
1

Chapter 33
FPVA Step 4, Component Analysis

Revision 1.0, September 2025.

Objectives

● Learn to think like an analyst.
● Understand the fourth step of FPVA, the component evaluation.
● Start finding vulnerabilities in real software.

33.1 Motivation
In the previous modules you learned about FPVA steps 1–3. The goal was to
get the big picture of the system that you are assessing. That means
understanding the architecture of the system, the different resources the
system uses, the privilege levels for the different components, and who owns
and accesses the system’s resources. Once you have completed these first
steps, you are ready to start looking for vulnerabilities. The motivation for
these first steps was to focus your attention on the critical parts of the system
so that you will be looking for vulnerabilities affecting the high value assets.
This approach can help you to avoid wasting your time assessing parts of the
system that are less likely to contain important vulnerabilities. Ideally you
would have the time and resources to assess the whole system, but we must
be realistic: that does not happen even in well funded efforts.

This chapter will guide you on how to start looking for vulnerabilities,
keeping in mind that a vulnerability is identified as such only if you can build
an exploit for it. So, we are talking about confirmed vulnerabilities instead
of potential vulnerabilities. Once you find a vulnerability (congratulations),
you will write a vulnerability report for the vulnerability you found, as
explained in the next chapter on FPVA Step 5.

To look for the vulnerabilities we describe in this chapter, you will have to
experiment with the system (messing around with it and hopefully breaking
it) and inspect the source code. We suggest a variety of approaches for each
of the different categories of vulnerabilities we cover, and we illustrate some
of the results with vulnerabilities that we have found when applying FPVA
to real systems. Note that the list of issues we suggest is just a starting point.
Every system is different. However, after finishing looking for the problems
discussed in this chapter, you will be ready to go beyond and look for
vulnerabilities that are specific to the system you are assessing. So, let’s get
started.

33.2 Roadmap of Vulnerabilities Discussed in this Chapters
The rest of this chapter covers a variety of vulnerabilities that we have found
in some of our real world software assessments. Each section is organized
by the type of vulnerability found. In each section is a brief description of
the vulnerability then a subsection for each high level approach (technique)
used to find the vulnerability. Also included are example vulnerabilities that
illustrate the vulnerability type and approach to finding it. The table below
serves as a roadmap to the material covered in this chapter.

High Level Approach

Perm
ission inspection

Focused code inspection

Focused file inspection

Experim
ent w

ith system

R
un static analysis tools

R
un dependency tools

R
un fuzz tools

M
essage interception

Stress testing
Vu

ln
er

ab
ilit

ie
s

Authorization Issues X X X

Issues Found by Tools X X X
Cross Site Request
Forgery (CSRF) X X X

Abusing Authentication
Mechanism X X X

Denial of Service X

Too Much Information X X

Exposed traffic X

Injections: SQL, XSS,
Code, Command, XML,
Path name

 X X X

 Buffer Overflow X X X

33.4 Authorization Issues
Authorization refers to what a user is allowed to do in a system. A system is
vulnerable if resources (such as files) have incorrect permissions. Privilege
escalation allows a user to perform operations beyond their intended
privilege level, and that is another example of an authorization problem.

High level approach: Permissions inspection

Check permissions for log files and for configuration files. The permissions
must match the authorized user/group. No user should be able to read files
they are not authorized to read, which is a violation of confidentiality. In the
same way, no user should be able to write files that they are not authorized
to read, which is a violation of integrity. Given that log files may contain
sensitive information such as passwords, or session identifiers, reading such
files could have serious consequences.

Example of a vulnerability from Open XDMoD: The XDMoD software
logged the session cookies for every request it received in the process of
checking their validity. The log file was globally readable and could
allow an attacker to read the cookies and then hijack active sessions.

Check permissions for executable files (application binaries). You need to
pay special attention to which users are allowed to execute such files. Also
check that the UID/GID for the running processes are the intended ones. If a
process is running as user root, it will be able to access any resources in the
system.

Example of a bug from Open onDemand: When requesting Open
onDemand to launch a new program, the file that contained the script to
launch the program did not have execute permission, so the launch failed.

Example of a bug from Open XDMoD: Open XDMoD has a collection of
utility scripts that are used only by the system administrator. However,
the files containing these scripts had incorrect permissions that would
allow any user to execute them.

High level approaches: Focused code inspection, Experiment with the
system

Try to find where privilege escalation can happen. For example, check if you
can tamper with the parameters of a setuid1 call. Also check if you can
tamper with files that contain passwords or other kinds of credentials. Also
check if a user can attack other users running on the same system. This type
of attack includes a user accessing (for example removing) processes or

1 https://man7.org/linux/man-pages/man2/setuid.2.html

container images that belong to another user. The processes from the
different users should be isolated. Even with virtual machines or cgroups2,
it is important to make sure that there is sufficient isolation. File systems
should be properly mapped and isolated.

Example of a vulnerability from Singularity: Gaining root access inside
of a container allowed for root access on the underlying host machine. A
user executing as root inside the container can mount the host root file
system, allowing it to modify the /etc/passwd file and set the root
password on the host, allowing privilege escalation on the host machine.

Example of a vulnerability from Custos: Any user with access to the
Custos REST API can change the password of any other user. This is a
consequence of not having a mechanism in place to verify the source of
a password reset request.

Example of a vulnerability from Custos: In Custos, a tenant refers to an
application that is controlled by Custos. Such tenant applications have an
administrator and regular users. Any valid user could update the metadata
of any tenant in Custos. This metadata includes the tenant administrator
information; thus, any valid user can make themselves the administrator
of any tenant in Custos, or simply deny service to the valid administrator.

Example of a vulnerability from HTCondor: Different programs from
different users running on the same host belonged to the same user ID.
Therefore, any of those programs could kill the programs belonging to
other users.

Abuses to authorization can result from improper validations. Check that
before executing any operation, a server performs the necessary validations
to ensure that the operation is executed on behalf of a user who is authorized.
Validations on the client side are important, but it is even more important
that those validations also happen on the server side. Software systems
should have common code to do the checking to prevent multiple
implementations of the code performing the validation, which is more error
prone and difficult to maintain.

Example of a vulnerability from CATOS_WebIP: Improper validation
allows users to view information belonging to other users. The client
interface restricts a user to viewing only items belonging to that specific
user, however the server does not perform that validation. Instead, the
server simply searches the database for matches without any sanitization.

Example of a vulnerability from CATOS_WebIP: Improper input
validation in the server allows attackers to illegally download, upload,

2 https://en.wikipedia.org/wiki/Cgroups

overwrite, or delete files throughout the server’s file system. Operating
System file permissions limit this vulnerability to affecting only files that
are accessible to the owner of the server process (e.g., if the server process
is started by the SYSTEM Windows user, then all files are vulnerable).

33.5 Issues Found by Tools
Both static analysis tools and dependency tools can provide useful
information in finding vulnerabilities in a program. In addition, dynamic
techniques such as fuzz random testing can expose execution errors. When
using such tools, you will have to determine if the reported problems can
lead to vulnerabilities.

Static analysis tools scan the source code or bytecode of a program and report
on weaknesses found in the code. While some of these reported weaknesses
may be vulnerabilities, the tools can also generate many false positives, so
you will need to carefully analyze the output of such tools.

Dependency analysis tools will tell the analyst about security issues affecting
the software supply chain.

Finally fuzz testing tools help debugging the system, and some of the bugs
they find may be security related.

Note that running just one static analysis tool or one dependency analysis
tool is not enough, and can give a false sense of security. In Module 6, we
elaborate on static analysis and dependency tools and in Module 7, we
address fuzz testing.
High level approach: Run standard static analysis, dependency, and
fuzz testing tools

Modern software is not built from scratch but on top of usually complex
software stacks. You need to find outdated and vulnerable dependencies in
the software supply chain, using dependency check tools. Also, it is
important to use automated assessment tools to find vulnerabilities in the
code. Note that this is not a silver bullet that will find all the vulnerabilities
in your code, but it is a good starting point. Furthermore, it is recommended
to use Fuzz testing to make your system crash or hang, and then use a
debugging tool to identify the problem.

Example of a vulnerability from Custos: The code that implements
Custos’ Core Services and Integration Services have multiple
dependencies with known vulnerabilities. Several of these vulnerabilities
are considered critical.

33.6 Cross Site Request Forgery (CSRF)

High level approach: Message interception/Communication
monitoring, Experiment with the system

Communications should be encrypted, as we well know. The first step is to
check if HTTPS is used so messages are encrypted. Instead, if HTTP is used,
attackers can use tools to intercept and modify traffic, and therefore be able
to submit any requests they want.

Try to submit a request to the server without using the client attack surface
(visible fields). This means attacking the application using a REST client to
access parts of the application that are not accessible through the UI. Watch
the browser traffic and try to replicate a request using curl.

Example of a vulnerability from Custos: Any user with access to the
Custos REST API can change the password of any other user. This is a
consequence of not having a mechanism in place to verify the source of
a password reset request. The Custos web server, as with any web server,
receives requests, and those requests can come from the client user
interface or from a command line tool such as curl. The server needs
to validate the requests it receives before serving them.

Example of a vulnerability from Custos: In Custos, a tenant refers to an
application that is controlled by Custos. Such tenant applications have an
administrator and regular users. Any valid user could update the metadata
of any tenant in Custos. This metadata includes the tenant administrator
information; thus, any valid user can make themselves the administrator
of any tenant in Custos, or simply deny service to the valid administrator.
This vulnerability comes from the fact that the service responsible for
updating the metadata does not check that the session ID corresponds to
the administrator of the tenant.

High level approach: Focused code inspection.

You need to understand how sessions are managed in your system. Weak
session management results in attackers being able to generate fake requests.
So, you need to check how session identifiers are generated. Nonces is a
mechanism that prevents CSRF, therefore you need to check if nonces are
used in the requests/responses. In addition, check if sessions time out

33.7 Abusing the Authentication Mechanism

High level approach: Multiple attempts (stress attempts)

Perform a brute force attack to try to get another user’s credentials
(password), and check if there is a limit to the number of attempts for relevant
operations, such as login attempts.

Example of a vulnerability from Custos: An unauthorized user can find
valid user credentials through a dictionary or brute force attack on the
login endpoint of the Custos REST API. There is no limit to the number
of invalid login attempts that can be made by a user, thus any
unauthorized user can make unlimited login attempts until they find a set
of valid credentials. Additionally, the ability to execute unlimited login
attempts creates the potential for a denial of service attack. Each
unsuccessful login attempt generates logs on the Custos server that, if not
handled appropriately, can fill the disk partition.

High level approaches: Focused code inspection, Stress input, Focused
file inspection

Check if a user can impersonate another user, for example by getting access
to some other user’s token or certificate that grants access. Furthermore,
check if any information used to generate credentials is unprotected, for
example stored in environment variables.

Example of a vulnerability from CREAM: A malicious user can, under
the right conditions, replace another user’s proxy certificate with their
certificate. This proxy certificate is used for the user’s access to a program
execution service running on another computer. New requests submitted
by the regular user to this execution service will use the malicious
certificate and the regular user’s programs will execute under the identity
of the attacker giving the attacker full control over the programs and the
data used by those programs. This vulnerability was caused by weak
permissions on the directory storing proxy certificates.

Example of a vulnerability from Tapis: Any local Tapis user can decode
their respective user JSON Web Tokens (JWTs) and modify them in such
a way that they can impersonate other users and services.

You need to understand what protocol is used for authentication. If it is not
a well-known protocol, try to dissect it to find flaws. Even if it is a well
known protocol, you need to check that the implementation of the protocol
is also a well-known one. Otherwise, there are chances to find vulnerabilities
in the implementation.

If tokens are used, check if the system implements token rotation. This
allows us to detect token theft. Also investigate if passwords and
authorization codes are being hashed.

33.8 Denial of Service (DoS)

High level approach: Stress load

An attacker causing a DoS will prevent the system from being available to
valid users. To examine if the system is vulnerable to a DoS, try to exhaust

the available resources, such as filling up the free space on the file system
partition by continuously writing to a log file, or spawn processes
continuously. As part of this, conduct stress tests involving repeated requests
and more demanding requests, and assess the use of resources (such as
memory, disk, or CPU).

Check for “leftover” processes, such as zombie processes3 or a container
running in the background. If those are found, try to generate many of them.

Example of a vulnerability from Singularity: Singularity allows users to
run containers in the background using the singularity run command and
the shell “&” operator. A user can execute a container that, when brought
back into the foreground, can only be killed by the user or root from
another window.

Example of a vulnerability from Open XDMoD: Every time a request was
made to Apache, an entry was logged to a specific log file. By repeatedly
sending requests to Apache (even invalid ones), an attacker can fill up the
free space on the file system partition causing a DoS.

33.9 Too Much Information (TMI)

33.9.1 High level approach: Focused code inspection, Experiment
with the system

You need to inspect the code for exception handling and check if:

A. Exceptions are correctly used. The system must include exception
handling for dealing with abnormal conditions. Make sure that the error
messages printed do not disclose information about internals of the
system. It is also important to check that messages intended for the
debugging stage of the software are removed from the production
version of the product.

B. For SQL queries, check if too many tuples are returned for certain
queries. For example, when checking if there is a password match in a
table, only one entry should be returned.

Example of a bug from Open XDMoD: When authenticating a request,
either from the session cookies or a provided user name and password,
XDMoD performs a query to select all entries from the database that
match the given credentials. This operation returns a list of tuples (table
rows), not necessarily one. In both checking the session cookies and

3 A zombie process is one that has exited but its kernel state has not yet been cleaned
up because no parent process has checked its exit status. You can find more details
at https://en.wikipedia.org/wiki/Zombie_process.

verifying the user’s password, the only verification performed on the
number of types is whether the list is empty or has greater than zero
tuples. If it has at least one tuple, then the first one is assumed to be the
intended one. If there was an error in the authentication database or if
there was some other related attack (such as a SQL injection), the query
might incorrectly return more than one tuple.

In addition, you will need to experiment with the system and see the error
messages you get after the system executes a request that fails. Also pay
attention to the case where an error message was intended for debugging
purposes, but ended up in the released (and deployed) software.

33.10 Exposed Network Traffic

High level approach: Message interception/communication
monitoring

Start by checking if the protocol used is HTTP instead of HTTPS. If it is
HTTP, intercept the network traffic between different components. For that
you will need to use a tool to read the unencrypted traffic (attack to
confidentiality), to modify/inject traffic (attack to integrity), and to destroy
traffic (attack to availability).

Example of a vulnerability from Open XDMoD: The default configuration
of Open XDMoD does not encrypt HTTP traffic. This misconfiguration
allows attackers to monitor all traffic between the server and the client.
As a result, passwords submitted on login are sent in plain text, and can
be stolen.

Example of a vulnerability from Open onDemand: It was possible to
intercept the unencrypted traffic between some of the processes that
implement the functionality of Open onDemand. Because the Open
onDemand configuration at the time of the assessment had these
connections on internal networks, that was not an issue of immediate
concern. However, if a future configuration change moves one of the
involved processes out of the same protection environment, then the
associated connection would become vulnerable.

33.11 Injections: SQL, XSS, Code, Command, XML, Path Name

High level approach: Stress input, Focused code inspection,
Experiment with the system

● SQL injections: Try to abuse input fields (attack surface), and include
SQL queries in an input field. Also inspect the path from the attack
surface to potential impact surfaces. To do that follow the data flow in
the code, starting at the attack surface.

● XSS: Try to abuse input fields (attack surface), and include JavaScript
code in the input fields.

● Code injections: Identify if any user supplied input ends up being
executed. To find such cases, inspect the path from the attack surface to
potential impact surfaces, following the data flow in the code, starting
at the attack surface.

● Command injections: Try to abuse input fields (attack surface), and
include metacharacters (such as “;” or “&”) and commands in the input
fields.

● XML injections: If the application receives XML input, try to modify
that XML input to attack the parser in different ways: XML bombs,
XXE attacks (to cause DoS, or disclosing sensitive data).

● Path injections: If the application requests a path name, use “.” and “..”
in the pathname you provide to try to escape any sandbox, or safe
directory, or fake root directory. In Windows systems, provide as input
a path name containing “/” as the separator. Inspect the code and find
the name of the safe directory used, and provide a file name with
exactly that name. Inspect the path from the attack surface to potential
impact surfaces. To do that follow the data flow in the code, starting at
the attack surface.

Example of a vulnerability from Tapis: As a result of a command
injection vulnerability, any user can execute arbitrary commands on
the host where their program is being executed.

Example of a vulnerability from Tapis: An attacker can store
command injections in a Tapis database, and execute those persistent
attacks when submitting a program for execution at a later time. The
injection is possible because there is no validation for the name of the
container image that is stored in the database when an application is
created. Therefore, the container image name can include
metacharacters and commands. This vulnerability is even more
serious because even after it is fixed, the stored injections could still
persist in the system. Only with a comprehensive scan of the system,
could you be confident that you removed any residual effects of the
injection attack

33.12 Buffer Overflow (or Unexpected Behaviors with Strings)

High level approach: Stress input, Experiment with the system,
Focused code inspection

Through an input field, provide unexpected input, such as code, a very long

input, input with metacharacters, long integers, and negative numbers.

Example of a bug from Open onDemand: There were multiple issues
associated with handling unusual inputs, causing unintended changes to
the webpage being displayed. As a first example, a long job name resulted
in a misalignment of different elements (text, buttons, and links) on the
webpage, and as a consequence some elements are then inaccessible. A
second example is when asking Open onDemand to create a new
directory, entering invalid characters could cause unintended and bizarre
directory names, such as the following name (including all
metacharacters such as the quotation marks).

” title=”script>” draggable=”true”>script>

Check if the received input is sanitized. In case of server/client applications,
check if inputs are only sanitized/validated on the client side. To make that
check, inspect the code on the server side and see if it includes validations.
Check in the code for any input that is not sanitized/validated.

Example of a bug from Open XDMoD: Open XDMoD allows a user to
update several fields of the portal user database, including first name, last
name, email, and password. While client side validation of the database
fields occurs before the requests are sent, there is no server-side
validation of the first name, last name, or email fields. Since the database
schema restricts the length of these fields, the lack of server-side
validation forces the database to truncate the values. This truncation can
lead to malformed email addresses.

33.13 Summary
FPVA is a methodology that allows an analyst to find vulnerabilities
affecting the high value assets in a software system. It is a human-centric
methodology consisting of five steps. This chapter covered FPVA Step 4,
Component Analysis. The goal is, after understanding the big picture of the
system in Steps 1–3, to find and exploit concrete vulnerabilities.

● Learn to think like an analyst.
● Understand the fourth step of FPVA, the component evaluation.
● Get a starting point for finding vulnerabilities in your system.

33.14 Exercises
1. When performing an in-depth vulnerability assessment, why

should we not just start with FPVA Step 4? In other words, why
are Steps 1-3 necessary?

2. (a) We consider a vulnerability to be real only when we have been
able to build an exploit for it. Why should we not report on a

vulnerability we can believe is there, but for which we did not
manage to construct an exploit?
(b) Why might we report on a vulnerability for which we have not
(could not) construct an exploit?

3. Think about a software system with which you have experience.
List what kind of specific issues, different from the ones described
in his chapter, you would look for in your assessment.

