Introduction to Software Security

Chapter 3.8.3: Code Injections

Loren Kohnfelder Elisa Heymann Barton P. Miller

loren.kohnfelder@gmail.com elisalcs.wisc.edu bart@cs.wisc.edu

DRAFT — Revision 2.0, January 2022.

Objectives
e Briefly review the general problem of injections, and apply to code injections (also known as
“language injection”, “dynamic evaluation”, or just “eval” attacks).
Understand what code injections are and see some examples of how they work.
Learn how to mitigate code injections vulnerabilities.

Examples are presented from Python, Perl, JavaScript and Ruby.

Code Injection Attacks

Code Injection is a specific type of injection attack where an executable program statement is constructed
involving user input at an attack surface that becomes vulnerable when it can be manipulated in an
unanticipated way to invoke functionality that can be used to cause harm. See Chapter 3.8 for details on
the general form of these attacks.

As with other kinds of injection attacks, the key insight to understanding the source of vulnerability
involves how metacharacters can potentially be used by a clever attacker resulting in a generated
statement that does things never intended by the programmer. Defense and mitigation is best done by
avoiding ad hoc string construction of programmatic statements in the first place, or if you must do so
thoroughly validating input and carefully handling metacharacters that might introduce unintended
escaping, quotation, or statement separators to alter the intended semantics of the result.

Code injection is a risk with languages that execute or interpret script because of the ease of running a
string as an executable statement or statements at runtime (commonly called “eval”). For example,
popular languages that have this ability include: JavaScript, Perl, Python, and Ruby.

Code injection is potentially the most dangerous form of these attacks since it literally provides an
opportunity for the attacker to have their own arbitrary code injected and subsequently executed.
Nonetheless, building statements at runtime is a powerful and tantalizing technique that is hard for
programmers to resist. There are situations where this technique is a reasonable choice, but as with any
powerful tool it’s important that you recognize the danger and fully understand the risk to make a wise
decision about it and when necessary know precisely how to protect against creating a bad vulnerability.

Perl Danger Signs
Functions prone to code injection attacks include:

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

eval($s)
s/$pat/$replace/ee

The first form is a straightforward “eval” function where the string $s is executed as a Perl statement. If
the attacker can influence the value of the string $s that opens this up to attack.

The second form looks like a regular expression substitution, but the special “ee” modifier at the end
causes the expression eval($replace) to be executed and the result is used as the substitution string.
That is, the s/// statement above is equivalent to this:

$temp = eval($replace)
s/$pat/$temp/

While the first form is more obvious, the second is easily overlooked as an opportunity for injection. This
is a good example of why it is important to be fluent with all the ins and outs of languages and libraries to
understand exactly how they work to code securely.

Ruby Danger Signs
Ruby only has the straightforward form of “eval” which works much as described already — naturally,
the string value is interpreted as a Ruby statement and executed.

eval(string)

From a security point of view, the design of Ruby helps secure coding by making it crystal clear when a
code injection attack might be possible by having one specific syntax.

JavaScript Danger Signs

Y4 €6

JavaScript’s “eval” syntax is similar to Ruby. The string argument can be a JavaScript expression, a
statement, or a sequence of statements.

eval(string)

Python Danger Signs

Python has a number of functions that are prone to injection attacks:

exec(string) # dynamic execution of Python code

eval(string) # returns the value of an expression or code object
execfile(string) # reads & executes Python script from a file
input(string) # equiv to eval(raw_input()) before Python 3000 only
compile(string) # compile the source string into an executable object

The first two forms interpret the string argument of the function as a statement (exec) for execution, or
an expression (eval) returning the resultant value. Either of these is a potential code injection attack if
the attacker can influence the string argument value.

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 2

The next two forms are shortcuts for reading input from a file (execfile) and executing the text as
statements, or reading one line from standard input (input) and evaluating that as an expression and
returning the result. Note that Python 3000 broke compatibility and changed the semantics of input and
raw_input.

Note: These danger sign sections are intended to illustrate major sources of code injection attacks in
some common languages, but are not meant as a rigorous enumeration to all possibilities.

Simple Code Injection Example in Python 2

Consider this simple Python example code that implements a basic calculator to see how code injections
works in practice. The calculator computes the result of the input provided by the user.

comp = input("\nYour computation? => ')
if not comp:

print ("No input")
else:

print ("Result =", eval(comp))

The (Python 3) input function reads a line from standard input. The eval function performs the
evaluation of the expression provided. Given that eval evaluates the input as a Python expression, it can
also calculate values if you prefer. For example, if the input is 30 * 12 + 5 then it computes the value
and outputs: Result = 365.

However, Python expressions can do a lot of things, for example, consider this:
__import_ ('os').system('rm -rf /')

The __import__ function dynamically imports the module named by the string provided, so this invokes
the standard os . system function that invokes a shell to execute the given command (rm -rf /) which
removes the filesystem root if the process has sufficient privileges.

Mitigating this Simple Python Example
To mitigate the code injection vulnerability of the simple code below, it is necessary to validate the input
supplied by the user before calling eval.

comp = input('\nYour computation? =>")
if not comp:

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 3

print ("No input")
else:
if validate(comp):
print ("Result =", eval(comp))
else:
print ("Error")

In the above validate(comp) we should either check that only characters belonging to a whitelist are
used, or check to see if the input includes the escape character (\) before any quotes so the whole
sequence of characters provided by the attacker is interpreted as a single string. In this case, a white list
might contain only valid numeric characters plus arithmetic operators such as + or X.

A More Arcane Example in Perl

Large companies over the years often have a mix of systems written at various times in different
languages but still need everything to interoperate. Here is the scenario for this more advanced example:
It started a few years ago when a large team built a complex distributed system in Python. This system
included a logging module, written in Python of course, for reporting interesting events. Now another
team is building a new component of this distributed system, working in Perl. Everything is almost
complete, but now the new component needs to use the logging facility.

In this situation there are two obvious choices:

1. Write a compatible version of the logging module in Perl that interoperates seamlessly.
2. Rewrite the new system component in Python (from Perl) just so it can use the logging module.
3. Or, surprise: none of the above!

Faced with unappealing choices 1 and 2, somebody suggested a tricky third option: have the Perl code
dynamically create Python code that gets executed to call the logging module. By the way, this example is
based on a real vulnerability the authors discovered reviewing real code.

Programmers love to be clever and lazy, and this approach achieves both at once. What could go wrong?
Here is what the quick and dirty solution to the problem looks like written in Perl:

@data = ReadLogFile('logfile");
open(PH,"|/usr/bin/python");
print PH "import Loglt\n";
foreach (@data) {

print PH "Loglt.Name('$_")\n";
}

To see how this bridges the gap from Perl to Python, let’s walk through the code above.

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 4

The first line calls the function ReadLogFile that reads a file of lines and filters the names, resulting in
the array data containing an array of names. This provides the data to be logged, returned in the array
data. To see how this code injection works, consider two input lines: first a normal line, then a malicious
line that constitutes the attack.

John Smith
")s;import os;os.system('evilprog");#

name
name

The second line opens a file handle to a pipe that provides input to the Python interpreter. Strings written
to this file (PH) will be parsed and executed as Python source code.

The third line writes the first line of Python: an import statement naming the existing logging component
already described (named Loglt).

The fourth line iterates through the array data already read from the logging input file shown above.
Each line is expected to be a key/value pair with the key name. The fifth line is where the rubber meets
the road: the value $_ is sent as a string to the logging component — LogIt.Name('$_") —to be precise
here, the Python statement is formed by inserting the value $_ between the two single quotes of the
statement prototype as shown.

For the first normal input line (John Smith) we get the expected Python statement:
LogIt.Name('John Smith')
The Python interpreter parses this line and invokes the LogIt component Name function as planned.

However, the second line is malicious so let’s look at the example string that this code provides to the
Python interpreter for execution:

LogIt.Name('');import os;os.system("evilprog");:#")

According to Python language syntax, this is several statements, shown below on separate lines:

LogIt.Name('');
import os;
os.system("evilprog");
#')

The first Python statement invokes LogIt.Name with an empty string parameter (perhaps this allows the
attack to avoid being noticed since nothing is logged at all). The second statement imports the standard os
module and the third statement invokes os.system("evilprog") that does some unspecified
malicious activities. The last statement is just a comment that was added so the remaining characters do
not cause a syntax error that would potentially prevent the attack from occurring or raise an error that
might make discovery of this mischief more likely.

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 5

Mitigating this Example in Perl

Fortunately, a clever developer on the team pointed out the problem and implemented a quick fix.

@data = ReadLogFile('logfile");
open(PH,"|/usr/bin/python");
print PH "import Loglt\n";
foreach (@data) {
my $val = QuotePyString($_);
print PH "Loglt.Name('$val')\n"
}

The crucial change added in the middle of the loop just before printing the Python statement: now the
value string is processed by a new Perl function QuotePyString($_) that applies Python syntax quoting
to the input. Here is the Perl code for this new code:

sub QuotePyString {
my $s=$_[0]; # Copy input string parameter to $s
$s =~ sA\\VA\\\\/g; # escape backslash \ becomes escaped backslash \\
$s=~s/'A\\'/qg; # single quote ' becomes escaped single quote \'
$s=~s/"A\\"/q; # double quote " becomes escaped double quote \"
$s =~s/\n/\\n/g; # newline becomes escaped newline \n
return $s;

}

For the first normal input line (John Smith) we still get the expected Python statement:
LogIt.Name('John Smith')
Thanks to the new Python quoting code, here is the result for the malicious attack string:

LogIt.Name('\');import os;os.system(\”evilprog\”);#")

Now since all the single and double quotes of the input have been escaped, this is a single valid (but
bizarre) string that the logging component can harmlessly log.

Summary
e Code injections arise when a program constructs program code at runtime and there is a path from
the attack surface (typically user input) to the string to be executed as code.
To mitigate code injections, it’s best to avoid constructing code at runtime for execution.
If you must execute generated code then carefully sanitize the input (though this is a riskier
approach).

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 6

Exercises

L.

Write a simple example program that constructs and executes statements based on user input
strings. See how many different ways you can trick this program into executing arbitrary code
specified by various tricky inputs. Note: never actually do malicious attacks but instead as “proof
of principle” do something obvious but harmless.
Modify the program from Exercise 1 to be safe for all possible inputs you can think of. Try the
same attacks and that they are now foiled. Can you find any new attacks that still work? Give
your code to a colleague and challenge them to attack it (without causing harm).
Choose a language with “danger signs” listed in this chapter, or choose another interpreted
language if you prefer that is capable of parsing and executing string values as code. How might
you check a large body of source code to find possible code injection vulnerabilities?
Pick an open source project written in an interpreted language:
a. See if it includes any of the danger signs indicating potential code injection vulnerability.
b. Investigate if these are actual vulnerabilities or not (either by source code inspection or
experimenting with running code). Of course, as always, set up a private instance and
never attempt anything malicious.
c. (Advanced) If you think that the code is vulnerable, try to create a “proof of principle”
sample that demonstrates how the code might be attacked — if successful, responsibly let
the project owners know and propose necessary mitigation.

© 2018 Loren Kohnfelder, Elisa Heymann, Barton P. Miller. A/l rights reserved. 7

