
1

Chapter 30
FPVA Step 1, Architectural Analysis

Revision 4.1, February 2025.

Objectives

● A step in learning to think like an analyst.
● Review the concept of attack surface.
● Learn how to construct an architecture diagram and the

components used in an architecture diagram.
● Learn about tools and techniques you can use to gather

information for constructing these diagrams.

30.1 Motivation
The goal of FPVA is to focus the analyst’s attention on the vulnerabilities
affecting the highest value assets. By understanding the structure of a system
and the importance of its components, we can focus on the key areas of the
system for detailed code analysis. Architectural Analysis is the first step in
this process.

The purpose of the Architectural Analysis step is to identify the key
components of the system and describe how they interact. In later steps, we
will identify the resources on which the system operates (Resource
Identification), how trust and privilege is handled in the system (Trust and
Privilege Analysis), how to examine the code to find the actual
vulnerabilities (Component Analysis), and how to disseminate the results of
an FPVA engagement.

The architectural diagram is an abstraction of the software system. It captures
just enough information to reason about the system’s security without getting
bogged down in too much detail.

We will use an architectural diagram from a real FPVA engagement as our
running example. In Figure 1, we see a diagram from a system that manages
and monitors computing resources. It processes the accounting logs from a
resource management system and facilitates access to the metrics through a
web portal. In addition, this system can generate periodic reports and send
them via email to a list of recipients. Note that this system is relatively simple
so serves as a good introduction.

2

30.2 Starting Point: The Attack Surface
Our starting point with any system is to understand the ways in which the
users (and therefore, the attackers) interact with the system. In Chapters 2
and 3, we introduced the attack surface and explained how it describes the
ways that users access a system.

Remember the key lesson from these earlier chapters: if there is a path from
the place where the user provides input (the attack point) to the place in the
code where a serious operation is done (the impact point), and user input can
affect that operation, then there is the potential for a vulnerability.

As we know, the attack surface refers to the interfaces available to the user,
from user supplied data such as a web form field, network message, input
file, or environment variable. If user input is not needed for an attack to
succeed, then the attack is based on malware, whose mere installation causes
a security issue. So, we need to look where the system gets user supplied
data and understand what data users can provide to the system.

In Figure 1, we identified two places where the users supply data. On the
right-hand side we see the user admin who interacts with a remote shell client
(edge A0), and on the top-left we see a regular user who interacts with the
system through a web browser (edge U0). In addition, we see on the right
that there is an external computer, labeled “Remote Host” that interacts with
this system.

30.3 Functionality of the System
When facing a new system to assess, we need to understand the functionality
of the system. Sometimes it is possible to meet with the developers to get an
overview of what the system does, and how it works. Even though such an
overview is helpful, you still have to check the existing documentation. Bear
in mind that user manuals are more likely to be up to date than other
documentation such as design documents. And even the user manuals are
likely to be out of date in various ways.

To understand its functionality, you need to be able to experiment with the
system. First you need to learn to use the system as a regular user, and then
as an administrator. Of course, to be able to do that, you need a running
version of the software. You also need access to the source code, and more

When drawing the architecture diagrams (or any technical diagram), be
consistent about the use of color, shape, and position. The same feature
(such as shape or color) should mean the same thing every time.
Similarly, if two items have the same shape or color, then they share
the same characteristic.

3

importantly, access to code that can be compiled. That access allows you to
modify the code to produce diagnostic and tracking information. Installing a
full software stack from scratch is time consuming, so there are a couple of
alternative best practices. One approach is to be provided with a virtual
machine or a container with the complete software installed and running in
a realistic configuration. A second approach is for the software team to
provide you with remote access to a development system with the software
installed and ready to run, and with the source available and ready to build.

In your first interaction with the system, you will want to learn how to run
it, configure it, control it, and understand what gets logged and where.

Figure 1: Example of Architecture Diagram with Attack Points

30.4 Structure of the System
Your next task is to understand the structure of the system. At this point you
care about identifying the different hosts, virtual machines and containers,
processes, threads, and connections (such as sockets) of the system.

30.4.1 Structure: Hosts

We start with the hosts, the computers on which the software system is
running. You need to document each machine where the software was
installed, or where external software used by the system is running. A host
can be a server host running system executables, a client host, or both. The
hosts might be physically on your premises or allocated from the cloud.

In our example system in Figure 1, we have four hosts, each delineated by a

4

shaded box and labeled with a descriptive name:

User’s Host: This host represents the machine on which the client, i.e., the
user of the system, would be running.

Admin’s Host: This is another client host, distinguished from that used by a
regular user. We distinguish between regular users and administrators as
they have different privileges and different roles with respect to the
system.

Metric Server Host: This host contains the main functionality of the system
that we are evaluating. The example system is relatively simple, so there
is just one host on which the system runs. In many systems, the
functionality may be spread across many hosts, including things like
servers or authentication, databases, file storage, execution resources.

Remote Host: does not have any processes of the system running on, but it
is the host that supplies accounting data to the system that we are
assessing.

30.4.2 Structure: Processes

After understanding the hosts, we now want to understand what is running
on each host. The basic mechanism that an operating system provides to
encapsulate a running program is called a process. A process contains the
code, data, open files and network connections, and other attributes of a
running program.

So, our goal is to understand what processes associated with the software
system are running on each host. To do this step, you will need both to
experiment with the system and have a look at the source code. A common
starting point is to start the software system and observe the processes that
are currently running on the host. Operating systems come with a variety of
tools that you can use to observe the running process.

We will start with some simple command line tools. The most basic
commands are ps on Linux or MacOS and tasklist on Windows. These
commands list which processes are currently running at that moment
(including the ps or tasklist command). Both commands have many
options, so be sure to read the manual page for the command that you are
using.

To see an ongoing and updated list of what is running on your host, you can
use the top command on Linux or MacOS (Figure 2) or the Task Manager’s
process display option on Windows (Figure 3). The top command runs in a
shell window and the Task Manager is run by typing CTL-ALT-DELETE
and then selecting Task Manager. From there, you select the Processes

5

option (typically by clicking on the three stripes at the top left corner of the
window to show the display options). These commands not only show what
is running, but also how much memory and CPU they are using and how
much I/O they are performing.

For a given program, you can also run that program and trace what calls it
makes to the operating system. These calls, called system calls or kernel
calls, may involve I/O, networking, process control, synchronization,
security functions, and many other things. For the task of identifying
processes, tracing system calls can allow you to detect when a process starts
up another program running (therefore creating a new process). We will also
see how these commands are useful for other parts of the Architectural
Analysis and later steps of FPVA.

On Linux, there is the strace command; on MacOS, there is the complex
dtrace (that has its own entire D programming language), along with the
much-simpler-to-use dtruss shell script interface to dtrace; and on
Windows, there is the complex and sophisticated Trace-Command. Of
these, strace is the simplest to use. The other commands require some study
and use of the manual. Using strace to trace a program, for example a
compile command, would look like:

 % strace gcc -o myprog -g -wall myprog.c

As mentioned above, using dtrace/dtruss or Trace-Command would
require more study and the use of a reference manual.

Figure 2: Sample Use of "top" Command

6

Figure 3: Sample Use the Windows Task Manager's Process View

As part of the architecture diagram, we show how processes are created,
illustrated with dashed lines. In Figure 1, we can see process creation
happening in four places. One place that process creation happens is when
process “cron” launches the core process (Data Import and Processing). The
edge is labeled as “C1. Launch core processes”. A second place is when
“cron” later creates the Background Scripts process with edge labeled “C6.
Launch background scripts”. For labeling, the analyst chose “C” to mean that
the action was triggered by the “cron” daemon. The number refers to the
order in which the events happen. There are two additional places where
process creation happens in this diagram. See if you can find them.

30.4.3 Structure: Threads

Within a process, you can have more than one concurrent thread of
execution. Each thread is running the same executable code and shares the
same heap data but has its own stack. When threads are an important part of
a system structure, such as for a server that runs each request in parallel in
its own thread, we want to include them in our diagram.

In Figure 4 we see a portion of an architecture diagram for a system which
uses threads. We can see in the BlahP process, the initial thread (labeled
Server) creates a new thread to handle the execution of a new command
request. To illustrate threads, we see a new arrow type (a red dashed arrow
with a solid head) and circles inside of the process object to represent the
threads. Knowing about threads can be important as it indicates concurrency

7

inside the process. Along with concurrency comes the use of shared memory
between the threads, the need for synchronization (such as locking), and the
potential for concurrency (race condition) errors.

Figure 4: Architecture Diagram for System with Threads

30.4.4 Structure: Interactions and Communications

The next step in the Architectural Analysis is to understand the
communication among the processes. We need to understand the
communication that exists between the different processes of the application.
This step can be the most challenging part of the Architectural Analysis
because you have to find the communication channel creation and the
communication operations. Basically, we need to discover which processes
are involved in that communication, what mechanism is used for
communication, what is communicated, and when (the order of
communication events). This step will provide valuable information for Step
3, Trust and Privilege analysis.

Common forms of communication include command line arguments and
environment variables when starting a program, messages over sockets, and
pipes signals (on Linux and MacOS), message queues (Windows), shared
memory, and memory-mapped files. In the rest of this section, we provide
more detailed guidance on several of these mechanisms.

Web (HTTP/HTTPS) Communication

We can see in Figure 1 that some communication is shown by solid arrows.
Web-based communication (HTTP or HTTPS) is so important and prevalent
that we use a distinct arrow style for this type of communication. The User
makes a request from their Web Browser (edge U0) and this request is
delivered over an HTTP connection (edge U1) to the Apache web server. In
response to this request, Apache launches a new process (edge U2) and
receives data back from that new process (edge U5).

8

SQL Communication

Another form of communication in this system is with database services via
some variant of the SQL protocol. Since this type of communication is also
important and prevalent, a distinct type of arrow (dotted lines with hollow
arrowhead) is used to denote it. In the request sequence we just described
above, the process created by Apache then both reads from (edge U3) and
writes to (edge U4) the Database server.

Other Network Connections

While web and database access are special (though common) cases of
network communication, programs often use network connections, called
sockets, to communicate between processes. It is essential to map out these
connections so that you can use this information in Step 3 (Trust and
Privilege Analysis) to understand how the system functions, how data is
transmitted, and trust is communicated between processes. For example, in
Figure 1, a process on the Remote Host is communicating with the Data
Import and Processing process (edge A3). Since this is an external
connection, it could be of special concern for security.

Command Line Arguments

If a system can start new processes, such as with edge U2 in our example,
then it likely passes parameters to the new program being started. If an
attacker can manipulate these parameters, then it might be able to cause a
program to do something different than you intended. As a simple example,
consider the standard pattern searching program on Linux and MacOS,
grep. If you somehow added the -v parameter to a grep command, then
you would reverse the meaning of the command, i.e., you would be searching
for the lines that do not match the pattern instead of the lines that do match.

Environment Variables

Another mechanism that communicates information to a program being
started is the environment variable. Environmental variables are strings in
the form key=value pairs passed to a process from its parent (the process
that is starting the new program). Some environment variables have critical
systems implications, like the list of directories to search for dynamically
linked / shared libraries; on UNIX systems, LD_PRELOAD and
LD_LIBRARY_PATH control this selection. There is also the variable that
controls which directories to search when executing a new program; on
UNIX systems, PATH controls this selection. Other environment variables
might be application specific, perhaps having serious security implications.
If there is a possible path from the attack surface to the setting of these
variables, then a careful analysis of this path is essential.

9

Signals

On UNIX systems signals are asynchronous notifications sent to a process.
A signal can come from the operating system, such as the SIGXFSZ signal
sent to a process when it writes to a file that exceeds the maximum allowed
size. A signal can come from runtime events, such as the SIGFPE signal sent
to a process when it executes a problematic arithmetic operation, such as
division by zero. Or it can come from another process, such as the SIGKILL
signal sent to a process to cause it to terminate.

If an attacker can cause a signal to occur, then it can change the behavior of
the program.

Shared Memory / Memory-Mapped Files

Processes can also share information with each other by means of a section
of memory that they can all read and write.

A common way of sharing memory is for multiple processes to map the same
file into their respective address spaces. On Windows, you would call
CreateFileMapping followed by a call to MapViewOfFile. On Linux
and MacOS, you would use mmap after opening the file. Finding such calls
in a program is a sign that they use shared memory. Unfortunately, once a
mapped region is created, accesses to it are done by normal pointer-based
memory operations. So, while it is easy to find calls to the above functions,
it can often be quite difficult to find the places in the code where the actual
references to the shared memory are.

30.5 Multi-Level Diagrams
It is important to provide a version of the architecture diagram that fits on a
single page. Such a diagram gives the analyst and development team an easy-
to-understand overview of the entire system. And for many systems, a single
page is sufficient to provide reasonable detail of the system. However, there
are cases where one page is not enough. In those cases, we recommend
creating a one-page version of the diagram that hides some of the details.
Then provide ancillary diagrams that provide a more detailed view of some
parts of the system.

For example, in Figure 5 we see an architectural diagram from a real
assessment. It has many of the same characteristics as the diagram in Figure
1, however the analyst wanted to illustrate the important software packages
that were being used in the complex Flash Runtime process. To accomplish
this goal, the analyst created a “zoomed” version of the diagram (Figure 6)
to show these packages. They also included a legend that introduced the new
object shape for packages.

10

30.6 Closing Thoughts
With a well-constructed architecture diagram, you are ready to identify the
resources that the system is accessing.

We note that there is no fixed formula for building architectural diagrams.
As systems, programming languages, and computer architectures evolve, we
find new mechanisms that need to be illustrated in an architecture diagram.
The design, functionality, and complexity of the system that you are
assessing will shape the diagrams that you will produce.

30.7 Summary
In this chapter, we:

● Made a step forward in learning to think like an analyst.
● Reviewed the concept of attack surface and showed how to

reflect that in an architecture diagram.
● Learned how to construct an architectural diagram and the

components used in an architectural diagram.
● Learned about tools and techniques you can use to gather

information for constructing these diagrams.

Figure 5: Architecture Diagram 2, Unzoomed

11

Figure 6: Architecture Diagram 2, Zoomed in Flash Runtime Process

30.8 Exercises
1. Experiment with a variety of tools for listing the processes running

on your computer.
2. In Figure 1, there are two places where process cron creates other

processes. There are two additional places where process creation
occurs in this figure. Identify these places.

3. For socket-based communications:
a. Find as many operating system kernel/system calls as you can

that are involved in this type of communication. Of course, the
essential one is socket, however there are many others. Hint:
connect and accept are two more such calls.

b. Explain the meaning of each call that you found.
c. In interpreted languages such as Java, Ruby, or Python, these

calls are located in special libraries or packages. For your
favorite interpreted language, find out how to access these
functions.

4. For a system with which you are familiar, follow the steps in the
chapter to construct an architecture diagram for that system.

5. If you are familiar with Microsoft Threat Modeling (Chapter 5),
compare how a threat modeling diagram compares in structure and
context to an FPVA architectural diagram.

