
1

Chapter 4
Secure Design Principles

Revision 4.0, October 2025.

Objectives
● Understand key principles that underlie the design of secure

software.
● Learn how to apply security principles to software design.

4.1 Overview
Before learning how to design and build secure software, or evaluate the
security of existing software, we will start from its underlying principles.
These principles motivate the techniques we will introduce in later modules,
and guide our thinking about software security. These principles have been
culled from years of experience in the software security community. You can
also think of them as design patterns or rules of thumb. An experienced
designer or programmer might incorporate these principles into their work
without consciously thinking about them.

The first part of our discussion covers a collection of principles that guide
how we think about incorporating security into our software. The second part
describes how we put checks into our code to protect it. The third part
describes principles for making the code more difficult to attack.

4.2 The Design Process
When you start on the design of a new piece of software, it is vital to include
security in the earliest discussions and planning. The early inclusion of
security can set the stage for a project that includes security as one of its
primary goals. Such inclusion is important because going back later and
“adding security” is always more work and more likely to be flawed since it
was not designed in from the beginning.

4.2.1 Transparent Design

There is a well-established principle in
cryptography that the security of your
communications should not depend on hiding
the encryption algorithm, but instead be based
on the communicating parties sharing a secret,
a key. If the algorithm is effective, then
knowing it does not give the attacker an

advantage in decrypting a message for which they do not have the key. All
software should be based on this principle: the security of your software
should be based on its ability to prevent unauthorized accesses and not on
some secret about its structure.

And there is even an advantage to making your code public: there are more
eyes on your code, so more chances for someone to find (and we hope report)
flaws in your design or implementation. This philosophy of transparency is
a cornerstone of open source software, where the source code is freely
available. More eyes on the code is considered an advantage to increase its
security. The earliest work on fuzz random testing found that the open source
variants of Unix were more robust than the commercial (closed source)
versions1,2.

The opposite of transparent design is unflatteringly called security through
obscurity. While keeping your code design secret – and even making it
intentionally complicated, unobvious, or messy – can make the job of the
attacker more difficult, it does not guarantee that a well-trained and well-
equipped (and patient) attacker cannot ultimately exploit your system. Such
code is also more fragile. Once it is broken, the attacker is free to share the
secret with anyone.

4.2.2 Avoid Predictability

Extending the discussion of encryption, let’s say that you are using a strong
encryption algorithm that is well known. If your choice of keys is

predictable, then an attacker might be able to easily
guess your key and read your communication or send
fraudulent communication. This kind of predictability
was used heavily in the code breaking efforts during
World War II.

In software, we often generate secrets, such as when
we generate session IDs after logging on to an online
service or website. These secrets are used as proof of
identity for short intervals, so that we do not need to go

1 B.P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the Reliability of
UNIX Utilities”, Communications of the ACM 33, 12 (December 1990). Also
appears (in German translation) as "Fatale Fehlertractigkeit: Eine Empirische Studie
zur Zuverlassigkeit von UNIX-Utilities", iX, March 1991.
2 B.P. Miller, D. Koski, C.P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J.
Steidl, “Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services”, Computer Sciences Technical Report #1268, University of Wisconsin-
Madison, April 1995. Appears (in German translation) as "Empirische Studie zur
Zuverlasskeit von UNIX-Utilities: Nichts dazu Gerlernt", iX, September 1995.

through a full authentication protocol for each access to the server. If these
secrets follow an obvious pattern, then they might be guessed, allowing
unauthorized access to the server. Randomness is the key (sic) addressing
this issue.

Whether it is generating session keys, random elements in a URL, or
passwords, you want to use randomness to avoid providing hints (or “tells”,
as the World War II codebreakers called them) that the attacker can use to
narrow down the space of possibilities. In Section 3 on secure programming,
we will see examples of how to use this principle to avoid certain web
attacks. And in the chapters on defensive techniques, we will see how
operating system designers have used this principle to avoid making the
location of the code and data in a program predictable.

It is worth noting that randomness is a complex concept with a strong
mathematical foundation. The use of weak random number generators
(RNG) or cryptographic hash generators can weaken even the best design.
For example, the SHA-1 hash function has been considered insecure since
2005, being replaced with the SHA-2 family3, such as SHA-256 and SHA-
512. Random number generators have specifically been vulnerable to
numerous notable attacks, including one against Netscape (one of the earliest
web browsers) in the mid 1990s and against Windows 2000 in the mid-
2000s. In general, pick the best hash or RNG that you can find, specifically
one meant to be “cryptographically secure” leaving the details to the
mathematicians and cryptographers.

4.3 Economy of Design
In a famous aphorism, variously attributed to the physicists
Herbert Spencer4 or Albert Einstein, “Everything should be
as simple as possible but no simpler”. The essence of this
idea is to strip away unnecessary complexity, leaving only
what you need to get the job done. In software, complexity
makes it more difficult to find bugs in the code, make the
code run fast, and find security flaws.

3 https://en.wikipedia.org/wiki/SHA-2
4 “It can scarcely be denied that the supreme goal of all theory is to make the
irreducible basic elements as simple and as few as possible without having to
surrender the adequate representation of a single datum of experience.”

From “On the Method of Theoretical Physics,” the Herbert Spencer Lecture, Oxford
University, June 10, 1933.

There is some belief that Spencer based this idea on discussions that he had with
Albert Einstein.

Note that this aphorism includes the warning “...but no simpler.” This
warning is necessary because it is possible to reduce a design or piece of
code past the point of good sense. For example, putting checks on the return
values of every system call and external library call is essential to correct and
secure operation of software. However, such checks can clutter the code and
make it more difficult to read, so there is a temptation to leave off at least
some of these checks.

This principle can be stated as: do things once, in a common place. If you
are going to check authorization for access to a resource, have a single
function/method that does this job. If you are going to run user code in a
sandbox, have a single function/method that does privilege de-escalation
(capturing all the subtle and many aspects of privilege). Doing things once
allows you to concentrate your energy and attention on the problem, and then
reap the benefits of your design when you need to do the same task again.

A function that implements a particular security operation should be named
in an obvious way and documented clearly. This will help later when another
programmer needs to implement the same functionality and reduce the
chances that they will reinvent what is already done (perhaps in an inferior
way).

As software projects grow over time, we often discover common
functionality that is embedded in multiple places in the design or code. The
best response to such a discovery is to refactor the code such that you extract
the common functionality and put it into a single function (or functions), and
place calls to that function where the code used to be embedded. Refactoring
is time consuming, so there is a great temptation to just cut-and-paste the
original code. The cut-and-paste strategy likely will produce short term gain
for long term pain. Each application of this strategy makes the code more
complex and more difficult to refactor in the future.

4.3.1 Accept Security Responsibility

Security starts with the decision to include it as a priority element of your
software design and implementation. Including security means that you must

acquire the skills and spend the time necessary to
ensure that security is an intrinsic part of your
design. Behind such a decision is willingness to
accept the upfront costs for including security.

An immediate cost of accepting responsibility
for security is a delay in writing the first lines of
code until you have thought about the structure

of your systems, the threats that may affect it, and the defenses that you will
need to provide the necessary level of security. Threat Modeling, described

in the next chapter, is a good way to bring security into your design in a
structured (and documented) way.

Later costs include training your teams to understand how to code securely.
The material in the secure programming chapters offer a good resource to
acquire such skills. Along with coding securely, you will need code reviews
that explicitly target security issues. Companies with mature software
security programs will often have two code reviews related to a commit, one
for functionality and the other for security. The testing or quality assurance
(QA) phase of your project will also need to verify the integrity of security
features. Most testing teams do not have security training, so acquiring such
training is an additional cost.

The last area of responsibility is that of communicating with your user
community. Users should have a clear understanding of what steps you are
taking to produce secure software. And, equally important, when a security
flaw is discovered, users should get timely reports as to the nature and
severity of the flaw, the scope of its impact, and the fix.

Of course, there is great benefit to all these costs. The earlier that a design or
coding flaw is detected, the cheaper that it is to fix. And such a robust
security program can reduce the number of security events you will face,
providing further cost benefits.

4.3.2 Least Common Mechanism

Programmers like to reuse code and combine similar functionality for
convenience, but this design principle informs us that there can be real
security consequences of these choices. This principle appears in many
forms, so an example is the best way to understand it.

Consider a kernel design with all file handles managed as a common table
containing entries for all processes. Least Common Mechanism says that
sharing this table across processes inherently raises the risk of unintended
interaction between processes. A bug might easily cause actions of one
process to impact the state of another, or leak information between processes.
By contrast, if the kernel manages separate file handle tables per process,
then that better isolates them and is safer. Web cookies are a Least Common
Mechanism because each client stores and provides them to the server so it's
not easy for a request to mix up the cookies of different users.

When a common component services more than one client, avoid common
mechanisms that create potential connections between peers. Often the
implementation involves shared resources, but maintain the separation as
much as possible, and prefer the least common mechanism design.

Note that the principles of Economy of Design and Least Common
Mechanism do not need to be in conflict. For the file handle example,

Economy of Design says that we use common code to control the file handle
tables, while Least Common Mechanism says that we isolate per process as
separately allocated objects.

4.4 Protect the Target

4.4.1 Complete Mediation

Protecting your software means protecting all paths into that software, and
protecting access to the resources controlled by your software. The battle

between the attacker and defender is an asymmetric
one: the attacker only has to find one path into your
system, while you have to ensure that every path is
defended. It is the covering of “every path” that
forms complete mediation.

The starting point for complete mediation is
understanding the attack surface (presented in
Section 1) of your software. For a given resource,
you need to understand all the paths from the attack
surface to accesses to that resource.

Once you understand all the paths, you need to
control them. Well-designed software will have a single point that controls
access to a resource, for all interactions. Such control is an application of the
Economy of Design principle presented earlier.

4.4.2 4.2 Defense in Depth

It is commonly said that security should be like an onion, coming in multiple
layers. If you somehow break through one layer, there are more layers left to

protect you.5 Experienced security practitioners like to
brag how they wear both belts and suspenders. The
opposite of layered security is what we like to call
“deep fried security”, which is crispy on the outside
and sweet and tasty on the inside. If you break through
the brittle outside layer, all the insides are exposed.

One approach is to make sure that you check for errors
at each possible opportunity. Suppose that you are
writing a new class C2 in a software system, and this

class includes method mm. Of course, this new class is going to call methods
in some existing classes, for example you need to call method m in class C1.
In the lines of code before the call to C1.m, you check the parameters that

5 Security is also said to be like an onion in that it makes you cry, but that is less
helpful here!

you are passing to m to make sure that they are valid, so you know that m
will always compute something sensible. Nevertheless, as a careful
programmer, you still check the return value from C1.m just to make sure
that you did not miss something.

Now, suppose you are writing yet another new class, C3, that includes
method mmm. And mmm needs to call method C2.mm. Before this call, you
will carefully check the parameters you are passing to mm, and after the call,
you will check the return value even though you are sure that mm should not
return an error since you checked the input parameters.

Another approach is to have different mechanisms to fall back on. A case
where such a mechanism was needed happened in December 2015, during
the U.S. presidential primary election campaign at a company that stores
voter data. A single database contained proprietary voter data from different
candidates’ campaigns. An error when updating a query allowed data private
to one candidate’s campaign to be accessed by members of another
campaign. This time, the error ended up on the front page of the world’s
major newspapers!

To create defense in depth for this case, we could add layers of protection.
First, separate the single database into multiple databases, where each
campaign’s proprietary data is in a separate database (therefore a separate
file) with separate file permission. And, of course, each database user would
access the system with separate user IDs. You can add one more layer by
placing each campaign’s database on a separate host (or virtual machine),
and only allow user access to that host by the user ID for the corresponding
campaign.

At each layer, we do explicit checking to prevent unnoticed errors, which
can prevent unnoticed exploits. Such checking is crucial for several reasons,
including:

● You might have missed a corner case with your parameter
checking, so a future call might now pass a valid parameter.

● Someone (including you, in the future) might change the method in
a way that you did not expect, so that the range of valid parameter
values has changed. Since the person making the change might not
know every place in the code that calls the changed method, they
might not be able to update all the places that call it.

● You might run the code in a new environment, perhaps on a new
release of the operating system, so that the notion of what is a valid
parameter could change.

4.4.3 Separation of Privilege

The goal of separation of privilege is to require more than one entity to grant
permission before an action can be taken. It is used when high levels of

security are needed. A classic example of such a
separation is used with the launch of a nuclear
missile. This is an event of such severity that we do
not want any individual with the power to initiate
such a launch. As a result, there typically are
several people involved, each with physical and
digital keys that all must be present and
authenticated to make this happen.

In the real world, we can see many less dramatic
examples of separation of privilege. For example,
to open a safe deposit box, you typically require
two keys, one kept by the bank and one kept by the

owner of the box. In addition, the boxes are in a vault with its own
independent security. Also in the financial world, commercial checking
accounts will have a requirement for multiple signatures on a check when
the amount is above a certain threshold.

4.5 Making the Target Harder to Hit

4.5.1 Least Privilege

A program ideally should run at the lowest reasonable privilege level
necessary to do its job. The most obvious example is that a program should

not run as “root” or “administrator” unless it needs that
all-encompassing level of privilege. When we want to
protect software from a regular user, we are often tempted
to install and run it as root. However, using root privilege
means that any flaw in the software will have more global
and perhaps more catastrophic results.

Suppose that you need to create a new service that
answers queries based on a database. You want the data
in this database protected from direct access by normal
users, so your first inclination is to install the software as
root, and make all the files associated with the database

accessible only by root. Such a strategy satisfies the goal of preventing
normal users from accessing the database, but is fragile and dangerous if
compromised.

A more effective strategy would be to create a new user ID for the new
service. This new ID allows the service to protect its processes and files from
other users, but does not require running as root.

In practice, least privilege should not be carried too far with numerous
privilege adjustments to always literally be at minimum. Good designs look
for the sweet spots and use appropriate levels of privilege in balance with the
needs of the system and attendant risks.
4.5.2 Least Information

In the intelligence world, they call the principle of Least Information “need
to know”. The idea is that you should only access the information that you

need to do your job. If you don’t have access to other
information, you will not accidentally leak it or
inappropriately modify it.

In a later module, we will talk about TMI (too much
information) errors that inadvertently expose
information advantageous to attackers. For example,
suppose that client code running on a user’s machine

is making a query to a server to find out some other user’s phone number.
This phone number is stored in a database, where each record contains all
the information for a single user. If the query returned the entire record to
the client, this might expose other private information needlessly. The phone
number query should only return those values (attributes) that are relevant to
the query. We have seen exactly this kind of error made in real world
systems. Fortunately, we caught it before anyone else did.

4.5.3 Secure by Default

We should always think about the failure cases when we write code. All
programs have flaws, so we want to write software that minimizes the effect
of such flaws. An example that we have repeatedly seen is in a function that
validates a user name and password on the server. We have often seen this
function written with the first line of code appearing to be something like:

login = TRUE;

where the rest of the function checks the user name and password against the
values in the database, setting the variable to FALSE if they do not match.

This code is inherently fragile because if there are any unforeseen errors (and
there usually will be), then such an error will inadvertently cause the function
to return TRUE when it is not appropriate to do so. Simply reversing the logic
– starting with a value initialized to FALSE and only setting it to TRUE if all
login conditions are satisfied – is much less error prone. And, if there is an
error, it is likely to cause less serious outcomes.

As a second example, consider the installation of a new web server on your
computer. This installation should have an initial configuration that requires
the server to allow only HTTPS secure connections. If the default allowed it
to work with HTTP also then setting up HTTPS might be forgotten and the

server could operate insecurely. The option to allow HTTP should be
explicitly selected by an administrator to ensure that it is a proactive choice,
not an error of omission.

4.6 Summary
This chapter was a natural extension of Thinking Like an Attacker, providing
some specific principles on which to base our technical approaches to
designing and building secure software, by anticipating the attacker and
taking countermeasures. How you think about software is crucial and is as
important as learning a collection of specific techniques. Taken together,
having basic principles for secure software design and a list of techniques
for writing more secure code, you will be well positioned to more effectively
fend off the bad guys.

4.7 Exercises
1. Look for examples of these principles in the design of objects and

systems of daily life. Try to collect at least one example for each
one. Can you find examples of doing the opposite?

2. Design a system to control a bank vault door, including all of the
target protection principles (and others that apply).

3. Study the documentation for configuring a popular software
component, for example, a database, or a web service, and assess it
against the Secure by Default principle. In places where the
defaults were less secure, was there a good reason for it? How
could you make it more secure with better defaults?

