
1

Chapter 24
Cross Origin Resource Sharing (CORS)

Revision 1.0, October 2025.

Objectives
● Analyze the trust model involved in cross origin attacks
● Learn about when CORS is used
● Understand the role of HTTP request and response options and

headers
● Learn what it means to “Preflight” web requests

As we learned in Chapter 22, cross origin attacks have been and continue to
be a risk for web services. As an attempt to strengthen web defenses against
cross origin attacks, work began in the early 2000’s to try to somehow fix
the HTTP protocol to make these attacks more difficult. In 2006, the World
Wide Web Consortium release a working draft document of a new standard.
In 2009, the document was revised and renamed Cross Origin Resourced
Sharing – W3C Working Draft 171. That document lays out the features that
are supported today and is used in security for fetch (the replacement for
XMLHttpRequest)2.

Note that CORS is a pretty controversial topic, with some people thinking it
is a great idea and others thinking that it is either unnecessary or just hate it
because it often (legitimately) blocks requests to their web applications. If
you hang out in web programming circles for a while, you will definitely
hear lot of complaints about CORS.

However, CORS is an intrinsic part of the web infrastructure, so it is
important that we understand what is does and how it works. We will start
by introducing the trust model that underlies CORS, then learn about the
CORS additions (basically new headers) to the web protocol. We will
introduce an important part of CORS called “preflighting” of a web request.

24.1 The CORS Trust Model
You recall from Chapter 22 on CSRF that the goal was for an evil (untrusted)
website to serve you a web page that contains a web request contained in a
form or JavaScript. Our example started with a client at their web browser
who had an active session open with their bank. The client then decides,
probably in another browser window, to make a request to a questionable

1 https://www.w3.org/TR/2009/WD-cors-20090317/
2 https://www.w3.org/TR/cors/

site, bad-site.com. That site then returns a web page that contains some
JavaScript that will generate a web request. When this JavaScript executes,
it causes an unauthorized request from the client to their bank to transfer
money to an account controlled by the attacker. Without sufficient checking
and proper session management, as we discussed in Chapter 23, your bank
happily transferred the funds to the attacker’s account.

Figure 1: The CORS Trust Model

In a web request, when there is an attempt to make a cross origin attack, there
are three parties involved, the client, the host that the client is trying to access
(e.g., their bank), and a malicious host that will try to take advantage of the
fact that the client is already authenticated to the trusted host. The client, of
course, trusts themselves and trusts the service that it is trying to access. The
client definitely does not (or definitely should not) trust random servers with
which they do not have an established relationship.

The client might access the untrust host because of bad judgement or by
accident, such as by mistyping a web address. The untrusted host might be
operated by a malicious actor or just be a poorly administered host that was
successfully exploited.

CORS tries to prevent attempts at cross origin attacks by giving the decision
making process to client based on information from the trusted host.

The goal of CORS is not to replace existing security mechanisms like secure
session management; the goal is to provide an extra layer of security to try
to prevent attacks that you might not have anticipated. Remember that one
of our secure design principles is defense in depth.

To allow the client to determine if a web request is safe, such as for a request
that originates from JavaScript contained in a questionable web page, the

client needs to provide the trusted host with information about what it plans
to request; the trusted host then needs to respond with advice as to whether
that might be safe.

This means that the client needs to tell the trusted host the domain name of
the untrust host that provided the web page with the JavaScript. This
information gives the trusted host a chance to decide if the untrust host is a
reasonable source of an embedded web request.

24.2 Simple vs. Complex Requests
As with most security standards, especially those related to the web, there
are a lot of details involved with CORS and we are not going to present all
of them here3. Our goal is for you to understand the basics of how CORS
works (and why), and position you to be able to understand the more detailed
aspects of CORS on your own.

As a starting point, CORS classifies web requests as “simple” or “complex”.
Simple requests can be handled, well, simply. This means that some extra
information, in the form of request headers, is used by the browser to tell the
server about the request, and the server responds with information in its
headers to say whether this request is an acceptable cross domain reference.

A request is simple if it is a GET, POST, or HEAD method call with basic
headers. It might be surprising that POST is included in the list of simple
headers because it can change values on the web server, but note that CORS
is designed to protect the user from cross origin (site) attacks, not protect the
server’s data. However, this reasoning gets more complicated because PUT
requests are always categorized as complex.

If the request includes authentication credentials – including those in
cookies, TLS client certificates, and HTTP headers – then it is not a simple
request. And simple requests can only include a few header types beyond
those automatically inserted by the browser. These headers that describe
basic content of the web content: Accept, Accept-Language, Content-
Language, and Content-Type (only application/x-www-form-
urlencoded, multipart/form-data, or text/plain)

If the request originates from a web form, then it is defined as simple. The
thought process here was that the old code that uses forms should already
have had some protective mechanism in place, like the secure sessions we
described in the previous chapter, so CORS was not necessary. Note that
request from web forms are restricted by the browser to include only a few
programmer specified header types (application/x-www-form-

3 For example, the CORS standard document from 2009 is 21 pages long and the
new Fetch standard document is 131 page.

urlencoded, multipart/form-data, and text/plain), so fit within the
header limitations of a simple request.

Any request that is not classified as simple is classified as complex. Complex
requests can be thought of as approximately (and inaccurately) as ones that
make non-idempotent changes to the server. These complex requests require
something called “preflighting”, which we will describe shortly.

The key feature that allows CORS to work is the Origin header in the
request. We will see how this header plays an important role the examples
that follow.

24.2.1 Details of a Simple Request

Let’s look at a simple request. In this case, the client sends a GET request to
bank.com and specifies that the request originated from a web page that
came from bad-site.com.

Figure 2: CORS Simple Request and Response

In Figure 2, we see the Origin request header that triggers the CORS
processing in the trusted host, the bank. The question that the client is asking
the bank is: is the web page that originated from bad-site.com allowed to
contain a request to bank.com?

When the server at bank.com responds, it will include an Access-Control-
Allow-Origin header to indicate whether this request from bad-site.com is
allowable.

If bad-site.com is included in the hosts listed in this header, such as it is in
this example, then the request is allowable and will proceed as normal.

Alternatively, the server, bank.com can respond that any host can include a
cross domain request to that server. The server indicates this liberal
permission by including the wildcard character on the Access-Control-
Allow-Origin header:

Access-Control-Allow-Origin: *

Any request that gets such a response will proceed as usual.

If the server determines that the request is NOT allowable, then it can list a
fake domain name, like does.not.exist in this Access-Control-Allow-
Origin header. Such a name will never match a real domain name. The
browser will compare the name in the Origin request header to the name
provided by the server in the Access-Control-Allow-Origin header. If
these do not match, then request is not allowed and the browser will report
an error.

Again, note that the server has provided the advice, and the browser has made
the decision. In this case, the requested operation may have been executed
on the server, but the browser will refuse to display the result. Personally, I
find this to be a strange behavior, but it is one that you need to be aware of.

You will also notice that the HTTP response code is still 200 OK. The way
to think about this is that the server successfully responded to the access
request, even though the origin was not allowed.

24.2.2 Details of a Complex Request and Preflighting

Now, we move on to complex requests and the preflighting mechanism.
Remember that any request that is not simple is considered complex.

The basic idea of preflighting is that the browser sends an extra message
before the actual request. This extra message describes the origin of the
request, type of request, headers to be used, and server that is being accessed.
The server then has a chance to respond as to whether the request is an
allowable cross domain request. This preflight response happens before the
actual request and before any state would be changed on the server.

Figure 3: CORS Complex Request Preflight and Response

Remember that the server does not allow or disallow a request. It merely
provides enough information to the browser to refuse the request. If an actual
request reaches the server, then the server will execute it.

Figure 3 shows an example of a preflight request. Here, the client is again
making a request to bank.com. We know that this is a preflight request and
not a regular request because the method type is OPTIONS. That is not the
most intuitive name for the method, but it is the standard.

The headers in the request describe the details. This request originated in a
web page from bad-site.com and the method type is POST. We also see
that client is telling the server that the actual request would contain some
specific header types, such as content-type (and others).

The server’s response to the preflight request include several headers that
provide the client’s browser with enough information to make a decision as
to whether the actual request should be sent. We see that the allowed origins
include bad-site.com and the allowed methods include POST (as well as
GET, PUT, and DELETE). We also see the list of allowed request headers.

Again, note that the response code is 200 OK, which simply means that the
server successfully responded to the preflight request, not that the request
should be allowed. The browser will decide if the request is allowed based
on the data in headers returned from the server.

As with the simple request, the server could have responded with the allowed
origin specified as a wildcard, meaning that any host is allowed.

Access-Control-Allow-Origin: *

Remember that there are a lot of technical details that we are skipping over
in this introduction to CORS. For example, if the request contained
credentials, then the standard says that the server is not allowed to respond
with a wildcard.

And, if the request should not be allowed, then the server will typically
respond with a fake domain name that will not match any valid domain name.

Access-Control-Allow-Origin: does.not.exist

The server could have responded with an actual valid domain name, which
would not have matched bad-site.com. However, it is common practice to
respond with a fake domain name so as to not leak any valid information to
an unauthorized party. This follows the secure design principle of least
information.

24.3 Summary
● Analyzed the trust model involved in cross origin attacks
● Learned about when CORS is used

● Understood the role of HTTP request and response options and
headers

● Learned what it means to “Preflight” web requests

24.4 Exercises
1. What are the three parties (hosts) involved in the CORS trust

model?
2. Describe the requirement that a web request much satisfy to be

considered “simple”.
3. Do some research to understand the background and thinking

behind POST being acceptable as a simple request and PUT not
being acceptable.

4. Why does the server response “200 OK”, even for web CORS
requests that are being denied?

5. When a CORS response is intended to deny a request, why is it
good security practice for the Access-Control-Allow-Origin
header to include a fake host name instead of an actual allowed
host name?

