Chapter 27
Memory Safety Checks

Revision 1.0, October 2025.

Objectives

e Understand the motivation for memory safety checks
e [earn some mechanisms that the compiler or operating uses to
protect your program
Stack canaries, dynamic memory checks, stack frame
randomization, and page protection
e [Lecarn about their history
e Understand their limitations

27.1 Motivation

The good news is that memory errors have gotten to exploit. As we saw in
Chapter 26, ASLR increased the difficulty of injecting code into a program
and of finding the address of useful functions to call in such an attack. In this
chapter, we will present a variety of other techniques used by the compiler
and operating system to increase the difficulty of exploiting memory errors.

Memory errors apply mostly to the C and C++ programming languages,
which provide few safeguards against the dangerous practices that allow
such errors. While many programmers still like to write in these language,
or need to for compatibility reasons, they add an extra source of
vulnerabilities to a program. And this class of vulnerabilities continues to be
a major cause of vulnerabilities in the real world.

27.2 Stack Canaries

We return again to our favorite stack smashing example from Figure 1 in the
previous chapter and from Chapter 3. The main action of the function is to
input a character string from standard input using the dangerous gets library
function, which has no way to specify the maximum length of the input,
making it easy to overflow buffer. As we have seen before, the attacker
feeds a long input string to this function and buffer fills up and overflows
in adjacent memory, in this case, overwriting the return address, allowing the
attack to control the location that that the program branches to when the
return is executed.

Consider the possibility that we might be able to detect when critical values
on the stack, like the return address, are overwritten before we try to execute
the return instruction. That is the idea behind a mechanism called a stack




canary. Stack canaries we introduced by Cowan et a/ in 1997 and the paper
that introduced them was formally published in 1998'.

27.2.1 The Mechanics of Stack Canaries

Extra variables are placed on the stack. These variables are called “canaries”
based the way of miners brought canaries down into a mine. The idea was
that canaries are more sensitive to poisonous gas than humans, so would
provide an advanced warning of a danger before it was fatal to the miners.

int foo()

{
char buffer[100];

int i, j;
[on entry: store canary value on stack]

gets(buffer);

[before return: check canary value]
return(strlen(buffer));

} <canary>

Figure 1: User Program with Canary Code Added, along with Stack Frame with Canary

Stack canaries are placed on the stack in such way that if a buffer on the stack
overflows into the return address, the canary variable will also be
overwritten. In Figure /, we can see the canary value illustrated in yellow on

I'C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle and Q. Zhang, “StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-overflow Attacks”, 7" USENIX Security Symposium, San
Antonio, TX, January 1998.



the stack. The key to a stack canary is to check its value just before the return
address is used, that is just before executing the return instruction.

To make this check, extra code is inserted into your program to see if the
canary value was modified. We show this extra code (in red) in Figure /,
however the actual code only appears in the executable (binary) code
generated by the compiler and is not visible in the source code. As the
programmer, you do not have to do anything special. The only noticeable
effect of using stack canaries is a small slowdown in the program’s
performance. While it is possible to stop the compiler from generating stack
canaries and the checking code, this is usually a very bad idea.

If an attack resulted in the canary variable being modified, then the program
would throw an exception or exit.

27.2.2 Types of Stack Canaries
There have been several kinds of stack canaries proposed.

Terminator: The simplest is the canary with a zero value. In this case, the
canary value is always zero and there is no check at the end of the
function. The idea is to prevent any string operation from overflowing
into the return address. Since C-style strings are supposed to be null-
terminated, the presence of this zero canary would force any string
operation to stop before it got to the return address. This is a simple and
limited mechanism and not in general use..

Random: The is most commonly used mechanism. is to assign a random
canary value to each function each time it is compiled, as was described
above. Since each function has its own canary value and since each time
the program is compiled, the canaries change, they are difficult to guess
or detect.

Random-XOR: A slightly more complicated canary takes the random value
and does an exclusive-or with other key information on the stack like the
stack frame pointer. This extra step can help to detect tampering with the
frame pointer.

27.2.3 Using Stack Canaries

Stack canaries are a real mechanism that is likely available in the compiler
that you are already using, such as the open source gcc and clang C or C++
compilers, the Microsoft Visual Studio C or C++ compilers, and many
others.

While stack canaries often are enabled by default, they might not be
generated for all functions. So, for gcc and clang, it is a good idea to use the
-fstack-protector-all option when compiling your source file. These

3



compilers also have the -fstack-protector and -fstack-protector-
strong options, which protect only a subset of the functions in your
program. For the Visual Studio compilers, the /GS option turns on stack
canaries. You should not have to specify this option as it defaults to on. Other
compilers have similar options.

27.2.4 Attacks on Stack Canaries

Attackers will try to combine other techniques with the buffer overflow to
find a canary value to accomplish a stack smashing attack. One way in which
they try to expose the canary value is to trigger an exception. If, as we
described in Chapter 13 on exceptions, your exception handler exposes too
much information, like a stack trace, the attacker might be able to see canary
value. They can then follow up the exception with an attacker the includes
the now-known canary value.

Another way that attackers might try to expose canary values is by trying to
read the program’s memory. On UNIX systems (which includes Linux and
MacOS), /dev/menm is a pseudo-file that allows a running program (process)
to read and write its own memory using file system read and write system
calls. If an attacker can find a Directory Traversal Attack as discussed in
Chapter 12, then they could open /dev/mem and read the canary values.

While such combined attacks sound esoteric, they are surprisingly frequent
in the real world, especially used by highly trained hacker teams.
Vulnerability development is often a deliberation and patient process.

27.3 Dynamic Memory Checks

Now we will look at a second technique that the compiler provides to make
dynamic (heap) memory references more secure. Errors in accessing heap
memory are far too common and often the source of serious program
vulnerabilities.

Two of the more serious errors that a programmer can make when dealing
with heap memory references are:

Use after free: In this case, the program has deallocated the memory using
the C malloc function or the C++ delete operator but continues to use
pointers to the memory that was freed. If the memory that was freed is
then reallocated, uses of the old pointer can have unexpected
consequences. This errors is common source of real world vulnerabilities.

Buffer overrun or overflow: This error is the heap equivalent to a stack
smashing attack. Using a pointer or array index incorrectly can allow the
program to read or write beyond the bounds of the allocated memory.
Reading beyond the bounds can allow a program to reveal private

4




information (such as was done in the Heartbleed vulnerability®). Writing
beyond the bounds can change the program’s behavior by writing over
other allocated data or disrupt it by overwriting the data structures that
keep track of the dynamically allocated memory.

Bad pointers: It is common error to have a pointer with simply the wrong
value, either because of a calculation error or improper initialization.
Using such a pointer can result in the intended operation happening on
almost any location in the program’s memory.

Protecting against such errors is based, again, on the compiler automatically
inserting extra instructions into your code. This time, these extra instructions
keep more careful track of what heap memory is allocated and then check
each memory reference to see if it accesses valid memory. Of course, the
extra tracking and checking instructions can cause a noticeable slowdown in
your code, so this technique most commonly is used during debugging and
not included in the released version of the software.

A popular tool for making such checks is the Address Sanitizer’ that is
available to use with either the gcc or clang compilers. To understand this
tool and how it is used, we will start with a simple program that has a heap
overflow, show how to compiler it to activate the Address Sanitizer
functionality, and then look at the report that the Address Sanitizer generates
when it encounters a memory error.

We start by looking at the fragment of C code shown in Figure 2. From a
quick examination of the code, you can see that amount of memory allocated
for the array pointed to by p on line 6 is much less than being written in the
for loop on line 9.

06 long *p;

07 p = (long *)malloc(sizeof(long)*10);
08 for (i=0; i<1000; i++) {

09 pl[i] = 7;

10 }

Figure 2: Fragment of Sample testmem. c Program with Heap Memory Overflow

Our first step is to compiler the program with the Address Sanitizer option
enabled and then run the program:

% gcc -g -0g -o testmem -fsanitize=address testmem.c
% testmem

2 https://en.wikipedia.org/wiki/Heartbleed
3https://clang.llvm.org/docs/AddressSanitizer.html

5



To get more informative results, we also enable debug information using -g
and turn of optimization using -0g (not -00, which you should never use).
When we run the program, Address Sanitizer produces the output we see in
Figure 3. While this output looks a bit messy it is a bit clearer to read on a
wide screen. And, after using it for a while, the contents become easier to
understand. It is worth taking the time to look at this output carefully to see
all the details presented.

From this output, we learn two important things. First, we learn what kind of
memory access error happened and where it happened. Second, we learn
where the memory was allocated.

The first thing we learn is at the top of Figure 3, where we see an “ERROR”
notice along with the fact that it was a heap-buffer-overflow. Along with
this notice, we see address of the instruction that caused the error (the “pc”),
the fact that is was a write operation, and that the write size was 8 bytes
(which gives you some idea of the type of the variable being written). Most
important though, we see the location in the source code (because you
compiled the program with debug information, -g), line 9 of testmem.c.
Looking at the code in Figure 2, we see that is the line we would expect to
have caused the error.

==1080700==ERROR: AddressSanitizer: heap-buffer-overflow on
address 0x607000000150

at pc 0x559d346ac483 bp 0x7ffdb2c55d20 sp ©x7ffdb2c55d10
WRITE of size 8 at 0x607000000150 thread TO

#0 0x559d346ac482 in main testmem.c:9

#1 Ox7fdfd28500b2 in __ libc_start_main (/1ib/x86_64-1linux-
gnu/libc.so.6+0x270b2)

#2 0x559d346ac20d in _start (testmem+0x120d)
0x607000000150 is located © bytes to the right of 80-byte region
[0x607000000100,0x607000000150)
allocated by thread TO here:

#0 Ox7fdfd2b28bc8 in malloc (/1ib/x86_64-1linux-
gnu/libasan.so.5+0x10dbc8)

#1 0x559d346ac386 in main testmem.c:7

#2 Ox7fdfd28500b2 in _ libc_start_main (/1ib/x86_64-1linux-
gnu/libc.so.6+0x270b2)

Figure 3: Output of Address Sanitizer

The second thing we learn is where in the program the memory that was
being accessed (and overflowed) was allocated. From the output, we see that
the memory was (unsurprisingly) allocated by malloc, which was called from
line 7 of testmem.c. Again, looking at Figure 2, we see that Address Sanitizer
identified the expected line.

In this simple program, you probably could find the error just by inspecting
6



the code. However, in a real program, with many levels of function calls and
hundreds of thousands, if not millions of lines of code, such errors can be
impossible to find on your own.

If your program was carefully written and, by this, we mean that you paid
compulsive attention to every heap memory allocation and reference, then
none of this extra checking would be necessary. However, programs get
large and complex. And with a variety of authors, both design and coding
errors will creep in. So, if we are going to use languages like C and C++, all
of us need this extra help.

We cannot understate how important are tools like Address Sanitizer. They
can catch difficult errors long before your software is released, helping to
prevent significant vulnerabilities from entering the code. This kind of
checking should be use before every release of your code.

27.4 Stack Frame Randomization

In Chapter 26 on ASLR, we saw how the operating system can allocate each
region of a program at a random address. The compiler can add a level of
complexity to allocation by randomizing the order of local variables as they
appear on the stack. We intuitively expect the compiler to allocate variables
on the stack in the order in which they are declared. Since the compiler
generates the code that creates the stack frame and accesses the variable, it
can use any order it wants.

Most compilers will, in fact, allocate variables in the order in which they are
declared. However, in some cases, that order may be different, perhaps
because the compiler wants to group together variables of the same type.

For making the location of variables less predictable, so making it more
difficult the understand how to exploit a buffer overflow and craft a
successful attack, the compiler can lay out the variables in the stack frame in
a random order. Each time the code is compiled, each function’s local
variables can appear in a different order. In Figure 4, we see three possible
layouts for the stack frame for our stack smashing example code. The first
layout is the one that we would expect, followed by two other possible
choices that the compiler could make.




Figure 4: Possible Random Layout of a Stack Frame

One important effect of the two random choices is that they put one or more
of the variables between the buffer and the return address. Even without
stack canaries (which add another layer of protection), if the buffer
overflowed into the return address, it would also overwrite these variables.
Such an overwrite could cause enough disturbance in the execution of the
program so as to interfere with the attack. In one of our in depth vulnerability
assessment activities in the past, we ran into exactly this problem, were we
could make a buffer overflow, but could not prevent the program from
crashing before the exploit could occur.

Stack frame randomization is available in many modern compilers. For
example, it can be activated in gcc and clang by using the -fstack-shuffle
option

27.5 Page Level Memory Protection

Different parts of the address space* of your running program (process) have
different uses, such as for code or for read-only data or for readable and
writable data. And the memory in which your program resides is divided into
fixed size chunks called pages. Each page is typically allocated to a single
purpose, so a page is either all code, or all read-only data, or all readable and
writable data.

The access needs of each of these types of pages might be different. For
example, the code pages are read and executed by the CPU, read-only data

4 “Address space” refers the all the memory that is allocated to and addressable by
your program.



does not need to be written or executed, and the heap and stack memory is
going to be read and written but never executed.

The good news is that the hardware of the computer and operating system
work together provide access permissions for each page that can be tailored
to their usage needs. The basic access permission types are read, write, and
execute. For example, code pages are read and executed by the CPU, so need,
at most, read and execute privileges. There is no reason for that part of
memory to be writable. Read-only data does not need to be written or
executed. And the heap and stack memory is going to be read and written but
never executed.

Protecting code pages from being written can prevent attacks that attempt to
overwriting existing code with malicious code. Protecting stack and heap
pages from executing code can prevent attacks like the original Morris worm,
where a buffer on the stack was filled with machine instructions and then the
return address overwritten to jump to the instructions in the buffer.

Note that the idea of page level memory protection is not new idea but was
one that modern hardware manufacturers were slow to adopt. Back in 1967,
the pioneering Multics operating system project at MIT? specified that each
page of a program’s virtual memory should have protection bits to control
access to that page. There were three protection bits for each page, read, write
and execute. Of course, the operating system cannot dictate such features
unless the hardware supports them. So, the Multics group got General
Electric (one of the early computer manufacturers) to extend their GE 635
computer to include page level memory protection. With read, write and
execute bits, Multics was able to allocate different parts of a program’s
address space with appropriate protection.

Even though this idea was well understood in the 1960’s, current processor
manufacturers were slow to adopt it. Security has often been either a low
priority or misunderstood area by these companies. Notably, they all lacked
an execute permission bit, which means that code could be executed out of
the stack or heap, an important technique used in attacks.

Such execute permission bits were added initially in 2001 and finally reached
the Pentium architecture in 2003 and 2004. These bits had a variety of
interesting names, such as No eXecute, eXecute Never, and eXecute Disable.
Once the processors added this feature, operating systems like Linux and
FreeBSD added support. Though, for some reason, Microsoft did not add
support to Windows until five years later, in 2009.

Shttps://en.wikipedia.org/wiki/Multics
9



\ | A J
| | |
Code (RX) Read only Heap and Stack (RW)
data
Figure 5: Pages in Memory with Page Protect Bits Set According to Use

Year Processor Feature Year (0N}
2001 Intel Itanium NX (No eXecute) 2004 Linux 2.6.8
2001 ARM v6 XN (eXecute Never) | 2004 FreeBSD 5.3
2003 AMD Athlon 64  NX (No eXecute) | 2009 Wm‘sl‘l’)"és XP
2004  Intel Pentium 4 XD (eXecute Disable)

Figure 6: Introduction of Page Level Protection for Popular CPUs and Operating Systems

One could say that it was irresponsible of the processor manufacturers to
wait more than thirty years to provide such protections. Many preventable
attacks occurred in that time interval.

In modern systems, this execute permission is often called W @ X, or write
exclusive-or execute. This means that no memory page should ever be both
writable and executable. However, as with most things, there are some
specials. For example, dynamic compilation or dynamic code generation,
often called JIT, just in time compiling, is often used in language interpreters
such as for Java. This means that machine instructions are generated at run-
time, written into data memory, and then executed from that memory. For
these JIT buffers, the pages must be both writable and executable. Special
care must be taken when implementing such a feature.

27.6 Summary

e Understood the motivation for memory safety checks
e [carned some mechanisms that the compiler or operating uses to
protect your program
Stack canaries, dynamic memory checks, stack frame
randomization, and page protection

10



Learned about their history
Understood their limitations

27.7 Exercises

1.

Research existing vulnerabilities in the National Vulnerability
Database and find one that is based on a use-after-free error. Try to
find enough details of the vulnerability so that you can describe the
coding error that caused the vulnerability.

Write a simple C or C++ program that overflows a buffer allocated
on the stack. When you execute this program, do you get an error
message? Look at the error and see if it sufficiently describes the
problem that caused the error.

In your favorite operating system, find the system call that allows
you to change the memory protect on a page in your program’s
address space.

Why are memory errors most common in C and C++ and not in
languages like Java, Python, or Ruby?

Rust is a system level programming language like C, with strong
protections against memory errors. Investigate what features of Rust
make memory errors unlikely.

11



