
1

Chapter 32
FPVA Step 3, Trust and Privilege Analysis

Revision 1.2, September 2025.

Objectives

● Understanding the concepts of trust and privilege.
● Relate the concepts of trust and privilege to classic operating

system concepts of authentication, authorization, and access
enforcement.

● Learn how these concepts relate to the FPVA diagrams created in
Steps 1 and 2 of FPVA.

● Learn how to annotate the Step 1 and 2 diagrams to include trust
and privilege information.

● Learn about tools and techniques that you can use to gather
information for constructing these diagrams.

32.1 Motivation
Now that we have described the architecture and identified the key resources
of the system that we are assessing, it is time to talk about how trust and
privilege are handled in the system. We are concerned with two key
questions: how is trust handled in the system and how are permissions given
out and enforced?

Trust and privilege relate to the classic three-part operating systems model
of authentication, authorization, and access control. In this chapter, we will
show how trust and privilege relate to this three-part model. In fact, we will
show that they are essentially different ways of breaking down the same
issues.

We document information related to trust and privilege in a software system
by decorating the Architecture and Resource Diagrams. Remember that we
start with the Architecture Diagram and then annotate this diagram with the
resources that the system uses. The diagrams that we have shown in the
previous two chapters did not use colors. In this chapter, we will show how
we use color to illustrate privilege information for both architectural and
resource elements.

32.2 Trust
Trust boils down to the question of whether you believe what another user,
computer, or process (running program) tells you or what a file or database
contains. The first step in deciding whether you trust what you hear or read

2

is whether you believe the posited identity of the source of that information.
This belief is based on authenticating the identity of the other party, which
falls under the topic of identity management. The second step is deciding
whether you trust the information that comes from the other party.

32.2.1 Authentication

Authentication refers to validating the identity provided by an entity, such as
a user or a host. Authentication is crucial because if an attacker can
authenticate as a valid user, the attacker will gain the privileges of that user.

Authentication might be done locally on a particular host or service, or
remotely using a dedicated authentication system. The first step is for a user
to convince this authentication system, either local or remote, that they are
who they say they are. We usually call this the “login” step. The second step
is for the authentication system to provide some sort of token that can be
used to access services, create secure communication channels, digitally sign
data, and encrypt information.

In its simplest form, login is done with a user name and password. Even with
careful rules about password complexity and not reusing passwords on
different sites, password-based authentication is inherently weak and should
be avoided. The security of password-based authentication is based on
keeping one fact, the password (or PIN) secret. Once this fact is exposed,
your security is gone.

Alternatively, we can more types of facts, called factors, to enforce
authentication security.

Multi-factor authentication is based on using
more than one of three types of factors: what you
know, what you have, and what you are. What you
know means a password or PIN. What you have
means having an identity card, authentication
token, or authenticator application in your
possession. What you are means using a biometric
characteristic such as fingerprint, handprint, or
retinal scan. Using a second or third factor means
that simply losing a password or having it broken
will not allow access to your account. Most
systems today use a second factor, while the
highest security facilities, such as a military
installation or dangerous science facility such as

the CERN Large Hadron Collider particle accelerator beam chamber.

3

Many systems now use identity management (IdM) systems that allow you
to authenticate yourself once and then use that authentication to access many
different services. Examples of such IdM systems are CILogon for science
facilities or Google’s single sign-on for commercial systems. IdM systems
are attractive because they are typically designed by experts and will support
multi-factor authentication. IdM, like cryptography, is one of those areas
where you should not try to design your own system. There are many subtle
ways that you can go wrong and even the smallest mistake can leave your
system wide open to attack.

A common protocol used in IdM for authentication is OAuth 2.01, which is
used to sign in to systems like Google or Microsoft. The goal of such a
system is to allow you to sign on once and then use a token provided by the
authentication service to access a variety of different services. Such a
mechanism is often called single sign on. When you successfully
authenticate yourself to OAuth 2.0, it returns an identification token along
with an access token. Both types of tokens are typically represented as JSON
Web Tokens (JWT)2, a cryptographically signed Base64-encoded JSON
object.

The Analyst’s Task for Authentication

Your first task in understanding how authentication is being used in the
system that you are assessing is to understand the requirements for
authentication in the system. You will need this information to decide
whether the mechanism chosen by the system designers is appropriate to the
task. From the first two steps of FPVA, you should have a pretty good idea
of what the system is doing and what kind of resources it is controlling.
Certainly, if the system is controlling physical resources (a cyber physical
system) where there is the potential for harm to people or property, then the
system needs careful design with multi-factor authentication, likely three
factors. If a system maintains sensitive information, including personal,
financial, or medical information, then two-factor authentication is essential.

The next task is to identify what kind of authentication is being used and how
it is being used. As we saw in Figure 1 in Chapter 30, a system can have
more than one path of entry. For example, in that figure, we see two
completely separate paths of entry. The administrator of the system accesses
an administrative host through the standard operating system identity
management and then using remote login (ssh) to access the system itself.
This arrangement requires careful evaluation of the login procedure on the

1 https://oauth.net/2/
2 https://datatracker.ietf.org/doc/html/rfc7519

4

administrative host and then the remote login procedure. It is safe to say that
in any modern system, having only password-based authentication at either
of these two steps is insufficient. If the administrative host has physical
controls to access it – for example, having to use a badge to access the room
where that host resides – then that physical control could be considered a
second factor.

Normal users have access to that system through a web interface, requiring
an evaluation of the web authentication mechanism and session
management. Remember that you read about web security in Chapters 20-
24.

Our Economy of Design principle would argue against a design such as the
one that this system has, preferring a single authentication mechanism that
supports both regular and administrative users.

32.2.2 Trusting Authentication Information

The best authentication mechanism is only secure if it is based on secure
communication channels. This means that all communication sent during the
authentication process (and afterwards) must be encrypted. For example, any
web-based operations must be based on HTTPS, remote shell operations
should use ssh, and other secure communication should be based on
encrypted channels using well established encryption and communication
libraries like TLS3 (formerly SSL).

Often, when information is shared, some form of secure hash is used to detect
if the data has been tampered with. It is used to detect such tampering in
cases such as when data is sent over a communication channel or stored in a
file. Note that a secure hash protects the integrity of the data but not the
confidentiality. The original data is always sent or stored with its hash value.
The reader or recipient of the data can recalculate the hash of the data to see
if it matches the sent or stored value. If they do not match, then tampering
has occurred.

A secure hash is a cryptographic function that should have several properties,
including:

1. They should be efficient in that they should not consume a lot of CPU
cycles.

2. They should be one way functions, meaning that it should be extremely
difficult to obtain the original text from the hash value.

3 https://en.wikipedia.org/wiki/Transport_Layer_Security

5

3. They must have collision resistance, meaning that it should be
extremely unlikely to find two different texts that would hash to the
same value.

Typically, hashes from the SHA-2 and SHA-3 family are considered to be
strong against attack. For example, Bitcoin cryptocurrency is protected by
the SHA-256 variant of SHA-2 and Ethereum cryptocurrency is protected by
the Keccak-256 variant of SHA-3.

The Analyst’s Task for Trusting Authentication Information

The basic task for insuring that we can trust authentication information is to
identify all data in motion, that is communication operations such as web
requests and messages over sockets, and ensure that they are using encrypted
channels. You will have identified these internal interactions in Step 2. In
this step, you will be evaluating if that data is sent securely. Data at rest and
data sent between untrusting systems should be signed with a secure hash.

32.3 Privilege
Privilege describes what each process in the system can do and what
privilege is needed to access resources and external services.

Once we have determined the user ID for each running process and the
ownership of each resource such as a file, then we can then annotate the
Architecture and Resource Diagrams with colors that illustrate this
information.

Using the user ID and ownership information, we will then evaluate
authorization, which describes what each process is allowed to do, and
access enforcement, which is the mechanism used to ensure that these
limitations are enforced.

32.3.1 User IDs and File Ownership

A running program (i.e., a process) has a user ID associated with it. This user
ID will determine the types of access permissions that the process has. We
are particularly interested in whether this process is running with the ID of:

• A standard user, so probably relatively low privilege.
• A system user, such as a database administrator, so the process might

have full access to the resource which it controls.
• The root or administrator user, so the process likely has access to any

other process and all resources on that host. Since root or administrator
processes have extensive privileges, they are always considered high
value assets and become an early focus of the Step 4 code inspection
step of FPVA.

6

This characteristic is true for all operating systems, including Windows,
Linux, and MacOS. Every resource, such as a file, has an owner that is the
user ID of the process that created the resource.

The Analyst’s Task for Determining User IDs

Your first task is to determine the user ID of each running process in the
system that you are assessing. As we did for Steps 1 and 2 of FPVA, we start
with a running version of the system and use standard operating system
commands such as ps on Linux and MacOS and tasklist on Windows.
With the right options, these commands can provide quite detailed
information about the running processes. We can also get a real time list of
running processes with the top command on Linux and MacOS and the Task
Manager on Windows.

To make life more complicated, processes on Linux and MacOS can change
their user ID while they are running. A common scenario where this happens
is when a privileged process – one that is running as “root” – wants to create
a process running at a lower privilege level, which usually means on that is
not running at “root”. The new process is created when the existing (“root”)
process executes a fork or clone system call. This new process will also be
running with user ID “root”. To change its user ID, the new process will
execute a setuid (set user ID) command, and perhaps a setgid (set group
ID) command.

To detect this change in user ID, you will need to trace the system calls made
by the processes in the system that you are assessing. One of the easiest ways
to trace these system calls is by using the strace command, as we discussed
in Chapter 30.

Many software systems use a configuration file to control which programs
get run when the system starts and when certain commands are executed. An
entry in the configuration file would have the file path name for the program
and might also have a user ID at which to run this program. So, finding these
configuration files (which we can see in both Figure 1 and Figure 2 in
Chapter 31), is important. Such configuration files are often considered high
value assets in the system.

There is a commonly used UNIX standard configuration file type called
crontab4, which can be used to start programs running automatically at
scheduled times. These crontab files are read by the cron daemon (an
always running system process) and run with the user ID specified in the
entry in the file. Here’s an example of a crontab entry from the file xdmod

4 https://man7.org/linux/man-pages/man5/crontab.5.html

7

crontab used by the system illustrated in Figure 1. cron is starting a
program to run every day at minute 0, hour 1, i.e., at 1:00 am. The program
is run with user ID xdmod.

Every morning at 1:00 AM, run shredder. Then run ingestor.
0 1 * * * xdmod /usr/bin/xdmod-shredder --quiet -r resource-name
-f slurm -I /home/user/logs/logs.log && /usr/bin/xdmod-ingestor
–-quiet

Once we have the user ID information, we can annotate the Architecture
Diagram with colors that indicate under which user ID the processes are
running. So, the diagrams from Chapters 30 and 31 become the diagrams
with color shown in Figure 1, Figure 2, and Figure 3.

Note that in Figure 1, the “Data Import and Processing” process has two
colors. This is because it can be started from two different processes,
resulting in two possible user IDs. A process could also have multiple colors
if it executed a setuid system call while it was executing.

The colors give an easy-to-understand overview of basic privileges in the
system. One of the first things that an analyst or programmer might observe
is which processes are running as “root” or “administrator”. We typically
illustrate these in red so that they stand out. We are also interested in which
processes are running as resource-specific administrator accounts, as these
processes will often control shared information or configuration data.

The Analyst’s Task for Determining File Ownership

As we discussed in Chapter 31, the resources created and controlled by a
software system can have an influence on security. For example, files that
hold credentials or configuration information can be particularly critical. If
these files are stored in the wrong directory or if the access rights to these
are set incorrectly, then there could be unauthorized access. If a credential or
configuration file could be overwritten by an unintended user, then the future
behavior of the system could be dramatically changed. If a credential file
could be read by an unauthorized user, then login credentials or certificates
could leak, possibly attacking confidentiality, integrity, and availability.

Similarly, the authorized removal of a file might cause significant changes
in the behavior of the system. For example, removing a file that contains
login credential information could cause one of three common behaviors.
First, it might cause the system to crash, as the missing login information
could be an unexpected error. This is an attack on availability, essentially a
denial of service. Second, it might not crash the system but prevent valid
users from accessing it, again, attacking availability. Third, it might all any
user to access the system without valid credentials, leaving the system wide
open to integrity and confidentiality attacks.

8

Figure 1: Architecture Diagram with User ID Information

(Based on Figure 1 from Chapter 30)

We need to check that the files are properly owned and that the access lists
(file access permissions) are set correctly.

On Linux and MacOS, we need to make an extra check on executable files.
As we mentioned previously, when a process on Linux or MacOS executes
a program, the user ID of the new process is the same as that of the creating
process. However, when the SUID (set user ID) or SGID (set group ID)
permissions are set on a file, then the program will be executed with the user
ID of the owner of the file. The SUID or SGID access control is sometimes
called the “sticky bit”. Here, we see an example of a program (passwd) that
has the SUID bit set (shown as the “s” in the user permissions):

[2] ls -l /bin/passwd
-rwsr-xr-x. 1 root root 33544 Apr 12 2025 /bin/passwd

If there are only a few files in a few locations, then simple tools like the ls
or dir command might suffice to review permissions and check for special
cases like SUID/SGID. If there are many files, then a combination of scripts
and commands might be necessary.

32.3.2 Authorization

Authorization refers to specifying access policies to resources. A system
needs to enforce that a user is authorized to perform a specific operation on
a resource. You need to check what privileges exist in the system you are
assessing. To accomplish that, you will need to check the purpose of the
different accounts associated with the system and what operations should be

9

allowed with those accounts. For example, it is common to find
administrative accounts like “root” or “admin”, and some normal user
accounts. The administrative accounts will be able to affect the configuration
and operations of the system, so we need to check that critical resources are
accessible only by those special users.

Privileges should be fine grained. That means each privilege should limit
access to the most specific operation or data item possible. This is an
example of the Least Privilege design principle. Remember that this
principle means that each user should be able to access only the resources
they need, but no more than those resources.

32.3.3 Access Enforcement

Checking that accesses are properly enforced can take some time and
detailed work. You will need to locate the parts of the code that are involved
in the checking of access rights. In a well-designed system, such checking
will be done in one centralized place and clearly labeled. This is an example
of the Economy of Design principle.

The Analyst’s Task for Checking Access Enforcement

If a system is storing credentials and authorization, and access control
information in a common database, then identifying places in the code where
there are accesses to that database will help you find places where system is
making these checks. If the system is using a common framework, like a web
framework, then some of these checks might be integrated into that
framework.

10

Figure 2: Architecture-Resource Diagram with User ID-Ownership Information

(Based on Figure 1 from Chapter 31)

11

Figure 3: Resource Diagram 2 with Ownership Information

(Based on Figure 1 from Chapter 30)

32.4 Closing Thoughts
In reality, much of the information required for this step can be gathered
while you are performing Steps 1 and 2, the Architectural Analysis and
Resource Identification. An analyst experienced in a methodology such as
FPVA will be looking ahead to this step as they are performing the earlier
steps. In Chapters 30 and 31, you drew the diagrams without color and then
added the color (reflecting user IDs and file ownership) in this step. Another
way of thinking about this process is that you will be drawing the diagrams
with color as you perform Steps 1 and 2.

Completing this step of FPVA is often a point where you start sharing your
information with the team that is developing the software that you are
assessing. Sharing the assessment information at this point provides a
calibration for the assessment team to make sure that you are accurately
understanding the system that you are assessing and running it in a way that
accurately reflected real world deployments of the system. It can also provide
the software development team with their first insights into your assessment
activity and keep them engaged in the process.

The information gathered in this step is crucial to how the system works
before you dive extensively into the code in Step 4. The diagrams and related
information that you have gathered in Steps 1 through 3 will be crucial to the
next step.

12

32.5 Summary
In this chapter, we:

● Understood the concepts of trust and privilege.
● Related the concepts of trust and privilege to classic operating

system concepts of authentication, authorization, and access
enforcement.

● Learned how these concepts relate to the FPVA diagrams created
in Steps 1 and 2 of FPVA

● Learned how to annotate the Step 1 and 2 diagrams to include
trust and privilege information.

● Learned about tools and techniques that you can use to gather
information for constructing these diagrams.

32.6 Exercises
1. What do the colors on an Architecture Diagram and Resource Diagram

represent? What should the most distinct color (like red) be used for?
Describe how colors are used in Figure 1 and Figure 2.

2. How do the colors in an Architecture Diagram relate to those in a
Resource Diagram?

3. As you did for Steps 1 and 2, for a system with which you are familiar,
follow the steps in the chapter to annotate the Architecture and
Resource Diagrams with trust and privilege information. You can start
with the diagrams that you produced for the exercises in the previous
two chapters.

