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Chapter 27   
Memory Safety Checks 

Revision 1.0, October 2025. 

Objectives 
● Understand the motivation for memory safety checks 
● Learn some mechanisms that the compiler or operating uses to 

protect your program 
Stack canaries, dynamic memory checks, stack frame 
randomization, and page protection 

● Learn about their history 
● Understand their limitations 

27.1 Motivation 
The good news is that memory errors have gotten to exploit. As we saw in 
Chapter 26, ASLR increased the difficulty of injecting code into a program 
and of finding the address of useful functions to call in such an attack. In this 
chapter, we will present a variety of other techniques used by the compiler 
and operating system to increase the difficulty of exploiting memory errors. 

Memory errors apply mostly to the C and C++ programming languages, 
which provide few safeguards against the dangerous practices that allow 
such errors. While many programmers still like to write in these language, 
or need to for compatibility reasons, they add an extra source of 
vulnerabilities to a program. And this class of vulnerabilities continues to be 
a major cause of vulnerabilities in the real world. 

27.2 Stack Canaries 
We return again to our favorite stack smashing example from Figure 1 in the 
previous chapter and from Chapter 3. The main action of the function is to 
input a character string from standard input using the dangerous gets library 
function, which has no way to specify the maximum length of the input, 
making it easy to overflow buffer. As we have seen before, the attacker 
feeds a long input string to this function and buffer fills up and overflows 
in adjacent memory, in this case, overwriting the return address, allowing the 
attack to control the location that that the program branches to when the 
return is executed. 

Consider the possibility that we might be able to detect when critical values 
on the stack, like the return address, are overwritten before we try to execute 
the return instruction. That is the idea behind a mechanism called a stack 
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canary. Stack canaries we introduced by Cowan et al in 1997 and the paper 
that introduced them was formally published in 19981. 

27.2.1 The Mechanics of Stack Canaries 

Extra variables are placed on the stack. These variables are called “canaries” 
based the way of miners brought canaries down into a mine. The idea was 
that canaries are more sensitive to poisonous gas than humans, so would 
provide an advanced warning of a danger before it was fatal to the miners. 

 

int foo() 
{ 
  char buffer[100]; 
  int i, j; 
  [on entry: store canary value on stack] 
  ... 
  gets(buffer); 
  ... 
  [before return: check canary value] 
  return(strlen(buffer)); 
} 

 

Figure 1: User Program with Canary Code Added, along with Stack Frame with Canary 

Stack canaries are placed on the stack in such way that if a buffer on the stack 
overflows into the return address, the canary variable will also be 
overwritten. In Figure 1, we can see the canary value illustrated in yellow on 

 
1 C. Cowan, C. Pu, D. Maier, H. Hintony, J.  Walpole, P. Bakke, S. Beattie, A. Grier, 
P. Wagle and Q. Zhang, “StackGuard: Automatic Adaptive Detection and 
Prevention of Buffer-overflow Attacks”, 7th USENIX Security Symposium, San 
Antonio, TX, January 1998. 
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the stack. The key to a stack canary is to check its value just before the return 
address is used, that is just before executing the return instruction. 

To make this check, extra code is inserted into your program to see if the 
canary value was modified. We show this extra code (in red) in Figure 1, 
however the actual code only appears in the executable (binary) code 
generated by the compiler and is not visible in the source code. As the 
programmer, you do not have to do anything special. The only noticeable 
effect of using stack canaries is a small slowdown in the program’s 
performance. While it is possible to stop the compiler from generating stack 
canaries and the checking code, this is usually a very bad idea. 

If an attack resulted in the canary variable being modified, then the program 
would throw an exception or exit. 

27.2.2 Types of Stack Canaries 

There have been several kinds of stack canaries proposed. 

Terminator: The simplest is the canary with a zero value. In this case, the 
canary value is always zero and there is no check at the end of the 
function. The idea is to prevent any string operation from overflowing 
into the return address. Since C-style strings are supposed to be null-
terminated, the presence of this zero canary would force any string 
operation to stop before it got to the return address. This is a simple and 
limited mechanism and not in general use.. 

Random: The is most commonly used mechanism. is to assign a random 
canary value to each function each time it is compiled, as was described 
above. Since each function has its own canary value and since each time 
the program is compiled, the canaries change, they are difficult to guess 
or detect. 

Random-XOR: A slightly more complicated canary takes the random value 
and does an exclusive-or with other key information on the stack like the 
stack frame pointer. This extra step can help to detect tampering with the 
frame pointer. 

27.2.3 Using Stack Canaries 

Stack canaries are a real mechanism that is likely available in the compiler 
that you are already using, such as the open source gcc and clang C or C++ 
compilers, the Microsoft Visual Studio C or C++ compilers, and many 
others. 

While stack canaries often are enabled by default, they might not be 
generated for all functions. So, for gcc and clang, it is a good idea to use the 
-fstack-protector-all option when compiling your source file. These 
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compilers also have the -fstack-protector and -fstack-protector-
strong options, which protect only a subset of the functions in your 
program. For the Visual Studio compilers, the /GS option turns on stack 
canaries. You should not have to specify this option as it defaults to on. Other 
compilers have similar options. 

27.2.4 Attacks on Stack Canaries 

Attackers will try to combine other techniques with the buffer overflow to 
find a canary value to accomplish a stack smashing attack. One way in which 
they try to expose the canary value is to trigger an exception. If, as we 
described in Chapter 13 on exceptions, your exception handler exposes too 
much information, like a stack trace, the attacker might be able to see canary 
value. They can then follow up the exception with an attacker the includes 
the now-known canary value. 

Another way that attackers might try to expose canary values is by trying to 
read the program’s memory. On UNIX systems (which includes Linux and 
MacOS), /dev/mem is a pseudo-file that allows a running program (process) 
to read and write its own memory using file system read and write system 
calls. If an attacker can find a Directory Traversal Attack as discussed in 
Chapter 12, then they could open /dev/mem and read the canary values. 

While such combined attacks sound esoteric, they are surprisingly frequent 
in the real world, especially used by highly trained hacker teams. 
Vulnerability development is often a deliberation and patient process. 

27.3 Dynamic Memory Checks 
Now we will look at a second technique that the compiler provides to make 
dynamic (heap) memory references more secure. Errors in accessing heap 
memory are far too common and often the source of serious program 
vulnerabilities. 

Two of the more serious errors that a programmer can make when dealing 
with heap memory references are: 

Use after free: In this case, the program has deallocated the memory using 
the C malloc function or the C++ delete operator but continues to use 
pointers to the memory that was freed. If the memory that was freed is 
then reallocated, uses of the old pointer can have unexpected 
consequences. This errors is common source of real world vulnerabilities. 

Buffer overrun or overflow: This error is the heap equivalent to a stack 
smashing attack. Using a pointer or array index incorrectly can allow the 
program to read or write beyond the bounds of the allocated memory. 
Reading beyond the bounds can allow a program to reveal private 
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information (such as was done in the Heartbleed vulnerability2). Writing 
beyond the bounds can change the program’s behavior by writing over 
other allocated data or disrupt it by overwriting the data structures that 
keep track of the dynamically allocated memory. 

Bad pointers: It is common error to have a pointer with simply the wrong 
value, either because of a calculation error or improper initialization. 
Using such a pointer can result in the intended operation happening on 
almost any location in the program’s memory. 

Protecting against such errors is based, again, on the compiler automatically 
inserting extra instructions into your code. This time, these extra instructions 
keep more careful track of what heap memory is allocated and then check 
each memory reference to see if it accesses valid memory. Of course, the 
extra tracking and checking instructions can cause a noticeable slowdown in 
your code, so this technique most commonly is used during debugging and 
not included in the released version of the software. 

A popular tool for making such checks is the Address Sanitizer3 that is 
available to use with either the gcc or clang compilers. To understand this 
tool and how it is used, we will start with a simple program that has a heap 
overflow, show how to compiler it to activate the Address Sanitizer 
functionality, and then look at the report that the Address Sanitizer generates 
when it encounters a memory error.  

We start by looking at the fragment of C code shown in Figure 2. From a 
quick examination of the code, you can see that amount of memory allocated 
for the array pointed to by p on line 6 is much less than being written in the 
for loop on line 9. 

 06  long *p; 
 07  p = (long *)malloc(sizeof(long)*10); 
 08  for (i=0; i<1000; i++) { 
 09    p[i] = 7; 
 10  } 

Figure 2: Fragment of Sample testmem.c Program with Heap Memory Overflow 

Our first step is to compiler the program with the Address Sanitizer option 
enabled and then run the program: 

% gcc -g -Og -o testmem -fsanitize=address testmem.c 
% testmem 

 
2 https://en.wikipedia.org/wiki/Heartbleed 
3 https://clang.llvm.org/docs/AddressSanitizer.html 
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To get more informative results, we also enable debug information using -g 
and turn of optimization  using -Og (not -O0, which you should never use). 
When we run the program, Address Sanitizer produces the output we see in 
Figure 3. While this output looks a bit messy it is a bit clearer to read on a 
wide screen. And, after using it for a while, the contents become easier to 
understand. It is worth taking the time to look at this output carefully to see 
all the details presented. 

From this output, we learn two important things. First, we learn what kind of 
memory access error happened and where it happened. Second, we learn 
where the memory was allocated. 

The first thing we learn is at the top of Figure 3, where we see an “ERROR” 
notice along with the fact that it was a heap-buffer-overflow. Along with 
this notice, we see address of the instruction that caused the error (the “pc”), 
the fact that is was a write operation, and that the write size was 8 bytes 
(which gives you some idea of the type of the variable being written). Most 
important though, we see the location in the source code (because you 
compiled the program with debug information, -g), line 9 of testmem.c. 
Looking at the code in Figure 2, we see that is the line we would expect to 
have caused the error. 

==1080700==ERROR: AddressSanitizer: heap-buffer-overflow on 
address 0x607000000150 
     at pc 0x559d346ac483 bp 0x7ffdb2c55d20 sp 0x7ffdb2c55d10 
WRITE of size 8 at 0x607000000150 thread T0 
    #0 0x559d346ac482 in main testmem.c:9 
    #1 0x7fdfd28500b2 in __libc_start_main (/lib/x86_64-linux-
gnu/libc.so.6+0x270b2) 
    #2 0x559d346ac20d in _start (testmem+0x120d) 
0x607000000150 is located 0 bytes to the right of 80-byte region 
[0x607000000100,0x607000000150) 
allocated by thread T0 here: 
    #0 0x7fdfd2b28bc8 in malloc (/lib/x86_64-linux-
gnu/libasan.so.5+0x10dbc8) 
    #1 0x559d346ac386 in main testmem.c:7 
    #2 0x7fdfd28500b2 in __libc_start_main (/lib/x86_64-linux-
gnu/libc.so.6+0x270b2) 

Figure 3: Output of Address Sanitizer 

The second thing we learn is where in the program the memory that was 
being accessed (and overflowed) was allocated. From the output, we see that 
the memory was (unsurprisingly) allocated by malloc, which was called from 
line 7 of testmem.c. Again, looking at Figure 2, we see that Address Sanitizer 
identified the expected line. 

In this simple program, you probably could find the error just by inspecting 
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the code. However, in a real program, with many levels of function calls and 
hundreds of thousands, if not millions of lines of code, such errors can be 
impossible to find on your own. 

If your program was carefully written and, by this, we mean that you paid 
compulsive attention to every heap memory allocation and reference, then 
none of this extra checking would be necessary. However, programs get 
large and complex. And with a variety of authors, both design and coding 
errors will creep in. So, if we are going to use languages like C and C++, all 
of us need this extra help. 

We cannot understate how important are tools like Address Sanitizer. They 
can catch difficult errors long before your software is released, helping to 
prevent significant vulnerabilities from entering the code. This kind of 
checking should be use before every release of your code. 

27.4 Stack Frame Randomization 
In Chapter 26 on ASLR, we saw how the operating system can allocate each 
region of a program at a random address. The compiler can add a level of 
complexity to allocation by randomizing the order of local variables as they 
appear on the stack. We intuitively expect the compiler to allocate variables 
on the stack in the order in which they are declared. Since the compiler 
generates the code that creates the stack frame and accesses the variable, it 
can use any order it wants. 

Most compilers will, in fact, allocate variables in the order in which they are 
declared. However, in some cases, that order may be different, perhaps 
because the compiler wants to group together variables of the same type. 

For making the location of variables less predictable, so making it more 
difficult the understand how to exploit a buffer overflow and craft a 
successful attack, the compiler can lay out the variables in the stack frame in 
a random order. Each time the code is compiled, each function’s local 
variables can appear in a different order. In Figure 4, we see three possible 
layouts for the stack frame for our stack smashing example code. The first 
layout is the one that we would expect, followed by two other possible 
choices that the compiler could make. 
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Figure 4: Possible Random Layout of a Stack Frame 

One important effect of the two random choices is that they put one or more 
of the variables between the buffer and the return address. Even without 
stack canaries (which add another layer of protection), if the buffer 
overflowed into the return address, it would also overwrite these variables. 
Such an overwrite could cause enough disturbance in the execution of the 
program so as to interfere with the attack. In one of our in depth vulnerability 
assessment activities in the past, we ran into exactly this problem, were we 
could make a buffer overflow, but could not prevent the program from 
crashing before the exploit could occur. 

Stack frame randomization is available in many modern compilers. For 
example, it can be activated in gcc and clang by using the -fstack-shuffle 
option 

27.5 Page Level Memory Protection 
Different parts of the address space4 of your running program (process) have 
different uses, such as for code or for read-only data or for readable and 
writable data. And the memory in which your program resides is divided into 
fixed size chunks called pages. Each page is typically allocated to a single 
purpose, so a page is either all code, or all read-only data, or all readable and 
writable data. 

The access needs of each of these types of pages might be different. For 
example, the code pages are read and executed by the CPU, read-only data 

 
4 “Address space” refers the all the memory that is allocated to and addressable by 
your program. 
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does not need to be written or executed, and the heap and stack memory is 
going to be read and written but never executed. 

The good news is that the hardware of the computer and operating system 
work together provide access permissions for each page that can be tailored 
to their usage needs. The basic access permission types are read, write, and 
execute. For example, code pages are read and executed by the CPU, so need, 
at most, read and execute privileges. There is no reason for that part of 
memory to be writable. Read-only data does not need to be written or 
executed. And the heap and stack memory is going to be read and written but 
never executed. 

Protecting code pages from being written can prevent attacks that attempt to 
overwriting existing code with malicious code. Protecting stack and heap 
pages from executing code can prevent attacks like the original Morris worm, 
where a buffer on the stack was filled with machine instructions and then the 
return address overwritten to jump to the instructions in the buffer. 

Note that the idea of page level memory protection is not new idea but was 
one that modern hardware manufacturers were slow to adopt. Back in 1967, 
the pioneering Multics operating system project at MIT5 specified that each 
page of a program’s virtual memory should have protection bits to control 
access to that page. There were three protection bits for each page, read, write 
and execute. Of course, the operating system cannot dictate such features 
unless the hardware supports them. So, the Multics group got General 
Electric (one of the early computer manufacturers) to extend their GE 635 
computer to include page level memory protection. With read, write and 
execute bits, Multics was able to allocate different parts of a program’s 
address space with appropriate protection. 

Even though this idea was well understood in the 1960’s, current processor 
manufacturers were slow to adopt it. Security has often been either a low 
priority or misunderstood area by these companies. Notably, they all lacked 
an execute permission bit, which means that code could be executed out of 
the stack or heap, an important technique used in attacks. 

Such execute permission bits were added initially in 2001 and finally reached 
the Pentium architecture in 2003 and 2004. These bits had a variety of 
interesting names, such as No eXecute, eXecute Never, and eXecute Disable. 
Once the processors added this feature, operating systems like Linux and 
FreeBSD added support. Though, for some reason, Microsoft did not add 
support to Windows until five years later, in 2009. 

 
5 https://en.wikipedia.org/wiki/Multics 
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Figure 5: Pages in Memory with Page Protect Bits Set According to Use 

Year Processor Feature Year OS 

2001 Intel Itanium NX (No eXecute) 2004 Linux 2.6.8 
2001 ARM v6 XN (eXecute Never) 2004 FreeBSD 5.3 

2003 AMD Athlon 64 NX (No eXecute) 2009 Windows XP 
SP 2 

2004 Intel Pentium 4 XD (eXecute Disable)   

Figure 6: Introduction of Page Level Protection for Popular CPUs and Operating Systems 

One could say that it was irresponsible of the processor manufacturers to 
wait more than thirty years to provide such protections. Many preventable 
attacks occurred in that time interval. 

In modern systems, this execute permission is often called W ⊕ X, or write 
exclusive-or execute. This means that no memory page should ever be both 
writable and executable. However, as with most things, there are some 
specials. For example, dynamic compilation or dynamic code generation, 
often called JIT, just in time compiling, is often used in language interpreters 
such as for Java. This means that machine instructions are generated at run-
time, written into data memory, and then executed from that memory. For 
these JIT buffers, the pages must be both writable and executable. Special 
care must be taken when implementing such a feature. 

27.6 Summary 
● Understood the motivation for memory safety checks 
● Learned some mechanisms that the compiler or operating uses to 

protect your program 
Stack canaries, dynamic memory checks, stack frame 
randomization, and page protection 
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● Learned about their history 
● Understood their limitations 

27.7 Exercises 
1. Research existing vulnerabilities in the National Vulnerability 

Database and find one that is based on a use-after-free error. Try to 
find enough details of the vulnerability so that you can describe the 
coding error that caused the vulnerability. 

2. Write a simple C or C++ program that overflows a buffer allocated 
on the stack. When you execute this program, do you get an error 
message? Look at the error and see if it sufficiently describes the 
problem that caused the error. 

3. In your favorite operating system, find the system call that allows 
you to change the memory protect on a page in your program’s 
address space. 

4. Why are memory errors most common in C and C++ and not in 
languages like Java, Python, or Ruby? 

5. Rust is a system level programming language like C, with strong 
protections against memory errors. Investigate what features of Rust 
make memory errors unlikely. 


