
1

Chapter 29
Introduction to First Principles Vulnerability
Analysis

Revision 4.0, March 2025.

Objectives

● Learn to think like an analyst.
● Review the secure software development lifecycle
● Understand the need for in-depth vulnerability assessment.
● Understand when to do such an assessment and by whom.
● Get an overview of the five steps of the First Principles

Vulnerability Assessment methodology.

29.1 Motivation
We start by mentioning a well-known fact: All software has vulnerabilities.
If you are not hearing about vulnerabilities in a specific piece of software,
it means that the developers are either not telling or, even worse, not
looking. We also know that modern software is complex and large, which
means that vulnerabilities are more than likely to be present and ready to be
exploited. We are concerned about both vulnerabilities that can be
exploited by authorized users and by outsiders.

Our primary goal is to find the vulnerabilities before the attacker finds
and exploits them.

In addition to the fact that software has vulnerabilities, there is an
unpleasant asymmetry, as the attacker chooses when, where, and how to
break into a system, while we, the defenders, need to protect against all
possible attacks. That means that we should be defending against currently
known attacks, as well as new attacks yet to be discovered.
We should be thinking about security at every step in the Software
Development Life Cycle, from the first moment you conceive of the
software, up until the moment that you release it (and perhaps continue to
evaluate the software even after release). As we previously discussed,
secure software starts with an understanding of secure design principles
(Chapter 4), continues the modeling of threats that a system might
encounter (Chapters 5 through 8), and is supported by a strong
understanding of the programming errors that can lead to vulnerabilities
and the techniques needed to avoid them (Section 3). The programming

2

process can be augmented by the use of testing (Section 7) and static and
dynamic tools (Section 6).
The frequent use of automated assessment tools can help to find
weaknesses in our code. We should do that from the moment we write the
first line of code, and continue to do it through the implementation, for
example before every commit. Using tools is essential, but we still should
be aware of their limitations. The tools will help us find some basic errors,
but they can miss complex ones, and some of them may be important. That
is the false negatives problem. At the same time, tools can produce
voluminous reports, and several of the issues they report may not be issues
at all. That is the false positives problem.
To cap off this process, and push our software security to the next level, we
can perform an in-depth vulnerability assessment of the software. The goal
of such an assessment is to look beyond a list of previously known
vulnerabilities that might be found by a variety of tools. Otherwise, we
would be fighting the wars of the past, and not the ones of the future;
approaches based on known vulnerabilities will not find new types and
variations of attacks. We want to identify the most important components
of the system (the high value assets) and then find the ways that those
components are vulnerable. We need to focus on the high value assets as
we want to find the most critical vulnerabilities in the system. Otherwise,
we risk consuming the resources allocated to the in-depth vulnerability
assessment effort before finding serious vulnerabilities.
You can think of in depth-assessment that is done when the software is
complete as the equivalent of what a designer does with Threat Modeling
(described in Chapters 5 and 6) at design time. Looking at the Microsoft
Security Development Lifecycle (Figure 1), we can see Threat Modeling
early in the Design stage and in-depth software vulnerability assessment
happening in the later (post implementation) Verification stage. If such an
assessment is done by an outside independent organization, it might even
happen after the software is released.
An in-depth vulnerability of assessment is:
Analyst centric: It takes a person to perform it. While there are tools to help

with code assessment, they are currently no substitute for a careful
assessment by a human analyst.

White box: We assume that we have the source code, documentation, and
access to the development team to answer questions.

3

Time consuming: While we can support this effort with a variety of tools,
there will still be an extensive human component to the work. For a
real system, such an assessment can take up to four to eight months.

Figure 1: The Microsoft Security Development Lifecycle

29.2 In-Depth Vulnerability Assessment
In this chapter, we introduce you to a technique for performing in-depth
vulnerability assessment of a software system. This kind of technique can
help to increase your confidence in the security of your code. And learning
such a technique will help you to start thinking like a security analyst. Note
that we will describe just one approach to in-depth vulnerability
assessment. However, if you master this one, it will be easy for you to learn
others.
An in-depth assessment is our last significant chance to find vulnerabilities,
and ideally it should be performed at testing time. That is after the
implementation is completed but before the system is released, and
therefore accessible to users and attackers. Of course, you also need to have
an organized response to the finding of a vulnerability. As soon as a
vulnerability is found the development team needs to fix it.

The reality is that most of the time there are little or no resources, or
even worse, no realization of the need to perform a vulnerability
assessment, so it never happens.

Organizations often have the pressure to release the software by a deadline.
To meet that deadline, frequent testing is sacrificed. So, you can imagine
what happens to security-related activities.
The next issue to address is who will perform the in-depth vulnerability
assessment?

The primary rule is that we should have an independent assessment.

4

Software engineers have long known that testing groups must be
independent of development groups. You cannot assess your own code, as
you are biased. The design and implementation team is usually so familiar
with the code that they find it difficult to think about the code in different
ways. This is one area where you cannot take shortcuts. Even if the
development team is outstanding at testing, they cannot do an effective
assessment of their own code.
This independent assessment is performed by a security analyst, someone
whose job is to specifically evaluate the security of the code, that is an
external person or group of persons not involved in the development of
your software. The analyst(s) may come from within your organization or
from an organization that specializes in this task.
Assessment and remediation of vulnerabilities should be integrated into
your software development process, as you must be prepared to respond to
the vulnerabilities you find.

29.3 First Principles Vulnerability Assessment (FPVA)
The technique that we describe is called First Principles Vulnerability
Assessment1, or FPVA for short. This module is divided into six chapters,
with this chapter introducing FPVA. Each of the remaining five parts
addresses a different step of the FPVA process. The FPVA process
proceeds in five distinct steps:

Step 1: Architectural Analysis Step 4: Component Evaluation

Step 2: Resource Identification Step 5: Dissemination of Results

Step 3: Trust & Privilege Analysis

The first three steps are aimed at getting an understanding of the big picture
of the system to focus our search for vulnerabilities. Once we have that big
picture, we understand the structure of the system and the areas that are
most security sensitive. These three steps provide information necessary to
focus the analyst’s attention on high value assets, the parts of the system
that would provide the biggest benefit to the attacker. This picture provides
guidance to the analyst as to where to look in the code for problems.

1 James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, “First Principles
Vulnerability Assessment”, 2010 ACM Cloud Computing Security Workshop (CCSW),
Chicago, IL, October 2010.
https://www.cs.wisc.edu/mist/papers/ccsw12sp-kupsch.pdf

5

For example, the process (server) that authenticates users would be a high
value component and a configuration file (such as a start-up file) that
specifies which other programs to run would be a high value resource.

In a real system, it is essentially impossible to inspect every line of
code for security problems. The first three steps of FPVA are essential
to focusing the analyst’s attention on the parts of the system that
might create the biggest benefit for the attacker.

Based on the information in the first three steps, in Step 4, we then do a
focused deep dive into the code. Step 5 is about reporting on the
vulnerabilities found.
FPVA is not based on known vulnerabilities, but that does not mean that it
will neglect already existing vulnerabilities. It means that FPVA can go
beyond those and find new vulnerabilities, or vulnerabilities specific to the
system with which you are dealing. FPVA structures the assessment
activity so that the analyst focuses the search on the most serious
vulnerabilities.
Remember from the introductory module that a vulnerability is a flaw in
your system that can be exploited. In FPVA, if the analyst is not able to
build an exploit for a potential vulnerability, then they do not report that
problem.
After identifying a vulnerability, the analyst suggests an effective
remediation and interacts with the development team as they fix the
problem. It is also a good practice to save some of your security budget to
reassess the code with the mitigated vulnerability, to make sure that not
only was the vulnerability fixed, but also to check that no new
vulnerabilities were introduced.
In each of the following chapters, we will describe the details of each step
of FPVA.

29.4 Summary
FPVA is a methodology that allows an analyst to find vulnerabilities
affecting the high value assets in a software system. It is a human-centric
methodology consisting of five steps. This chapter introduced FPVA as
motivation for the following chapters that will provide details of each step.

29.5 Exercises
1. Why should a vulnerability assessment be done by an outside team,

a group other than the design and implementation team?

6

2. Why is a methodology such as FPVA needed when resources such
as static analysis tools and dependency tools are available?

3. For a software project with which you have been involved, go
through each step of the Software Development Life Cycle
(requirement, design, implementation, verification, and release)
and describe what your software team did at each step.

