
1

Chapter 3
Thinking Like an Attacker, Owning the Bits

Revision 3.1, October 2025.

3.1 Objectives

• Learn and understand the basic vocabulary that describes an attack,
including attack surface and impact surface.

• Make these ideas more concrete by learning about a classic type of
attack.

• Introduce the thought processes of an attacker, including the idea
of “owning the bits” in a program.

WARNING: If you want to experiment attacking systems, set up your own
instances with pretend data and always get explicit permission from the
system owners. Unauthorized attacks, even harmlessly done with the purest
intentions, may incur serious criminal penalties not worth the risk.

3.2 An Exploit through the Eyes of an Attacker
Let’s think about an attack the way an experienced attacker would in order
to gain a solid understanding of how adversaries think and act. Attackers
view software almost in a mirror-opposite way than we do. The best security
software engineers are able to flip back and forth between both ways of
thinking, playing a kind of mental chess game between opposing forces.

Programmers writing code have in mind what the program should do and
then express that as code using the language facilities and component
libraries available. In practice, the mapping between intended function and
the actual functioning of the resultant code are almost never exact, and best
practice demands thorough testing and careful debugging in order to ensure
that these are closely aligned.

In Figure 1, the semi-transparent green circle and blue oval symbolize the
difference between an ideal software goal and the actual functioning of a real
implementation that approximates it. When we say “all software has bugs”
we mean that these will never be identical. The green circle is all ideal
functions that the programmer has in mind and is endeavoring to build. The
blue-green overlap represents the substantial portion of the intended function
that is already working.

Figure 1: Ideal vs. Actual Software

Green circle is the idea software goal
Blue oval is the actual function of the implementation

Even with excellent test coverage, debugging effort will focus on the
intended functionality that is not yet working, in effect stretching out the blue
oval to include more of the green circle. Unfortunately, code changes
intended to implement the desired functions can “overshoot” and do other
unintended things as well – something like the oval extending past the green
circle. Alternatively, a change can easily distort the far side of the oval as a
consequence causing part of the green circle already covered to now be
exposed (this is the effort of code changes causing new bugs as a side effect).

Note that programmers do not think about or even perceive the part of the
blue oval sticking out on the right – that is additional functionality in the
code itself that was never intended in the first place. With the programmer’s
attention firmly focused on the lower left side of this diagram as explained
above (covering more of the green) it is psychologically nearly impossible
to be fully aware of this whole other side of the program at the same time.
Also note that functional testing is unlikely to reveal this extra unintended
functionality. This is why it’s valuable to come back and review work with
your “security hat on” when you are thinking like an attacker. Of course, this
diagram is simplified to demonstrate the core point. In practice, the “shape”
of the functionality of complex programs is multidimensional and intricately
detailed so the places where intended and actual functionality differ are many
and varied.

These discrepancies are exactly where attackers focus, and as explained
above, programmers tend to be blind. If code is written to work only up to
some limit then attackers want to exceed that limit and determine what
happens (a buffer overflow is one common example of this principle).
Should some rare combination of inputs causes quirky behavior, attackers
want to poke at this to see if they can weaponize it. When code is fragile,
attackers attempt to break it and then see if the “sharp edges” can be used to
cut through defenses or somehow cause further damage.

At first attackers may act like a bull in a china shop simply trying to break

everything in sight. This stage can be a learning process, either finding
fragile points on the attack surface, or confirming that the code is solid and
perhaps deciding to poke around elsewhere. In time the attackers learn more
about what they are up against and begin to focus efforts toward making a
specific exploit to achieve their goals.

When we approach an attack from the attacker’s perspective, it leads to an
alternative way to define an exploit from what we introduced previously.
This definition comes from the intelligence community. In this context, we
think of an exploit as a manipulation of a program’s internal state in a way
not anticipated (or desired) by the programmer with the goal of creating
unexpected behaviors in the code.

3.3 Owning the bits
Let’s look at a concrete example of an attack to bring all of this strategic
perspective into focus. Consider a public web server that accepts data entry
from a web form and copies the contents into memory for processing.
Anyone on the internet can submit form data so the attacker has a direct path
into the web server process, and whatever characters they send via the form
are reliably copied into the corresponding memory buffer. Since the attacker
can reliably cause whatever string they choose to appear in the server
memory we say that the attacker owns the bits and so long as the string is
harmlessly processed there is nothing wrong with this at all.

However, if the code is poorly written – let us say the lazy programmer made
the memory buffer 100 bytes long figuring nobody would ever enter
anything that long – then by sending ridiculously long web form field
character strings the attacker now owns the bits of that memory buffer and
arbitrarily beyond (including potentially all kinds of interesting memory
locations). This is a classic vulnerability called a buffer overflow, to be
explained in detail below, and it’s an example of the kind of unintended
functionality that attackers love to discover.

Such an attack path consists of a chain of events that always starts at the
attack surface which is the externally facing interfaces an attacker can
access, e.g. interfaces on the public internet, peripheral devices the attacker
can use, an exposed private network tap, and so forth. Software operates on
this attacker-controlled input (usually a complex chain of events) and in the
case of a vulnerability leads to many actions and state changes. Eventually,
from the perspective of the attacker’s exploit goal, something bad happens
somewhere. The set of all ultimate actions the attacker can cause to happen
via these various attack paths is called the impact surface.

3.4 A Real World Exploit
To make these concepts clear, let us look at a non-software attack in the real
world from this perspective: how might an attacker rob a bank?

As described above, attack paths consist of chains of events that leverage
weaknesses (specifically, vulnerabilities) to exert some control to the
attacker’s ends, and reach down to the impact surface where actual harm is
done. To fully understand the attacker mindset, let’s think about attacks in
terms of the real world scenario of robbing a bank.

Using the model described above, the attack consists of a specific sequence
of events:

● Attack Surface: where the attack can begin that the robber has
access to.

● Attack Path: a sequence of actions the robber takes.
● Vulnerability(ies): one or more weaknesses that can be exploited.
● Impact Surface: malicious results that follow from the above chain

of events.

Figure 2: An Attack in the Real World

First, we begin with the most obvious approach, the robber could simply
enter the bank through the front door as a customer (the most obvious part
of the attack surface). Once inside, the customer goes to the teller counter to
request a transaction, and when an accomplice distracts the teller, reaches
into the cash drawer grabbing some money and making a getaway. The

relevant weaknesses include an unprotected cash drawer within reach of
customers, the teller’s inattention, lack of surveillance, and inability to lock
down quickly to prevent getaway. The impact surface is the robber grabbing
the cash drawer filled with money.

Next, consider the back door threat where the robber discovers that a rear
entrance to the bank is unlocked and goes inside. From here the robber’s plan
is simple: find the vault and see if it is open; if it is, enter and take cash or
anything of value. The weaknesses enabling such a heist are evident:
unlocked rear entrance; leaving the vault open; cash lying around.

In a real bank, there are many other possible attacks but let’s look at one
more where there is no bank robber involved, but instead consider what a
corrupt employee might do. As a bank employee a dishonest teller could at
any time discretely stash some cash in a backpack and walk out at the end of
the day. This rarely happens in real banks and in this hypothetical case quite
a few weaknesses would need to be present for it to be a viable attack:
insufficient background check screening employees, lack of audits and
inspections to ensure all transactions are accounted for, and lax business
practices making such an audacious crime even possible. This is an example
of an insider threat where a person violates trust and abuses their authorized
access. Security cannot eliminate the possibility of insider attacks since bank
employees need access to money to do their jobs. Ensuring accountability
through auditing and oversight mitigates the potential risk.

3.5 The Attack Surface
The attack surface is all the ways that a user (or attacker) can affect the
behavior of a system. For a bank robber this would be the entire exterior of
the bank: doors, windows, walls, roof, tunneling underground, or utility
connections.

In a typical program there are many different parts to the total attack surface.

● Network Data: if the attacker can send data over the network that
invokes the code.

● Input File: if the attacker can influence data in a file the program
will read.

● Web Form Field: if the attacker can access a web page providing
input to the code.

● Database Entry: if the attacker can control data in a database used
by the code.

● Configuration: if the attacker can alter settings that influence the
code.

The attack surface also includes everything the attacker can externally
observe about the system. For a web server this includes all public pages,
including scripts and error responses. Open source software allows attackers
to study the details of the code that can reveal unexpected functionality and
hints about how to access and influence the system in new ways.

3.6 Direct and Indirect Attacks
Direct attacks are when the attacker provides input at the attack surface that
ripples through the system triggering a vulnerability to cause harm. There
are indirect attacks as well, where a series of actions cause state changes,
and those in turn cause other things, eventually causing harm as a result of
several steps (something like a Rube Goldberg apparatus1).

An example of an indirect attack will make the distinction clear. Consider a
public web service that accepts requests and validates all inputs rejecting
invalid inputs, responding with an error page and logging the details for later
analysis. A clever attacker crafts a malicious request and receives the
rejection error response, however, as a result of this input the log entry for
this event is malformed and that confuses the logging system. As a result,
even though the request was rejected, the attacker has managed to own bits
in a destructive way in the log files.

Eventually the daily log analysis job starts up and reads through the day’s
log files preparing a report. When it gets to the malformed log entry this
triggers a vulnerability and now the attacker has gotten into the log analysis
job in a powerful way, positioned to do harm from here.

This example illustrates the importance of understanding the attack surface,
and what attack paths extend from it. On casual consideration one might
consider the log analysis job immune from external attack because it does
not accept any requests from the public internet and is only executed by a
timed script by system operators – but this would be wrong as the example
clearly shows.

Direct attacks, by contrast, are the most common and obvious because there
is a direct chain of causality from attack surface to vulnerability (even though
in large systems these can be extremely complex and difficult to trace
through completely).

3.7 Following the Flow of Your Code
Attack paths propagate from attack surface to impact surface through a
combination of data and control flow that forms a chain of events the attacker
may have more or less influence over.

1 https://www.rubegoldberg.com/

Control flow is the branch and call paths as affected by inputs originating at
the attack surface. Data flow is the propagation of data and derived values
also originating at the attack surface. We will examine Figure 3 to see how
this works in practice.

Suppose that variable i came from the attack surface, and this influences the
value of a by selecting which element of the buffer array is chosen. In a
later statement, the value of a is used to compute b, extending the reach from
the attack surface further. Later on, the value of b indexes the stringtable
array and the resultant character string is printed. In this indirect way and
subject to numerous limitations, the attacker has a program flow attack path
from i influencing the printed string.

Figure 3: Example of Data Flowing Through a Program

Sometimes a combination of control and dataflow make the attacker’s
influence harder to see.

if (buffer[i] > 10)
 val = 3;
else
 val = 25;

In the code above, the value of i from the attack surface (as an index to
buffer) influences the value of the variable val even though it’s not
directly assigned — the two variables do not even appear in any statement
together (and could be distantly separated in more complex code). The
takeaway here is that program flow can easily extend the reach of a potential
attacker from even a minimal attack surface into a much larger impact
surface than you might expect. Minimizing the impact surface can be an
important defensive strategy to make code more secure.

3.8 The Impact Surface
The places in the code where the exploit actually takes effect is called the
impact point. The collection of all such impact points is called the impact
surface: it’s what the attackers are trying to get at and often the most obvious
place that we have to defend in the code.

Examples of impact points include:

● Unconstrained execution (e.g., executing a shell). The attacker
manages to execute a command that results in executing a shell
where the attacker can run any command they want. The attacker
could achieve that by owning the bits of the variable that contains
the name of the executable file that is the argument to the exec (or
system) call.

● Privilege escalation. The attacker (working in a context with user-
level privileges) carries out an action that allows them to operate
with higher privileges than intended. An attacker could achieve
that by owning the bits of a variable used for authorization.

● Acting as an imposter. An attacker can impersonate a valid user of
the system, such as by guessing a weak password. In doing so the
attacker can own many bits they are not otherwise authorized to
access.

● Forwarding an attack. An attacker could perform a phishing attack
to get some personal information from a user. That information
could be then used by the attacker to act like an imposter, as
described in the previous item.

● Revealing confidential information. An attacker can gain access to
the bits of variables that contain confidential information.

Tying it all together: we think of an attack starting at a point on the attack
surface, based on an input from the user. This input causes a chain of events
to help, following the flow of control in the program, until it reaches the
place where some bad thing happens, which is a point on the impact surface.
An attacker tries to visualize what is happening in the code, trying to
understand how a given input controls the state of the program, i.e., which
bits do they own, leading the flow of control to an effect point on the impact
surface.

3.9 The Classic: A Stack Smash
Let’s see an example of owning the bits in the classic stack smash attack.
Consider the C code below, where we have a buffer of 100 characters and
two integer variables, both allocated on the stack.

int foo()
{
 char buffer[100];
 int i, j;
 ...
 gets(buffer);
 ...
 return(strlen(buffer));
}

When this function is invoked, the stack contains the return address, the
buffer of 100 chars, and the integers i and j, as shown in the graphic below
on the right.

This program calls gets, which has no way to limit the size of the user
supplied input. An attacker could provide as input a string of 100 characters
followed by an evil return address. That evil string will overwrite the return
address as we see on the left in the figure below. While it is expected that
the user will own the bits in the buffer, it is neither expected nor safe, that
the attacker as user will own the bits of the return address which enables
arbitrary control of program execution.

This was a simple example of owning the bits, as the input directly modified
the target internal state without any dependencies on complex control or data
flows. Also, the attacker owned all the target bits, so had complete control
over the destination address.

In general, misusing pointers and strings is a serious problem in C and C++.
We will talk about this topic in detail in the Pointers and Strings module.

Nowadays, stack smash attacks are more difficult, as operating systems and
compilers use techniques that try to prevent that kind of attacks. Examples
of those defensive techniques are randomization of memory locations of
code, stack, and heap. Those are called address space layout randomization
or ASLR.

There are also Internal consistency checks such as heap guards or stack
canaries. And there are OS/processor memory protections such as W⊕X
meaning that a page is either writable or executable. This is pronounced “W
xor X”.

Even so, attackers still find clever ways to circumvent these mechanisms.
We will talk more about these defenses in the Processor and System
Defenses module.

3.10 Attacker tactics and motivation
Attackers of all types are out there, and we are now all connected by the
internet so this is not a theoretical concern by any means. Skill levels range
from inexperienced people just playing around to highly trained
professionals working in concert with nation-state intelligence operations
with advanced technical capabilities backed by abundant resources.
Attackers have a rich set of powerful tools and increasingly use automation
to do their work.

It is not necessary to spend time trying to imagine who might attack your
systems or even guess what might motivate anyone to do such a thing. Some
attackers work for pay or profit, others for political or personal motives,
while others are simply fascinated by the technical challenge involved. The
point here is that attackers are varied and ultimately unknowable, but are not
to be underestimated.

“I don't worry about what my opponent is doing.” — Maria Sharapova

Attackers work in anonymity and can be quite patient. So long as an attack
cannot be traced back to them, they are free to work at leisure until they reach
their target. Our goal is to make that target as small as possible and difficult
to hit. Through design, coding, assessment, and use of tools, this course
introduces you to techniques that will help make your software more secure.

3.11 Summary
● Learned how an attacker thinks about owning the bits of your

program.
● Introduced important terms and concepts, including attack surface

and impact surface.
● Learned an example of owning the bits with a stack smashing

attack.

3.12 Exercises
1. Take a simple (“Hello world” or similar) web server and creatively

“own some bits” in the server.
2. Write a small program with more than a trivial attack surface. Put

on your “security hat” trace the program flow to discover the most
impact surface that you can. Probe from the attack surface trying to
reach the impact surface. (Better yet, do this with a partner where
you each write a program, swap them, and attack the other’s code.)

3. Explore the outlines of one of the most sophisticated attacks of all
time.
https://www.zdnet.com/article/infographic-how-stuxnet-
supervirus-works/

4. Read the classic (three page) paper “Reflections on Trusting
Trust”2 by Ken Thompson to learn how a malicious compiler
modification can be hidden with no trace visible in the source code.

5. Challenge: modify an open source compiler using the above
technique but do not release it!

2 https://users.ece.cmu.edu/~ganger/712.fall02/papers/p761-
thompson.pdf

