
1

2 Basic Concepts and Terminology
Revision 4.1, August 2025.

2.1 Objectives

● Establish a common vocabulary for security since “language
shapes thought”.

● Understand the pillars of security: Confidentiality, Integrity, and
Availability (C-I-A).

● Understand the kind of threats that your system faces.
● Understand how attacks to software security can come through

vulnerabilities in the code.

2.2 An unsolved problem
As you begin studying software security, you can rest assured that there is
no danger of the problem being completely eliminated or your expertise
made moot. Security vulnerabilities are, if anything, on the increase. And
years after some of the earliest most fundamental flaws were first discovered,
they continue to recur and cause serious harm with no end in sight.

The number of incidents registered in the National Vulnerability Database1
(NVD) maintained by the US National Institute of Standards and Technology
(NIST) provides a very rough measure. The figure below clearly
demonstrates that security problems are ongoing with no evidence of
becoming a solved problem anytime soon. Common Vulnerabilities and
Exposures (CVE) numbers are assigned to issues reported to the NVD (for
example, the well-known Heartbleed2 bug in OpenSSL that compromised
the security of computers and related equipment worldwide is identified as
CVE-2014-01603). There is no well-established statistic that captures the
overall trend in software security, and CVE counts are not entirely accurate
as such; nonetheless, the NVD may be the best publicly available data.

1 https://nvd.nist.gov
2 http://heartbleed.com/
3 https://nvd.nist.gov/vuln/detail/CVE-2014-0160

Figure 1: CVE (Common Vulnerability and Exposures) counts from 2009 – 2022

2.3 The C-I-A Pillars
The three pillars of information security are Confidentiality, Integrity, and
Availability (C-I-A), expressing the ideals we seek to protect and that
attackers seek to undermine. These are the fundamental expectations for any
information system: good security means that data will not be disclosed
inappropriately (confidentiality), data and code will not be tampered or
destroyed (integrity), and proper access will be promptly given at all times
(availability).

These principles are so basic that it is worth defining and giving examples of
each of the three pillars.
2.3.1 Confidentiality

Confidentiality refers to protecting against the disclosure of information to
unauthorized parties. Potentially, even slight information leakages that
provide any clues about the protected data represent a compromise of this
principle. For example, revealing just the first letter or the number of letters
in a name, combined with other information or guesses represents a partial
disclosure.

Examples of attacks on confidentiality include:
● Reading stored data without authorization.
● Performing statistical analysis on restricted data.
● Reading messages (communication) without authorization.

● Detecting if communication traffic is present or not.

2.3.2 Integrity

Integrity refers to protecting information from being created, modified, or
destroyed by unauthorized parties. Potentially, even the plausible threat that
data may have been tampered with (and no means of knowing whether it was
or not) could be considered an exploit of Integrity.

Examples of attacks on integrity include:
● Modifying, destroying, or creating new data files.
● Changing program code with the goal of causing errors, failures,

crashes, or unexpected behavior.
● Modifying, deleting, replicating, change of order, or creating extra

messages.

2.3.3 Availability

Availability refers to ensuring that authorized parties are able to access the
system and its resources when needed. Successful compromise of
availability is often called a Denial-of-Service (DoS) attack. While
destruction of a system or its data certainly does make it unavailable, this is
normally considered loss of integrity; the term “availability” is generally
concerned specifically with temporary impediments to access.

Examples of attacks on availability include:
● Swamping an internet-connected service with requests, impeding

its ability to serve clients.
● Removing applications, components, or files, rendering the system

completely or partially inoperable.
● Crashing a server, preventing it from serving clients.
● Overloading some part of a system, including the hardware or

software service.

2.4 Attack Paths
Understanding how to achieve security inherently begins with a look at how
it potentially could be compromised. Consider by analogy an example of a
bank vault containing a lot of money that must be protected from bad guys.

There are many attack paths available to a bank robber: enter through the
front door during business hours, break into the employee-only rear entrance,
dig a tunnel, and so forth. The sum of all possible starting points is called the
attack surface, so that is where building defenses begins. The money is an
asset — the object of protection — that in software systems is often data,
code, equipment or other digital resource.

In this bank robbery example, suppose the vault was given the easily guessed
combination of 1-2-3 (that’s the specific vulnerability), and so the robber
poses as a customer, walks up to the vault and in a few seconds gains access
while nobody is looking (insufficient access control, surveillance, and
guarding are additional contributing weaknesses). So, the attack path now
consists of the sequence of front door entry during business hours, walking
up to the vault, and trying to guess the combination. The sum of these steps
completes the exploit.

Once in the vault, in terms of the C-I-A fundamentals, the robber has many
options:

● Count the money to learn the bank’s funds. (confidentiality)
● Replace the money with fake bills. (integrity)
● Hide the money somewhere inside the bank. (availability)

Obviously, real bank robbers are focused on taking money for themselves
rather than the C-I-A model, which is intended for information systems, but
the same principles can be applied.

2.5 Security Terminology
The field of information security has developed specific terminology for the
underlying fundamental principles. As with software in general, we reuse
existing English words adding specific meanings, so it is easy to pick up the
vocabulary, but it is worth taking the time to explicitly define the specialized
meanings clearly.

Unfortunately, the specialized terminology and meanings of these words is
not uniformly applied so you may hear some variations and there is no
authoritative right and wrong. Some of the common alternative terms will be
noted here parenthetically when the meaning is similar. Generally speaking,
these differences in language usually are harmless and easy to adapt to, so it
is not something to try to fix. In this book, we use what we believe to be the
most common and logical words and meanings from our diverse experiences
and make every effort to use these terms consistently throughout the text.

“Software bugs are errors, mistakes, or oversights in programs that result
in unexpected and typically undesirable behavior.” — The Art of Software
Security Assessment

“All software has bugs.” The origin of this statement seems lost in time, but
after many decades of software development, it remains truer than ever and
hardly controversial. Given a set of bugs (also called defects or weaknesses)
in a piece of software, some subset of those bugs will inevitably be useful to
an attacker (bad guy, malefactor) to cause harm: these bugs are thus termed
vulnerabilities.

“A vulnerability is a defect or weakness in system security procedures,
design, implementation, or internal controls that can be exercised and
result in a security breach or violation of security policy.” - Gary McGraw,
Software Security

Reducing vulnerabilities is the central goal of this book. Eliminating a
vulnerability, or somehow making it less likely to be found or exploited, is
called mitigation. Since the complete elimination of all bugs in a complex
piece of software usually is not practical, we try to build in multiple layers
of defense so that a vulnerability is more difficult to find or has less impact.

The various kinds of hypothetical harm an attacker might achieve on a
system are called threats. These threats are inherent — if the system holds
a secret, there will always be a threat of it being revealed — and cannot be
eliminated. Threats are identified with respect to protected resources called
assets, things of value. In a computer system, these things are usually data,
though they might also include the computing resource itself or a physical
device controlled by the computer. The reason that it is important to
recognize threats is that they can be an extremely useful lens for determining
where important vulnerabilities may exist.

“The process of attacking a vulnerability in a program is called
exploiting.” — The Art of Software Security Assessment

When a real attacker uses a vulnerability to actually cause harm, that attack
is called an exploit. Getting past protective defenses is called an intrusion.

2.5.1 Threats

Secure software is achieved by anticipating the many attack scenarios and
protecting against hypothetical attacks that might violate confidentiality,
integrity, or availability. Here is a technical definition of an information
security threat:

“A potential cause of an incident that may result in harm of systems and
organization.” — ISO 27005

Put simply, threats are the answers to the question: what could go wrong? It
is important to remember that threats are hypothetical and cannot be
eliminated unless you are needlessly doing something risky and can
dispense with it entirely. If your system holds an important secret, then the
threat of disclosure or destruction of that secret is inevitably a threat to be
dealt with.

Security improvements begin with evaluating potential threats to your
system. Since these threats will be diverse and many, you need to prioritize
them to focus your efforts appropriately. From this strategic holistic
perspective, you begin the process of identifying places where threats can be

reduced, finding and then fixing the actual vulnerabilities. It is critical to add
here that the vulnerabilities can be anywhere along the attack path of a
possible exploit, so the location of the vulnerability can be distant and
seemingly unrelated to the actual asset the attack may compromise.

We will discuss threats in more depth in Chapters 2.2 and 2.3, covering the
topic of threat modeling.

2.6 Security Risk
The threats to large information systems are great. Such threats arise based
on the extent to which such a system processes sensitive data, has a large
attack surface, and has a high level of implementation complexity. Given the
difficulty of securing such a system, it is essential to take a strategic approach
focusing our protection efforts on the parts of the system with highest risk.
Since time and resources available for security work are always limited, the
work inevitably runs up against practice constraints — this is why all
software is said to have vulnerabilities. Ideally, security effort continues
working in priority order until further effort enters the realm of diminishing
returns.

Risk management is an established practice that arose in the financial sector
(insurance, investment, and gaming) to identify sources of risk and attempts
to quantify them for the purpose of predicting potential losses and
implementing cost effective mitigations. Put simply, risk management
strategy accepts that risk is unavoidable and attempts to “put it in a box” in
the sense of putting a cap on the worst case, spreading the loss over time,
investing in preventative efforts, and monitoring actual losses so that
management can accurately understand their actual risk stance.

Financial risk management allows quantitative assessments of risk by
converting impacts into dollars; however, this is more challenging in the
information security space for several reasons.

● Financial assets are based on money, which is easily measured in
precise amounts.

● Money is fungible (one dollar is as valuable as another) but
information is not.

● Money lost can be paid back but information once lost can be
irretrievable.

● Insured risks have been accurately measured by actuaries and are
well understood, but software security risks are newer and change
rapidly.

● Financial institutions are carefully regulated, but software is mostly
unregulated, and companies often conceal details of security
incidents, so little public data is available.

● The financial impact of security incidents is difficult to measure,
and there are additional risks such as losses to reputation or
customer confidence that are difficult to quantify.

Ideally, you would like to have concrete criteria for these probabilities. These
criteria might be related to measurable loss of service availability or cost of
data loss. For example, electronic healthcare record (EHR) providers can
accurately quantify the cost per record based on the black-market value of
such records and the liability insurance cost to cover the provider.

However, risk can also be more subjective, when the assignment of risk is
based on the judgment of the analyst. In our EHR example, another risk is
loss of reputation, which might have a resulting loss of sales or cause the
creation of burdensome new regulations.

When it is difficult to assign accurate numerical values, one common
approach is to use “T-shirt sizes” to assign probabilities and gauge impacts
as Small, Medium, Large, or X-Large. The use of such categories makes it
clear that these categories represent an approximation of the risk.

2.7 Risk = Impact × Likelihood
The impact x likelihood formula is the foundational way to quantify risk
(though modern financial enterprises use more complex formulas). To
understand this formula, consider a couple of examples from the financial
sector. Auto insurance rates are calculated based on historical data of
collision statistics that detail the frequency that these collisions occur and the
distribution of settlement costs. Interest rates are calculated in a similar way:
a bank may make small loans without much analysis, knowing that a certain
percentage of those loans will not be repaid, but the loss is relatively limited.
For large loans, the bank will study the borrower, ask for collateral, and
generally work harder to either lower the risk of non-payment or have some
other recourse since so much money is at stake. In both cases, the lower
impact events may be more likely, and that balances out against making the
higher impact risks less likely to occur.

Now, let’s consider risk assessment for software security. Impact can be
assessed against the three C-I-A pillars:

● Confidentiality: how sensitive is the data and how much of it might
be disclosed?

● Integrity: how valuable is the data, how much could be tampered
with, and how likely would that be detected?

● Availability: how long and to what degree would the system be
unavailable?

There is a wide range of how quantitative and how accurately these can be
measured. For example, if the private key to a Bitcoin wallet is
compromised, then that is worth the present dollar value of the
cryptocurrency it protects. On the other hand, if a private family photo is
publicly revealed, it could be upsetting, lead to bad publicity, but no amount
of money or effort can undo the damage done (so this is entirely subjective).

Evaluating the likelihood of an exploit is usually more complicated to
determine. It is impossible to fully anticipate attackers to know their
motivations, amount of inside information they have, and their level of
expertise and capability. In addition, there may be a large amount of luck
involved in whether or not a vulnerability is discovered and then exploited
maximally. With open source software, you can assume that the attacker has
the same knowledge that you do. However, it is risky to assume that you
have much of an advantage if your software is based on proprietary source
code. This amounts to Security by Obscurity, which is a dangerous strategy.

The one exception to the difficulty of assessing likelihood is when detection
is virtually certain. CVE-2018-76024 is a good example of this: a critical
remote code execution vulnerability in the popular website system Drupal.
Since, by design, it is trivial to scan a website and determine that it runs on
Drupal and learn what version is installed, all vulnerable sites were well
known. Once the fix was deployed publicly, attackers easily learned about
the vulnerability in detail and how to exploit it. Simply by scanning the
installed version they could automate attacks on any unpatched systems. So,
the likelihood of such an attack was high – and, in fact, was quite common.
Obviously, such high-impact high-likelihood risks are of the utmost priority.

The multiplicative risk formula is a useful lens through which to consider the
value of various defenses. The risk values allow us to compare and rank
different risks to help establish the priority in addressing them. For example,
well designed password-based login systems5 should restrict the number and
frequency of login attempts as a defense against brute-force password
guessing. Since the risk of a lucky guess (and weak passwords make this all
easier) cannot be eliminated, making it harder to guess does significantly
reduce the likelihood, therefore reducing the value of Impact × Likelihood.
It is a little more inconvenient for a good user who has mistyped their own
password to wait a little longer between attempts, but the risk reduction is
arguably worth it.

4 https://nvd.nist.gov/vuln/detail/cve-2018-7602
5 Note that, in general, we discourage the use of pure password systems (one factor
authentication) and recommend the adding of a second factor to the authentication
process.

Reducing high risks on the impact side with specific mitigations is another
valuable approach, focusing on the other multiplier in the equation. Any
enterprise that maintains a large customer database needs to defend against
the prospect of a major disclosure of all that sensitive data (as has happened
famously to companies like Target, Equifax, and many more). A standard
database configuration will include an administrative function of dumping
the full database given the proper authorization, representing a huge risk.
Possible mitigations might include only allowing download of an encrypted
copy of the data (requiring a key to which only administrators would have
access), or restricting the rate of data export such that it would take a long
time to get all the data (yet fast enough to be useful for routine backup
purposes). In these ways, the impact of a compromise may be reduced,
lowering the overall risk.

A counterpoint about the limits of applying the standard risk formula to
software security is worth mentioning. Quantifying both impact and
likelihood in a meaningful way can be quite difficult. By the commutative
principle of multiplication, this risk formula implies that in theory the case
where the likelihood is extremely low, and the impact is very high is equal
to the case where the likelihood is high and the impact is very low. Clearly
these are very different risks, since an example of the former might be the
world’s chances of nuclear destruction and the latter an obvious bug in an
obscure software application. The point here is that software security risk
assessment is ultimately subjective and should not be reduced to a mindless
calculation that could miss seeing the forest for the trees.

2.8 Cost of Insufficient Security
In theory, it is hard to imagine anyone seriously arguing that software
security is frivolous and not important, yet somehow in practice diligent
security professionals find themselves forever needing to justify the need for
this important work. So, it is worth elaborating why security is important,
which amounts to pointing out the significant costs of insufficient security.
Part of the problem is the psychological effect. In practice, good software
security is difficult to appreciate because it is so hard to notice; good security
results in the absence of bad things happening. Yet, when the inevitable
exploit does happen, then and only then is the spotlight on security in a bad
light.

Software security is critical to protect our digital systems especially as these
become more ubiquitously part of so many growing aspects of modern life,
business, government, and culture at a time when everything is increasingly
interconnected on the Internet (where attacks are always possible from
literally anywhere at any time).

Attacks are expensive and may directly or indirectly affect assets including

money, reputation, data, communications, services, infrastructure,
intellectual property. Examples of significant losses due to poor software
security regularly appear in the mainstream media, and the potential for
future damage is even larger and growing.

The explosive growth of digital systems, exemplified but by no means
limited to giant platforms such as Google, Amazon, Apple, and Microsoft, is
only possible because of the great value digital information has transformed
the economy and most aspects of modern life. The value of the data they
process greatly exceeds the cost of the physical infrastructure (such as data
centers and networks) supporting them, and that high value represents high
risk both in terms of massive complexity as well as attractiveness to
malicious attackers. Experience shows time after time that if anything we
need to practice more software security to higher standards in order to keep
up with growing threats.

2.9 Summary
● Software security remains an unsolved problem; even old well-

known vulnerabilities persist.
● Security terminology expresses subtle meanings, and it is

important to use terms correctly.
● The pillars of information security are confidentiality, integrity,

and availability.
● Attackers exploit vulnerabilities in the code to successfully exploit

them.
● Every system (and all assets) faces many threats.
● Software security is important because the cost of insufficient

security can be devastating.

2.10 Exercises
1. List your own creative examples of the three C-I-A pillars of

information security.
2. Study the design of a well-known open source technology or

component and enumerate some of its attack paths. Suggested
subjects: OpenSSH, Sendmail, OpenVPN, VirtualBox.

3. Pick a few issues from an open bug tracking system (or make up
some hypothetical bugs yourself) and prioritize them for security
risk. Suggestions: Chrome bugs6, Firefox bugs7, and Linux kernel
bugs8.

6 https://bugs.chromium.org/p/chromium/issues/list
7 https://bugzilla.mozilla.org/
8 https://bugzilla.kernel.org/

4. Choose a well-publicized software security incident (feel free to
invent undisclosed details) and enumerate all of the resultant costs
that resulted from fixing and recovering from the exploit.

5. Write a short essay on why computer security problems persist or
even grow, despite much study and great efforts fixing them.

