
Introduction to Software Security

Chapter 3.9.1: Web Concepts

Loren Kohnfelder
loren.kohnfelder@gmail.com

Elisa Heymann
elisa@cs.wisc.edu

Barton P. Miller
bart@cs.wisc.edu

DRAFT — Revision 0.1, November 2022.

Objectives

● Review web basics pertinent to security challenges.
● Understand cross site attacks and how to prevent them.
● Understand the basics of session management and potential threats to its integrity.
● Understand the risks related to open direction and how to prevent abuse.

Web frameworks

Modern web applications are unrecognizably advanced by comparison to the original World Wide Web,
and the evolved security architecture and infrastructure is quite intricate yet increasingly robust. This
chapter is designed to introduce you to some of the key architectural and practical security challenges
necessary to build secure web solutions. Since the Web is a huge topic and web security is similarly large,
this chapter can provide only the basics. Further reading is needed to learn more about the details. .

The safest and easiest way to address the various threats inherent to the web platform is to rely on a well
built framework that handles the details, allowing you to develop a web application at a higher level of
abstraction. Yet even then, these web security concepts are important to understand, if only to appreciate
what security protections the framework is providing and how they work. This knowledge is especially
important whenever you “go outside the lines” and override mechanisms of the framework on which
security crucially depends. And of course framework development work requires a deep understanding of
these concepts and many details beyond scope here.

Web Architecture

Web browsing is a familiar part of our daily activities, even to the most non-technically oriented of
modern digital societies, yet the underlying mechanism is rarely considered by its users. The web is
fundamentally a client/server architecture, and the core security challenge is that the trust relationship
between the two endpoints is complex.

When you browse an unfamiliar website you never know what to expect, who is controlling the server,
and whether you can trust them or not. Likewise, from the perspective of a legitimate web server, when
receiving a request you have no way of knowing who sent it, friend or foe, and have no control of the
software they are using.

On top of the confusing client/server relationship, we must also consider that a complex infrastructure
exists to facilitate connections over the Internet. Typical web interactions involve several internet service

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved.



providers, backbone communications, the domain name system, and other protocols for routing and other
technical aspects of internet connectivity. While these parties typically operate behind the scenes, it’s
possible that compromise of any of these systems may also threaten the security of the web.

The details of how all of this is secured are beyond the scope of this chapter (and the specifics evolve over
time as the internet matures and grows), but the basic security stance is clear. Web clients and servers
cannot in general trust each other, so must build trust via interactions that form a relationship.
Furthermore, even with some degree of trust, it is important to always maintain vigilance since the
underlying internet communication channel itself may be subject to various attacks. Keep these practical
considerations in mind as we begin to see how the web works with an eye to security.

Web Requests

We begin by considering the fundamental function and structure of web requests. The most basic web
operation is when the client (typically a web browser, also known as a user agent) requests a resource
(typically a web page) from the server. Here is the core content of such a request:

GET /hello.htm HTTP/1.1
User-Agent: Mozilla/4.0
Host: goodsite.com
Accept-Language: en-us

The first line of the request declares the verb (GET), path (/hello.htm), and protocol (HTTP version 1.1).
The GET verb requests the server to send back the contents of the resource requested by naming its path,
and 1.1 is the modern version of HTTP (HyperText Transfer Protocol) that defines how the web operates
over the internet.

Subsequent lines detail the request further:

● The User-Agent line describes some specifics about the client sending the request, intended to
allow the server to potentially customize how it responds.

● The Host line provides the domain name of the web server the request is intended for.
● The Accept-Language indicates the natural language and locale that this client prefers.

Web requests send a sequence of lines of this structure, where the first line is always required, followed
by lines beginning with a standard parameter name, colon, and a value for the named parameter. The
example above is a simple one using common parameters, but there are many more as well as an
extension mechanism where names beginning “X-” may be invented for custom use.

Recall the precautionary explanation of trust on the web to think about the interpretation of web requests.
Since the web server has no pre-existing relationship with a new client, it must process web requests with
caution. Possibly the client is lying about its identity — it might claim to be Mozilla but actually be
another browser, and in fact for purposes of compatibility this is commonplace and generally not
considered malicious. The requested path may not even exist, or might be an excessively long string

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 2



attempting to break the server maliciously. On this tenuous basis the web server replies to the client
which, of course, cannot always fully trust the server either.

Continuing this example, here is the response sent back from the server to the requesting client:

HTTP/1.1 200 OK
Date: Tue, 15 Oct 2019 12:28:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sun, 13 Oct 2019 19:15:56 GMT
Content-Length: 88
Content-Type: text/html
Connection: Closed

<!DOCTYPE html>
<html>
<body>
<h1>Hello, World!</h1>
</body>
</html>

The first line of the response is required, consisting of the protocol version, a status code (200) and a
human-readable explanation of that code (OK). Following lines are headers describing the response in a
format similar to the request as described above. An empty line separates headers from the body of the
response, which is the contents of the requested resource, in this case a web page written in HTML.

In our example, the headers here provide metadata about the response and its contents.

● Date: the timestamp indicating when the web server produced this response
● Server: a description of the web server software and its operating system
● Last-Modified: the timestamp of when the resource was last modified
● Content-Length: the length of the content following in bytes
● Content-Type: a description of the content representation (for example, HTML or text)
● Connection: the status of the connection

The combination of the request and response example above is how a web browser works with the
corresponding web server when you type http://goodsite.com/hello.htm in the address bar.

For a web browser to securely process such a response from a web server that it cannot trust, it must
cautiously parse and process all parts of the response. Even for this simple example there are many
possibilities for a malicious web server to fool the client, and even without bad intentions, a buggy web
server can do damage as well. Here are a few examples of potential problems (and you can think about
many more as well):

● The web server might misidentify itself.

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 3



● The web server could report any time in the past or future, or even an invalid timed syntax.
● The web server might provide a misleading content length byte count, accompanied by more or

less data than expected.
● The response body might be invalid data for the content claim it claims to be.

Modern web applications are built from an intricate conglomeration of web requests and responses like
this that together constitute web pages that include not just display content but also script, styling, web
fonts, images, and many other types of data. Since trust is always conditional on the web, browsers and
servers must carefully interpret the data they exchange as requests and responses, in order to maintain
integrity and avoid compromise. As a general rule, when anything untoward about a request or response is
detected the recipient usually ignores suspect data so as to avoid falling into traps.

HTTP vs. HTTPS

HTTP is the original transfer protocol of the web and it sends all data between the client and the server in
the open, without encryption or authentication. While the technology underlying the internet is far more
complex, this basic form of communication is often referred to as “on the wire” because it is subject to
snooping or modification anywhere between the two endpoints. For sensitive web applications such as
online shopping or banking, or really any important application including privacy considerations, this is
clearly risky since internet connections are complicated and depend on numerous parties typically
unknown to the communicants.

This weakness was recognized early in the development of the web as it became clear that many
important applications would be possible if only connections could be secured. To address this threat, a
new protocol was designed with just such security in mind, called HTTPS. The communication protocol
itself is called TLS (Transport Layer Security), or formerly, SSL.

Web servers obtain digital certificates from certificate authorities who serve to vouch for their identity.
The details are complex, including cryptography as well as subtle legal considerations, but in essence a
certificate provides evidence for a web server to prove its identity to any client.

Think of HTTPS as a security layer on top of HTTP: the same request and response exchange happens,
but it’s all communicated inside of a secure channel. To understand exactly what assurance that secure
channel provides — assuming that the certificate authority did their job and the web server itself was not
compromised — we can contrast it to some of the risks of plain old HTTP:

● HTTP: The web request is somehow diverted to a different web server than intended.
HTTPS: Only the intended web server is able to decrypt and see the web request details.

● HTTP: Someone along the route on the internet data in the request or response is snooped.
HTTPS: Everything is securely encrypted, so nothing is learned from the data on the wire.

● HTTP: The web request or response is tampered on the wire and some data is changed.
HTTPS: If the client/server traffic is tampered with, the receiving party can tell and ignore it.

● HTTP: A malicious web server impersonates the real one and sends a bogus response.
HTTPS: The client can check if the intended web server sent the encrypted response or not.

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 4



It’s important to understand that the HTTPS secure channel provides important guarantees, but that it isn’t
perfect. Everything hinges on the trustworthiness of digital certificates, including choice of certificate
authorities deserving your trust (which is difficult to assess, and most applications depend on defaults
chosen by OS or browser makers). Security always depends on the quality of the software implementing
the security, and the full stack from OS to application on both client and server need to perform correctly
to get everything right. Furthermore, note that data tampering on the wire is detectable but such
interference on the wire can effectively block communication.

HTTP Verbs

The simple example that opened this chapter was a GET request; now let’s consider the meaning and use
of other verbs in the HTTP protocol that enhance its richness.

To review, a GET request tells the web server to send back the contents of the resource named by the
accompanying URL, that is, the path of the request. An important detail of what this verb means is that
this operation does not change the start of the server: that is, the request should never include side effects
that potentially modify the state of the resources that the web server maintains.

A lot of web browsing consists entirely of GET requests, or “just looking”: reading social media, a blog
post or recipe, wiki entry, doing a web search, browsing a photo gallery, and so forth are examples of this
kind of access. It’s important to note that web servers do log user activity and perform other housekeeping
activity that does result in some state on the server changing, however, since data such as system logs is
not available for web browsing this doesn’t count. The kind of state change that a GET could potentially
violate would be for a client to GET “A”, and then GET “B” where that request had side effects such that
it caused a subsequent GET “A” to respond with a different value.

The full power of the web is only achieved when it becomes possible for client requests to sometimes
intentionally change state on the server. For example, with online banking you want to be able to transfer
funds between accounts, so that when you review your balances the new amounts can be confirmed. In
terms of web programming, web forms and file uploads are common ways that client requests can change
state on the server, and typically these are sent with the POST verb.

POST requests have headers as GET requests do, including a resource URL path, as well as a body
(separated by a blank line) that encodes the data from the client that describes the state change. The POST
response is typically a web page that reflects the update. For example, with a web form, the response
might either be a message indicating that the request was accepted and change made, or an error response
explaining why not (including a message explaining that a required field was missing or an entry invalid).

PUT requests are similar to POSTs in that they potentially change the server state, however they are
idempotent. The subtle difference that this term expresses is that if you repeat the same PUT over and
over, it only results in the same server change (repetitions have no further effect). By contrast, repeated
POSTs potentially incur further changes each time. A simple way to visualize the difference is that the
programming statement “x = 1” is idempotent, but “x = x+1” is not: this is because if you repeat the
former many times the result is still 1, but for the latter the variable value will count the number of
repetitions. (Note that this is why browsers prompt the user if they refresh a web page that is the result of

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 5



a POST: if you resend an online order form it could result in duplication and you get twice as much as
you thought you were buying.)

There are a few other HTTP verbs defined in the protocol but they are rarely used, and as a practical
matter the large majority are GET requests with most of the rest being POSTs. Finally, it’s important to
note that it’s up to you to understand and respect the semantics of these verbs: generally speaking, no
browser or framework is going to stop code a web server from modifying state when it shouldn’t. While
it’s possible to safely get away from bending the rules a bit, it’s very risky breaking convention since
software you don’t control (for example, a web proxy) might do something you don’t expect and cause
problems.

Cookies

Cookies are a clever way that the client and server cooperate make web browsing richer, but as always the
issue of mutual trust complicates things. Cookies are traditionally small chunks of data issued by the web
server that the client stores locally on the server’s behalf.

For example, when bank.com responds to a web request it can include a cookie header that specifies one
or more cookies be set for the bank.com domain. In processing the response, the client saves the named
cookies and their contents in a special store indexed by the site name. Subsequent web requests to the
same bank.com website will then be accompanied by these cookies, sent back in the request header,
which gives the web server a consistent view of the client. For example, if the user at some point
indicated a preference to the web server, by sending it as a cookie the server can have the client store the
preference which is then conveniently conveyed in future requests where it can be easily honored. Note
that cookies are sent for all requests to the corresponding web server, even from a different window.

Cookies are extremely handy, and as often happens they can be used in unintended ways that may
compromise privacy so the precise rules are complicated. Session cookies only last so long as any
window or tab is open to the website, or persistent cookies (that may or may not have expiration dates)
outlast web sessions. Cookie sizes are subject to storage limitations and can also be scoped by domain
name or URL directory structure.

In practice, web servers use cookies to store session IDs, login account information, flags that you have
done some action, user preferences, and to track site usage. Cookies are famously used to track users
across many websites. One common technique is to include one invisible pixel as an image which causes
a (GET) request to the same tracking site from whatever pages it can get in, including a change to read
and update its own set of cookies each time. The next section gives an in-depth look at the security
consequences of websites that include resources from other websites.

Same Origin Policy

Web browsing routinely moves seamlessly from one site to another, such as when one site (for example,
web search) contains hyperlinks to pages on other sites. Behind the scenes, browsers provide various
protections to safely isolate one site from another to make this work smoothly. Windows or tabs open for
pages of the same website should be able to interact via script and share the same cookies, however there

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 6



must be protection against other website pages “reaching in” and stealing data or influencing the content
inappropriately.

Same Origin Policy is the core concept that defines how these protections work. Each window (or tab)
potentially runs script to access the page as well as site information via the Document Object Model
(DOM), including access to other open windows. The DOM contains a list of open window objects, and
within each window a document object holds details about the specific page. To list a few examples:
document.cookie enumerates cookie values set on the page; document.images describes image tags
on the web page.

The way Same Origin Policy protects websites is by restricting the DOM such that only objects on the
same page, or into other window objects from the same website, are accessible via script. This allows
windows from the same website (such as different parts of cs.wisc.edu) to interact richly while blocking
unwanted access such as from evil-site.com.

There is a subtle aspect of this mechanism that is critical to bear in mind or you can subvert the security of
your own website. Notwithstanding the protection that Same Origin Policy provides, any webpage is free
to include resources for other websites without restriction. That is, you are protected from unknown
websites in other windows accessing your page, but if you inject content from other websites by choice
then you must trust them and be prepared for the consequences. Common examples of mixing resources
from different websites include images, script, stylesheets, web fonts. Web pages can also include frames
and inline frames (iframes) where there are special rules about how these interact.

Modern browsers support Content-Security-Policy headers that allow websites to declare security
intentions for interaction with other websites they reference, but given the tricky trust model between
clients and servers caution is advised. In general, only reference resources from other websites that you
absolutely trust, and even then it’s advisable to use other security mechanisms for additional protection.

Summary

In this chapter we covered basic concepts and mechanisms related to security on the web. First, since the
web security model is complicated and subtle to get right, we talked about how frameworks that provide
reliable security protections are a good way to build secure web solutions. We described the core
client/server model and the trust challenges it entails, then walked through a basic HTTP request and
response, the security protections that HTTPS provides, and the commonly used request verbs (GET, PUT
and POST). In addition, we looked at cookies and the Same Origin Policy, including their security
properties and the risks they incur.

In the following chapters we will build on these concepts and mechanisms to describe common web
vulnerabilities and how to defend against them. Since the web is always evolving and various browsers
and web servers tend to provide subtly different implementations, it’s important to stay current for the
latest most accurate information about all the details.

A great starting point to learn more about all these details is Mozilla’s Web technology for developers.

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 7

https://developer.mozilla.org/en-US/docs/Web


Exercises

CAUTION: Ideally you should use a test web server (localhost) for experiments to avoid doing anything
to a production website that might look suspicious or unintentionally be harmful.

1. There is an official website for learning about web basics called www.example.com. Use one or
more tools to explore the inner workings of the web request and response. For example: use your
browser’s (developer mode) inspect feature; a command line tool such as curl(1); a network
monitor tool such as wireshark.

2. Find a relatively simple website and see how it sets cookies (using the same kind of tools as
above). Note that the quantity of cookie data in a large complex site could be overwhelming.

3. Configure or write a simple localhost web server to explore Same Origin Policy. Using two
instances with different localhost port numbers you can see how different origin hosts are blocked
by the browser.

© 2022 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. All rights reserved. 8

http://www.example.com

