: AddressSanitizer: stack-buffer-overflow on 
address 0x7ffff724e588 at pc 0x55e30042a300 bp 0x7ffff724e500 sp 
0x7ffff724e4f0 
WRITE of size 4 at 0x7ffff724e588 thread T0 
    #0 0x55e30042a2ff in main /home/stack.c:11 
    #1 0x7fafcbe80d8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
    #2 0x7fafcbe80e3f in __libc_start_main_impl ../csu/libc-
start.c:392 
    #3 0x55e30042a144 in _start (/home/stack+0x1144) 
 
Address 0x7ffff724e588 is located in stack of thread T0 at offset 
88 in frame 
    #0 0x55e30042a218 in main /home/stack.c:6 
 
  This frame has 1 object(s): 
    [48, 88) 'stack' (line 7) <== Memory access at offset 88 
overflows this variable 
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/stack.c:11 
in main 

Figure 2: AddressSanitizer Output for Stack Variable Overflow 

You can see that the information provided by AddressSanitizer gives us 
information that can help us to quickly locate the source of the error. 
Remember that memory errors are insidious. Sometimes a program will 
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crash immediately when such an error occurs, like this simple example. 
However, sometimes the program will overwrite some variable that will then 
cause an erroneous result or crash millions of instructions later in a 
completely (and unpredictably) different part of the program. 

43.5.2 Example: Program with a Global Buffer Overflow 

The second example program, shown in Figure 3, is similar to the first one, 
except that the buffer glob is declared outside of any function, so it is global 
to all functions. It is allocated once and remains until the program terminates 
(unlike a local variable on the stack that only exists as long as the function is 
executing). The program is compiled in the same way as the first example to 
enable AddressSanitizer and then run. 

04: int glob[10]; 
05:  
06: int main(int argc, char *argv[]) 
07: { 
08:    int i; 
09: 
10:    for (i=0; i<100; i++) 
11:       glob[i] = 7; 
12:    exit (0); 
13: } 

Figure 3: Program with a Global Variable Buffer Overflow 

Again, when the program was run, AddressSanitizer detected the memory 
overflow, as shown in Figure 4. As we can see from the first line of output 
(shown in red), AddressSanitizer knew that this write was to a global 
variable. The write was identified as being in function main on line 11 of the 
file global.c. 

==2642571==ERROR: AddressSanitizer: global-buffer-overflow on 
address 0x560142d0f0c8 at pc 0x560142d0c29e bp 0x7ffef2c39340 sp 
0x7ffef2c39330 
WRITE of size 4 at 0x560142d0f0c8 thread T0 
    #0 0x560142d0c29d in main /home/global.c:11 
    #1 0x7f4801dc6d8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
    #2 0x7f4801dc6e3f in __libc_start_main_impl ../csu/libc-
start.c:392 
    #3 0x560142d0c164 in _start (/home/global+0x1164) 
 
0x560142d0f0c8 is located 0 bytes to the right of global variable 
'glob' defined in 'global.c:4:5' (0x560142d0f0a0) of size 40 
SUMMARY: AddressSanitizer: global-buffer-overflow 
/home/global.c:11 in main 

Figure 4: AddressSanitizer Output for Global Variable Overflow 
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43.5.3 Example: Program with a Heap Buffer Overflow 

The third example program, shown in Figure 5, is similar to the first two, 
except that in this program we are dynamically allocating the memory on the 
heap. The pointer variable p is declared on line 6 and then memory is 
allocated on line 9 with the address of the allocated memory stored in p. 

The program is compiled in the same way as the first two examples to enable 
AddressSanitizer and then run. 

04: int main (int argc, char *argv[]) 
05: { 
06:    int *p; 
07:    int i; 
08: 
09:    p = (int *)malloc(sizeof(int)*10); 
10:    for (i=0; i<100; i++) 
11:       p[i] = 7; 
12:    exit (0); 
13: } 

Figure 5: Program with a Heap Variable Buffer Overflow 

==2655076==ERROR: AddressSanitizer: heap-buffer-overflow on 
address 0x504000000038 at pc 0x563a713e428e bp 0x7ffeb38a6830 sp 
0x7ffeb38a6820 
WRITE of size 4 at 0x504000000038 thread T0 
    #0 0x563a713e428d in main /home/heap.c:11 
    #1 0x7fda9342dd8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
    #2 0x7fda9342de3f in __libc_start_main_impl ../csu/libc-
start.c:392 
    #3 0x563a713e4144 in _start (/home/heap+0x1144) 
 
0x504000000038 is located 0 bytes to the right of 40-byte region 
[0x504000000010,0x504000000038) 
allocated by thread T0 here: 
    #0 0x7fda936e1887 in __interceptor_malloc 
../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 
    #1 0x563a713e4234 in main /home/heap.c:9 
    #2 0x7fda9342dd8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
 
SUMMARY: AddressSanitizer: heap-buffer-overflow /home/heap.c:11 in 
main 

Figure 6: AddressSanitizer Output for Heap Variable Overflow 

In Figure 6, AddressSanitizer detected the memory error, identifying it was 
an erroneous access to a heap variable. As with the previous examples, the 
location of the erroneous access was correctly identified. 
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For heap errors, we also get some extra information about where the variable 
was allocated. We can see from Figure 6 that the variable was allocated in 
function main on line 9 of heap.c. While the allocation location is pretty 
obvious in this simple example, in a real complex program with many source 
files and lines of code, finding the allocating location can be much more 
difficult. 

43.5.4 Example: A Program with a Double Free 

A common programming mistake is to free a heap variable after it has 
already been freed. Such an operation, as shown in Figure 9: Program with 
a Use after Free Error, can cause corruption of the heap’s internal data 
structures or just cause unpredictable behaviors in a program. The presence 
of a double free is a sign that the program has some basic implementation 
problems. 

05: int main (int argc, char *argv[]) 
06: { 
07:    int *p; 
08:    p = (int *)malloc(sizeof(int)*10); 
09:    free(p); 
10:    free(p); 
11: } 

Figure 7: Program with a Double Free 

==2633887==ERROR: AddressSanitizer: attempting double-free on 
0x604000000090 in thread T0: 
    #0 0x55d6ef265eb2 in free (/home/doublefree+0xa0eb2) (BuildId: 
a8568d77f87d2a746fa3d3c7add4c3f5b43d849f) 
    #1 0x55d6ef2a0ee5 in main /home/doublefree.c:10:5 
    #2 0x7fcb7afb1d8f in __libc_start_call_main 
csu/../sysdeps/nptl/libc_start_call_main.h:58:16 
    #3 0x7fcb7afb1e3f in __libc_start_main csu/../csu/libc-
start.c:392:3 
    #4 0x55d6ef1e3314 in _start (/home/doublefree+0x1e314) 
(BuildId: a8568d77f87d2a746fa3d3c7add4c3f5b43d849f) 
 
0x604000000090 is located 0 bytes inside of 40-byte region 
[0x604000000090,0x6040000000b8) 
freed by thread T0 here: 
    #0 0x55d6ef265eb2 in free (/home/doublefree+0xa0eb2) (BuildId: 
a8568d77f87d2a746fa3d3c7add4c3f5b43d849f) 
    #1 0x55d6ef2a0edc in main /home/doublefree.c:8:16 
    #2 0x7fcb7afb1d8f in __libc_start_call_main 
csu/../sysdeps/nptl/libc_start_call_main.h:58:16 
 
previously allocated by thread T0 here: 
    #0 0x55d6ef26615e in __interceptor_malloc 
(/home/doublefree+0xa115e) (BuildId: 
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a8568d77f87d2a746fa3d3c7add4c3f5b43d849f) 
    #1 0x55d6ef2a0ecf in main /home/doublefree.c:9:16 
    #2 0x7fcb7afb1d8f in __libc_start_call_main 
csu/../sysdeps/nptl/libc_start_call_main.h:58:16 
 
SUMMARY: AddressSanitizer: double-free (/home/doublefree+0xa0eb2) 
(BuildId: a8568d77f87d2a746fa3d3c7add4c3f5b43d849f) in free 

Figure 8: AddressSanitizer Output for Double Free Error 

AddressSanitizer is good at detecting such problems as shown by the output 
in Figure 10: AddressSanitizer Output for Use after Free Error. As in the 
previous examples, we see that AddressSanitizer identified the cause of the 
problem and the line on which the second free operation occurred. The 
second free operation actually occurred in the free function (stack frame #0), 
which is not very informative. However, in frame #1, see that free was called 
in function main from line 10 in file doublefree.c. (The “:5” part of “10:5” 
means that the code starts on column 5 of line 10 of the file). 

We also see that AddressSanitizer identified where the memory was 
originally freed, in function main on line 9 of file doublefree.c. As for the 
previous examples, finding the original and offending second-free lines of 
code in this simple program does not take much effort. However, in a real 
and complex system, AddressSanitizer can save you hours, if not days of 
work finding the source of your problem. 

43.5.5 Example: A Program with a Use after Free Error 

Another common programming mistake is to use a heap variable after it has 
been freed. If the memory that was freed had not been allocated again, an 
operation, such as shown in on line 10 of Figure 9, can cause the reading or 
writing of free memory. If the memory that was freed had been reallocated, 
then the read or write operation will be to memory that already has another 
purpose. 

05: int main (int argc, char *argv[]) 
06: { 
07:    int *p; 
08:    p = (int *)malloc(sizeof(int)*10); 
09:    free(p); 
10:    *p = 7; 
11: } 

Figure 9: Program with a Use after Free Error 

Again, we see that AddressSanitizer is good at detecting such problems as 
shown by the output in Figure 10. AddressSanitizer identified the cause of 
the problem and the line on which the free operation occurred in function 
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main on line 9 of useafterfree.c. In addition, it reports the line on which the 
variable was originally allocated (line 8). 

As we discussed previously, finding the allocating code, freeing code, and 
bad memory reference in this simple program does not take much effort. 
However, in a real system, the effort can be enormous. 

==1583248==ERROR: AddressSanitizer: heap-use-after-free on address 
0x504000000010 at pc 0x55761311b25c bp 0x7ffc5c6ba7b0 sp 
0x7ffc5c6ba7a0 
WRITE of size 4 at 0x504000000010 thread T0 
    #0 0x55761311b25b in main /home/useafterfree.c:10 
    #1 0x7fb5af46dd8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
    #2 0x7fb5af46de3f in __libc_start_main_impl ../csu/libc-
start.c:392 
    #3 0x55761311b124 in _start (/home/useafterfree+0x1124) 
 
0x504000000010 is located 0 bytes inside of 40-byte region 
[0x504000000010,0x504000000038) 
freed by thread T0 here: 
    #0 0x7fb5af721537 in __interceptor_free 
../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:127 
    #1 0x55761311b224 in main /home/useafterfree.c:9 
    #2 0x7fb5af46dd8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
 
previously allocated by thread T0 here: 
    #0 0x7fb5af721887 in __interceptor_malloc 
../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145 
    #1 0x55761311b214 in main /home/useafterfree.c:8 
    #2 0x7fb5af46dd8f in __libc_start_call_main 
../sysdeps/nptl/libc_start_call_main.h:58 
 
SUMMARY: AddressSanitizer: heap-use-after-free 
/home/bart/hacks/542/AddressSanitizer/useafterfree.c:10 in main 

Figure 10: AddressSanitizer Output for Use after Free Error 

43.6 Summary 
In this chapter, we described how dynamic memory checking tools work and 
showed how to use a popular such tool, AddressSanitizer, to find common 
memory errors. Any programmer that has written much C or C++ code has 
had the experience of trying find and fix memory errors. Tools such as 
AddressSanitizer make finding these errors significantly easier. And these 
tools can find errors that are present but are causing errors that have no 
visible effect. These latent errors are like hidden landmines waiting to be 
triggered by accident or malicious intent. 
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43.7 Exercises 
1. Run AddressSanitizer on a C or C++ program that you have written 

or have access to. Did you find any errors that you did not know 
were present in your code? 

2. Research another dynamic memory checking tool beside 
AddressSanitizer. (Some other tools are listed in Section 43.1.) 
Learn how to run the chosen tool and try it out on a C or C++ 
program that you have written or have access to. 


