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 1  Objectives
● Understand key principles that underlie the design of secure software.
● Learn how to apply security principles to software design.

 2  Overview
Before learning how to design and build secure software, or evaluate the security of existing software, we
will start from its underlying principles. These principles motivate the techniques we will introduce in
later modules, and guide our thinking about software security. These principles have been culled from
years of experience in the software security community. You can also think of them as design patterns or
rules of thumb. An experienced designer or programmer might incorporate these principles into their
work without consciously thinking about them.

The first part of our discussion covers a collection of principles that guide how we think about
incorporating security into our software. The second part describes how we put checks into our code to
protect it. The third part describes principles for making the code more difficult to attack.

 3  The Design Process

When you start on the design of a new piece of software, it is vital to include security in the earliest
discussions and planning. The early inclusion of security can set the stage for a project that includes
security as one of its primary goals. Such inclusion is important because going back later and “adding
security” is always more work and more likely to be flawed since it was not designed in from the
beginning.

 3.1  Transparent Design
There is a well established principle in cryptography that the security of your communications should not

depend on hiding the encryption algorithm, but instead be based on the
communicating parties sharing a secret, a key. If the algorithm is
effective, then knowing it does not give the attacker an advantage in
decrypting a message for which they do not have the key. All software
should be based on this principle: the security of your software should be
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based on its ability to prevent unauthorized accesses and not on some secret about its structure.

And there is even an advantage to making your code public: there are more eyes on your code, so more
chances for someone to find (and we hope report) flaws in your design or implementation. This
philosophy of transparency is a cornerstone of open source software, where the source code is freely
available. More eyes on the code is considered an advantage to increase its security. The earliest work on
fuzz random testing found that the open source variants of Unix were more robust than the commercial
(closed source) versions , .1 2

The opposite of transparent design is unflatteringly called security through obscurity.While keeping your
code design secret – and even making it intentionally complicated, unobvious, or messy – can make the
job of the attacker more difficult, it does not guarantee that a well-trained and well-equipped (and patient)
attacker cannot ultimately exploit your system. Such code is also more fragile. Once it is broken, the
attacker is free to share the secret with anyone.

 3.2  Avoid Predictability

Extending the discussion of encryption, let’s say that you are using a strong encryption algorithm that is
well known. If your choice of keys is predictable, then an attacker might be able to easily guess your key

and read your communication or send fraudulent communication. This kind of
predictability was used heavily in the code breaking efforts during World War II.

In software, we often generate secrets, such as when we generate session IDs after
logging on to an online service or website. These secrets are used as proof of identity
for short intervals, so that we do not need to go through a full authentication protocol
for each access to the server. If these secrets follow an obvious pattern, then they
might be guessed, allowing unauthorized access to the server. Randomness is the key
(sic) addressing this issue.

Whether it is generating session keys, random elements in a URL, or passwords, you want to use
randomness to avoid providing hints (or “tells”, as the World War II codebreakers called them) that the
attacker can use to narrow down the space of possibilities. In Section 3 on secure programming, we will
see examples of how to use this principle to avoid certain web attacks. And in Section 4 on defensive
techniques, we will see how operating system designers have used this principle to avoid making the
location of the code and data in a program predictable.

It is worth noting that randomness is a complex concept with a strong mathematical foundation. The use
of weak random number generators (RNG) or cryptographic hash generators can weaken even the best
design. For example, the SHA-1 hash function has been considered insecure since 2005, being replaced

2 B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl, “Fuzz Revisited: A
Re-examination of the Reliability of UNIX Utilities and Services”, Computer Sciences Technical Report #1268,
University of Wisconsin-Madison, April 1995. Appears (in German translation) as "Empirische Studie zur
Zuverlasskeit von UNIX-Utilities: Nichts dazu Gerlernt", iX, September 1995.

1 B.P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the Reliability of UNIX Utilities”, Communications
of the ACM 33, 12 (December 1990). Also appears (in German translation) as "Fatale Fehlertractigkeit: Eine
Empirische Studie zur Zuverlassigkeit von UNIX-Utilities", iX, March 1991.
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with the SHA-2 family, such as SHA-256 and SHA-512. Random number generators have specifically
been vulnerable to numerous notable attacks, including one against Netscape (one of the earliest web
browsers) in the mid 1990s and against Windows 2000 in the mid-2000s. In general, pick the best hash or
RNG that you can find, specifically one meant to be “cryptographically secure” leaving the details to the
mathematicians and cryptographers.

 3.3  Economy of Design

In a famous aphorism, variously attributed to the physicists Herbert Spencer or Albert Einstein,3

“Everything should be as simple as possible but no simpler”. The essence of this idea is
to strip away unnecessary complexity, leaving only what you need to get the job done. In
software, complexity makes it more difficult to find bugs in the code, make the code run
fast, and find security flaws.

Note that this aphorism includes the warning “...but no simpler.” This warning is
necessary because it is possible to reduce a design or piece of code past the point of good
sense. For example, putting checks on the return values of every system call and external

library call is essential to correct and secure operation of software. However, such checks can clutter the
code and make it more difficult to read, so there is a temptation to leave off at least some of these checks.

This principle can be stated as: do things once, in a common place. If you are going to check authorization
for access to a resource, have a single function/method that does this job. If you are going to run user code
in a sandbox, have a single function/method that does privilege de-escalation (capturing all the subtle and
many aspects of privilege). Doing things once allows you to concentrate your energy and attention on the
problem, and then reap the benefits of your design when you need to do the same task again.

A function that implements a particular security operation should be named in an obvious way and
documented clearly. This will help later when another programmer needs to implement the same
functionality and reduce the chances that they will reinvent what is already done (perhaps in an inferior
way).

As software projects grow over time, we often discover common functionality that is embedded in
multiple places in the design or code. The best response to such a discovery is to refactor the code such
that you extract the common functionality and put it into a single function (or functions), and place calls
to that function where the code used to be embedded. Refactoring is time consuming, so there is a great
temptation to just cut-and-paste the original code. The cut-and-paste strategy likely will produce short
term gain for long term pain. Each application of this strategy makes the code more complex and more
difficult to refactor in the future.

3 “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple
and as few as possible without having to surrender the adequate representation of a single datum of experience.”
From “On the Method of Theoretical Physics,” the Herbert Spencer Lecture, Oxford University, June 10, 1933.
There is some belief that Spencer based this idea on discussions that he had with Albert Einstein.

3
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 3.4  Accept Security Responsibility

Security starts with the decision to include it as a priority element of your software design and
implementation. Including security means that you must acquire the skills and
spend the time necessary to ensure that security is an intrinsic part of your
design. Behind such a decision is willingness to accept the upfront costs for
including security.

An immediate cost of accepting responsibility for security is a delay in writing
the first lines of code until you have thought about the structure of your systems, the threats that may
affect it, and the defenses that you will need to provide the necessary level of security. Threat Modeling,
described in the next chapter, is a good way to bring security into your design in a structured (and
documented) way.

Later costs include training your teams to understand how to code securely. The material in Section 3
offers a good resource to acquire such skills. Along with coding securely, you will need code reviews that
explicitly target security issues. Companies with mature software security programs will often have two
code reviews related to a commit, one for functionality and the other for security. The testing or quality
assurance (QA) phase of your project will also need to verify the integrity of security features. Most
testing teams do not have security training, so acquiring such training is an additional cost.

The last area of responsibility is that of communicating with your user community. Users should have a
clear understanding of what steps you are taking to produce secure software. And, equally important,
when a security flaw is discovered, users should get timely reports as to the nature and severity of the
flaw, the scope of its impact, and the fix.

Of course, there is great benefit to all these costs. The earlier that a design or coding flaw is detected, the
cheaper that it is to fix. And such a robust security program can reduce the number of security events you
will face, providing further cost benefits.

3.5 Least Common Mechanism

Programmers like to reuse code and combine similar functionality for convenience, but this design
principle informs us that there can be real security consequences of these choices.This principle appears
in many forms, so an example is the best way to understand it.

Consider a kernel design with all file handles managed as a common table containing entries for all
processes. Least Common Mechanism says that sharing this table across processes inherently raises the
risk of unintended interaction between processes. A bug might easily cause actions of one process to
impact the state of another, or leak information between processes. By contrast, if the kernel manages
separate file handle tables per process, then that better isolates them and is safer. Web cookies are a Least
Common Mechanism because each client stores and provides them to the server so it's not easy for a
request to mix up the cookies of different users.
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When a common component services more than one client, avoid common mechanisms that create
potentially connections between peers. Often the implementation involves shared resources, but maintain
the separation as much as possible, and prefer the least common mechanism design.

Note that the principles of Economy of Design and Least Common Mechanism do not need to be in
conflict. For the file handle example, Economy of Design says that we use common code to control the
file handle tables, while Least Common Mechanism says that we isolate per process as separately
allocated objects.

 4  Protect the Target

 4.1  Complete Mediation

Protecting your software means protecting all paths into that software, and protecting access to the
resources controlled by your software. The battle between the attacker and
defender is an asymmetric one: the attacker only has to find one path into your
system, while you have to ensure that every path is defended. It is the covering
of “every path” that forms complete mediation.

The starting point for complete mediation is understanding the attack surface
(presented in Section 1) of your software. For a given resource, you need to
understand all the paths from the attack surface to accesses to that resource.

Once you understand all the paths, you need to control them. Well designed
software will have a single point that controls access to a resource, for all interactions. Such control is an
application of the Economy of Design principle presented earlier.

 4.2  Defense in Depth

It is commonly said that security should be like an onion, coming in multiple layers. If you somehow
break through one layer, there are more layers left to protect you. Experienced4

security practitioners like to brag how they wear both belts and suspenders. The
opposite of layered security is what we like to call “deep fried security”, which is
crispy on the outside and sweet and tasty on the inside. If you break through the
brittle outside layer, all the insides are exposed.

One approach is to make sure that you check for errors at each possible opportunity.
Suppose that you are writing a new class C2 in a software system, and this class
includes methodmm. Of course, this new class is going to call methods in some

existing classes, for example you need to call methodm in class C1. In the lines of code before the call to
C1.m, you check the parameters that you are passing tom to make sure that they are valid, so you know
thatm will always compute something sensible. Nevertheless, as a careful programmer, you still check
the return value from C1.m just to make sure that you did not miss something.

4 Security is also said to be like an onion in that it makes you cry, but that is less helpful here!
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Now, suppose you are writing yet another new class, C3, that includes methodmmm. Andmmm needs
to call method C2.mm. Before this call, you will carefully check the parameters you are passing to mm,
and after the call, you will check the return value even though you are sure thatmm should not return an
error since you checked the input parameters.

Another approach is to have different mechanisms to fall back on. A case where such a mechanism was
needed happened in December 2015, during the U.S. presidential primary election campaign at a
company that stores voter data. A single database contained proprietary voter data from different
candidate’s campaigns. An error when updating a query allowed data private to one candidate’s campaign
to be accessed by members of another campaign. This time, the error ended up on the front page of the
world’s major newspapers!

To create defense in depth for this case, we could add layers of protection. First, separate the single
database into multiple databases, where each campaign’s proprietary data is in a separate database
(therefore a separate file) with separate file permission. And, of course, each database user would access
the system with separate user IDs. You can add one more layer by placing each campaign’s database on a
separate host (or virtual machine), and only allow user access to that host by the user ID for the
corresponding campaign.

At each layer, we do explicit checking to prevent unnoticed errors, which can prevent unnoticed exploits.
Such checking is crucial for several reasons, including:

● You might have missed a corner case with your parameter checking, so a future call might now
pass a valid parameter.

● Someone (including you, in the future) might change the method in a way that you did not expect,
so that the range of valid parameter values has changed. Since the person making the change
might not know every place in the code that calls the changed method, they might not be able to
update all the places that call it.

● You might run the code in a new environment, perhaps on a new release of the operating system,
so that the notion of what is a valid parameter could change.

 4.3  Separation of Privilege

The goal of separation of privilege is to require more than one entity to grant permission before an action
can be taken. It is used when high levels of security are needed. A classic
example of such a separation is used with the launch of a nuclear missile. This is
an event of such severity that we do not want any individual with the power to
initiate such a launch. As a result, there typically are several people involved,
each with physical and digital keys that all must be present and authenticated
to make this happen.

In the real world, we can see many less dramatic examples of separation of
privilege. For example, to open a safe deposit box, you typically require two
keys, one kept by the bank and one kept by the owner of the box. In addition, the

boxes are in a vault with its own independent security. Also in the financial world, commercial checking
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accounts will have a requirement for multiple signatures on a check when the amount is above a certain
threshold.

 5  Making the Target Harder to Hit

 5.1  Least Privilege
A program ideally should run at the lowest reasonable privilege level necessary to do its job. The most

obvious example is that a program should not run as “root” or “administrator” unless it
needs that all-encompassing level of privilege. When we want to protect software from
a regular user, we are often tempted to install and run it as root. However, using root
privilege means that any flaw in the software will have more global and perhaps more
catastrophic results.

Suppose that you need to create a new service that answers queries based on a
database. You want the data in this database protected from direct access by normal
users, so your first inclination is to install the software as root, and make all the files
associated with the database accessible only by root. Such a strategy satisfies the goal

of preventing normal users from accessing the database, but is fragile and dangerous if compromised.

A more effective strategy would be to create a new user ID for the new service. This new ID allows the
service to protect its processes and files from other users, but does not require running as root.

In practice, least privilege should not be carried too far with numerous privilege adjustments to always
literally be at minimum. Good designs look for the sweet spots and use appropriate levels of privilege in
balance with the needs of the system and attendant risks.

 5.2  Least Information

In the intelligence world, they call the principle of Least Information “need to know”. The idea is that you
should only access the information that you need to do your job. If you don’t have
access to other information, you will not accidentally leak it or inappropriately
modify it.

In a later module, we will talk about TMI (too much information) errors that
inadvertently expose information advantageous to attackers. For example, suppose
that client code running on a user’s machine is making a query to a server to find

out some other user’s phone number. This phone number is stored in a database, where each record
contains all the information for a single user. If the query returned the entire record to the client, this
might expose other private information needlessly. The phone number query should only return those
values (attributes) that are relevant to the query. We have seen exactly this kind of error made in real
world systems. Fortunately, we caught it before anyone else did.

 5.3  Secure by Default

We should always think about the failure cases when we write code. All programs have flaws, so we want
to write software that minimizes the effect of such flaws. An example that we have repeatedly seen is in a
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function that validates a user name and password on the server. We have often seen this function written
with first line of code something like:

login = TRUE;

where the rest of the function checks the user name and password against the values in the database,
setting the variable to FALSE if they do not match.

This code is inherently fragile because if there are any unforeseen errors (and there usually will be), then
such an error will inadvertently cause the function to return TRUE when it is not appropriate to do so.
Simply reversing the logic – starting with a value initialized to FALSE and only setting it to TRUE if all
login conditions are satisfied – is much less error prone. And, if there is an error, it is likely to cause less
serious outcomes.

As a second example, consider the installation of a new web server on your computer. This installation
should have an initial configuration that requires the server to allow only HTTPS secure connections. If
the default allowed it to work with HTTP also then setting up HTTPS might be forgotten and the server
could operate insecurely. The option to allow HTTP should be explicitly selected by an administrator to
ensure that it is a proactive choice, not an error of omission.

 6  Summary

This chapter was a natural extension of Thinking Like an Attacker, providing some specific principles on
which to base our technical approaches to designing and building secure software, by anticipating the
attacker and taking countermeasures. How you think about software is crucial and is as important as
learning a collection of specific techniques. Taken together, having basic principles for secure software
design and a list of techniques for writing more secure code, you will be well positioned to more
effectively fend off the bad guys.

 7  Exercises
1. Look for examples of these principles in the design of objects and systems of daily life. Try to

collect at least one example for each one. Can you find examples of doing the opposite?
2. Design a system to control a bank vault door, including all of the target protection principles (and

others that apply).
3. Study the documentation for configuring a popular software component, for example, a database,

or a web service, and assess it against the Secure by Default principle. In places where the
defaults were less secure, was there a good reason for it? How could you make it more secure
with better defaults?
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