High Throughput Computing

Miron Livny
Computer Sciences Department
University of Wisconsin-Madison
miron@cs.wisc.edu
10 years ago we had

“The Grid”
The grid promises to fundamentally change the way we think about and use computing. This infrastructure will connect multiple regional and national computational grids, creating a universal source of pervasive and dependable computing power that supports dramatically new classes of applications. The Grid provides a clear vision of what computational grids are, why we need them, who will use them, and how they will be programmed.
“... We claim that these mechanisms, although originally developed in the context of a cluster of workstations, are also applicable to computational grids. In addition to the required flexibility of services in these grids, a very important concern is that the system be robust enough to run in “production mode” continuously even in the face of component failures. ...”

www.cs.wisc.edu/~miron
In the words of the CIO of Hartford Life

Resource: What do you expect to gain from grid computing? What are your main goals?

Severino: Well number one was scalability. ...

Second, we obviously wanted scalability with stability. As we brought more servers and desktops onto the grid we didn’t make it any less stable by having a bigger environment.

The third goal was cost savings. One of the most ...
2,000 years ago we had the words of Koheleth, son of David king in Jerusalem.
The words of Koheleth son of David, king in Jerusalem

Only that shall happen
Which has happened,
Only that occur
Which has occurred;
There is nothing new
Beneath the sun!

Ecclesiastes Chapter 1 verse 9
35 years ago we had

The ALOHA network
One of the early computer networking designs, the ALOHA network was created at the University of Hawaii in 1970 under the leadership of Norman Abramson. Like the ARPANET group, the ALOHA network was built with DARPA funding. Similar to the ARPANET group, the ALOHA network was built to allow people in different locations to access the main computer systems. But while the ARPANET used leased phone lines, the ALOHA network used packet radio.

ALOHA was important because it used a shared medium for transmission. This revealed the need for more modern contention management schemes such as CSMA/CD, used by Ethernet. Unlike the ARPANET where each node could only talk to a node on the other end, in ALOHA everyone was using the same frequency. This meant that some sort of system was needed to control who could talk at what time. ALOHA's situation was similar to issues faced by modern Ethernet (non-switched) and Wi-Fi networks.

This shared transmission medium system generated interest by others. ALOHA's scheme was very simple. Because data was sent via a teletype the data rate usually did not go beyond 80 characters per second. When two stations tried to talk at the same time, both transmissions were garbled. Then data had to be manually resent. ALOHA did not solve this problem, but it sparked interest in others, most significantly Bob Metcalfe and other researchers working at Xerox PARC. This team went on to create the Ethernet protocol.
30 years ago we had Distributed Processing Systems
Claims for “benefits” provided by Distributed Processing Systems

P.H. Enslow, “What is a Distributed Data Processing System?” Computer, January 1978

• High Availability and Reliability
• High System Performance
• Ease of Modular and Incremental Growth
• Automatic Load and Resource Sharing
• Good Response to Temporary Overloads
• Easy Expansion in Capacity and/or Function
Definitional Criteria for a Distributed Processing System

P.H. Enslow and T. G. Saponas

- Multiplicity of resources
- Component interconnection
- Unity of control
- System transparency
- Component autonomy
Multiplicity of resources

The system should provide a number of assignable resources for any type of service demand. The greater the degree of replication of resources, the better the ability of the system to maintain high reliability and performance.
Component interconnection

A Distributed System should include a communication subnet which interconnects the elements of the system. The transfer of information via the subnet should be controlled by a two-party, cooperative protocol (loose coupling).
Unity of Control

All the component of the system should be **unified** in their desire to achieve a **common goal**. This goal will determine the rules according to which each of these elements will be controlled.
System transparency

From the users point of view the set of resources that constitutes the Distributed Processing System acts like a "single virtual machine". When requesting a service the user should not require to be aware of the physical location or the instantaneous load of the various resources.
Component autonomy

The components of the system, both the logical and physical, should be autonomous and are thus afforded the ability to refuse a request of service made by another element. However, in order to achieve the system’s goals they have to interact in a cooperative manner and thus adhere to a common set of policies. These policies should be carried out by the control schemes of each element.
Challenges

- Name spaces ...
- Distributed ownership ...
- Heterogeneity ...
- Object addressing ...
- Data caching ...
- Object Identity ...
- Trouble shooting ...
- Circuit breakers ...
24 years ago I wrote a Ph.D. thesis –

“Study of Load Balancing Algorithms for Decentralized Distributed Processing Systems”

Expected # of customers is \(\frac{1}{1-\rho} \), where \(\rho = \frac{\lambda}{\mu} \) is the utilization.

When utilization is 80%, you wait on the average 4 units for every unit of service.
BASICS OF TWO M/M/1 SYSTEMS

When utilization is 80%, you wait on the average 4 units for every unit of service.

When utilization is 80%, 25% of the time a customer is waiting for service while a server is idle.
Wait while Idle (WwI) in m^*M/M/1
“... Since the early days of mankind the primary motivation for the establishment of communities has been the idea that by being part of an organized group the capabilities of an individual are improved. The great progress in the area of inter-computer communication led to the development of means by which stand-alone processing sub-systems can be integrated into multi-computer 'communities'. ...”

20 years ago we had

“Condor”
What Did We Learn From Serving a Quarter of a Million Batch Jobs on a Cluster of Privately Owned Workstations

1992

Miron Livny

Computer Sciences Department
University of Wisconsin — Madison
Madison, Wisconsin
{miron@cs.wisc.edu}
Global Scientific Computing via a Flock of Condors

MISSION

Give scientists effective and efficient access to large amounts of cheap (if possible free) CPU cycles and main memory storage

THE CHALLENGE

How to turn existing privately owned clusters of workstations, farms, multiprocessors, and supercomputers into an efficient and effective Global Computing Environment?

In other words, how to minimize wait while idle?

APPROACH

Use wide-area networks to transfer batch jobs between Condor systems

- Boundaries of each Condor system will be determined by physical or administrative considerations

TWO EFFORTS

- **UW CAMPUS**
 Condor systems at Engineering, Statistics, and Computer Sciences

- **INTERNATIONAL**
 We have started a collaboration between CERN-SMC-NIKHEF-Univ. of Amsterdam, and University of Wisconsin-Madison

Miron Livny

Computer Sciences Department
University of Wisconsin — Madison
Madison, Wisconsin
[miron@cs.wisc.edu]
We are still very busy
1986-2006
Celebrating
20 years since we first installed Condor in our department
Welcome to CW 2007!!!
The Condor Project (Established '85)

Distributed Computing research performed by a team of ~40 faculty, full time staff and students who

- face software/middleware engineering challenges in a UNIX/Linux/Windows/OS X environment,
- involved in national and international collaborations,
- interact with users in academia and industry,
- maintain and support a distributed production environment (more than 4000 CPUs at UW),
- and educate and train students.
Main Threads of Activities

- Distributed Computing Research - develop and evaluate new concepts, frameworks and technologies
- Keep Condor “flight worthy” and support our users
- The Open Science Grid (OSG) - build and operate a national High Throughput Computing infrastructure
- The Grid Laboratory Of Wisconsin (GLOW) - build, maintain and operate a distributed computing and storage infrastructure on the UW campus
- The NSF Middleware Initiative
- Develop, build and operate a national Build and Test facility powered by Metronome
Grid Laboratory of Wisconsin

2003 Initiative funded by NSF(MIR)/UW at ~ $1.5M

Six Initial GLOW Sites

- Computational Genomics, Chemistry
- Amanda, Ice-cube, Physics/Space Science
- High Energy Physics/CMS, Physics
- Materials by Design, Chemical Engineering
- Radiation Therapy, Medical Physics
- Computer Science

Diverse users with different deadlines and usage patterns.
GLOW Usage 4/04-12/06

Over 23.4M CPU hours served!
The search for SUSY

- Sanjay Padhi is a UW Chancellor Fellow who is working at the group of Prof. Sau Lan Wu at CERN
- Using Condor Technologies he established a “grid access point” in his office at CERN
- Through this access-point he managed to harness in 3 month (12/05-2/06) more than 500 CPU years from the LHC Computing Grid (LCG) the Open Science Grid (OSG) and UW Condor resources
Some Reports From the Field

> Condor at Micron
> Condor at BNL
> Condor at JPMorgan
> Condor at the Hartford
> Most production grid jobs (EGEE and OSG) are managed by Condor-G and related technologies
Integrating Linux Technology with Condor

Kim van der Riet
Principal Software Engineer
What will Red Hat be doing?

Red Hat will be investing into the Condor project locally in Madison WI, in addition to driving work required in upstream and related projects. This work will include:

- **Engineering on Condor features & infrastructure**
 - Should result in tighter integration with related technologies
 - Tighter kernel integration
- **Information transfer between the Condor team and Red Hat engineers working on things like Messaging, Virtualization, etc.**
- **Creating and packaging Condor components for Linux distributions**
- **Support for Condor packaged in RH distributions**

All work goes back to upstream communities, so this partnership will benefit all.

➤ Shameless plug: *If you want to be involved, Red Hat is hiring…*
High Throughput Computing

We first introduced the distinction between High Performance Computing (HPC) and High Throughput Computing (HTC) in a seminar at the NASA Goddard Flight Center in July of 1996 and a month later at the European Laboratory for Particle Physics (CERN). In June of 1997 HPCWire published an interview on High Throughput Computing.
Why HTC?

For many experimental scientists, scientific progress and quality of research are strongly linked to computing throughput. In other words, they are less concerned about instantaneous computing power. Instead, what matters to them is the amount of computing they can harness over a month or a year --- they measure computing power in units of scenarios per day, wind patterns per week, instructions sets per month, or crystal configurations per year.
High Throughput Computing is a 24-7-365 activity

FLOPY ≠ (60*60*24*7*52)*FLOPS
Obstacles to HTC

- Ownership Distribution (Sociology)
- Customer Awareness (Education)
- Size and Uncertainties (Robustness)
- Technology Evolution (Portability)
- Physical Distribution (Technology)
Focus on the problems that are unique to HTC not the latest/greatest technology
HTC on the Internet (1993)

Retrieval of atmospheric temperature and humidity profiles from 18 years of data from the TOVS sensor system.

- 200,000 images
- ~5 minutes per image

Executed on Condor pools at the University of Washington, University of Wisconsin and NASA. Controlled by DBC (Distributed Batch Controller). Execution log visualized by DEVise
High Throughput Computing on Blue Gene

IBM Rochester: Amanda Peters, Tom Budnik

With contributions from:
IBM Rochester: Mike Mundy, Greg Stewart, Pat McCarthy
IBM Watson Research: Alan King, Jim Sexton
UW-Madison Condor: Greg Thain, Miron Livny, Todd Tannenbaum
Condor and IBM Blue Gene Collaboration

- Both IBM and Condor teams engaged in adapting code to bring Condor and Blue Gene technologies together

- **Initial Collaboration (Blue Gene/L)**
 - Prototype/research Condor running HTC workloads on Blue Gene/L
 - Condor developed dispatcher/launcher running HTC jobs
 - Prototype work for Condor being performed on Rochester On-Demand Center Blue Gene system

- **Mid-term Collaboration (Blue Gene/L)**
 - Condor supports HPC workloads along with HTC workloads on Blue Gene/L

- **Long-term Collaboration (Next Generation Blue Gene)**
 - I/O Node exploitation with Condor
 - Partner in design of HTC services for Next Generation Blue Gene
 - Standardized launcher, boot/allocation services, job submission/tracking via database, etc.
 - Study ways to automatically switch between HTC/HPC workloads on a partition
 - Data persistence (persisting data in memory across executables)
 - Data affinity scheduling
 - Petascale environment issues
10 years ago we had

“The Grid”
Introduction

“The term “the Grid” was coined in the mid 1990s to denote a proposed distributed computing infrastructure for advanced science and engineering [27]. Considerable progress has since been made on the construction of such an infrastructure (e.g., [10, 14, 36, 47]) but the term “Grid” has also been conflated, at least in popular perception, to embrace everything from advanced networking to artificial intelligence. One might wonder if the term has any real substance and meaning. Is there really a distinct “Grid problem” and hence a need for new “Grid technologies”? If so, what is the nature of these technologies and what is their domain of applicability? While numerous groups have interest in Grid concepts and share, to a significant extent, a common vision of Grid architecture, we do not see consensus on the answers to these questions.”

Global Grid Forum (March 2001)

The Global Grid Forum (Global GF) is a community-initiated forum of individual researchers and practitioners working on distributed computing, or "grid" technologies. Global GF focuses on the promotion and development of Grid technologies and applications via the development and documentation of "best practices," implementation guidelines, and standards with an emphasis on rough consensus and running code. Global GF efforts are also aimed at the development of a broadly based Integrated Grid Architecture that can serve to guide the research, development, and deployment activities of the emerging Grid communities. Defining such an architecture will advance the Grid agenda through the broad deployment and adoption of fundamental basic services and by sharing code among different applications with common requirements.

Wide-area distributed computing, or "grid" technologies, provide the foundation to a number of large scale efforts utilizing the global Internet to build distributed computing and communications infrastructures.
Summary

“We have provided in this article a concise statement of the “Grid problem,” which we define as controlled resource sharing and coordinated resource use in dynamic, scalable virtual organizations. We have also presented both requirements and a framework for a Grid architecture, identifying the principal functions required to enable sharing within VOs and defining key relationships among these different functions.”

What makes an “O” a “VO”?
What is new beneath the sun?

- **Distributed ownership** - who defines the “system’s common goal”? No more one system.
- **Many administrative domains** - authentication, authorization and trust.
- **Demand is real** - many have computing needs that can not be addressed by centralized locally owned systems.
- **Expectations are high** - Regardless of the question, distributed technology is “the” answer.
- **Distributed computing** is once again “in”.

[www.cs.wisc.edu/~miron]
Benefits to Science

- **Democratization of Computing** - “you do not have to be a SUPER person to do SUPER computing.” (accessibility)
- **Speculative Science** - “Since the resources are there, let’s run it and see what we get.” (unbounded computing power)
- **Function shipping** - “Find the image that has a red car in this 3 TB collection.” (computational mobility)
The NUG 30 Quadratic Assignment Problem (QAP) Solved!

\[
\min_{\pi} \sum_{i=1}^{30} \sum_{j=1}^{30} a_{ij} (\pi(i) - \pi(j))^2
\]

(4 Scientists + 1 Linux Box)

www.cs.wisc.edu/~miron
NUG30 Personal Grid ...

Managed by **ONE** Linux box at Wisconsin

Flocking: -- the main Condor pool at Wisconsin (500 processors)
 -- the Condor pool at Georgia Tech (284 Linux boxes)
 -- the Condor pool at UNM (40 processors)
 -- the Condor pool at Columbia (16 processors)
 -- the Condor pool at Northwestern (12 processors)
 -- the Condor pool at NCSA (65 processors)
 -- the Condor pool at INFN Italy (54 processors)

Glide-in: -- Origin 2000 (through LSF) at NCSA (512 processors)
 -- Origin 2000 (through LSF) at Argonne (96 processors)

Hobble-in: -- Chiba City Linux cluster (through PBS) at Argonne (414 processors).
Solution Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientists</td>
<td>4</td>
</tr>
<tr>
<td>Workstations</td>
<td>1</td>
</tr>
<tr>
<td>Wall Clock Time</td>
<td>6:22:04:31</td>
</tr>
<tr>
<td>Avg. # CPUs</td>
<td>653</td>
</tr>
<tr>
<td>Max. # CPUs</td>
<td>1007</td>
</tr>
<tr>
<td>Total CPU Time</td>
<td>Approx. 11 years</td>
</tr>
<tr>
<td>Nodes</td>
<td>11,892,208,412</td>
</tr>
<tr>
<td>LAPs</td>
<td>574,254,156,532</td>
</tr>
<tr>
<td>Parallel Efficiency</td>
<td>92%</td>
</tr>
</tbody>
</table>
The NUG30 Workforce

- Condor crash
- System Upgrade
- Application Upgrade

Workers
“... Grid computing is a partnership between clients and servers. Grid clients have more responsibilities than traditional clients, and must be equipped with powerful mechanisms for dealing with and recovering from failures, whether they occur in the context of remote execution, work management, or data output. When clients are powerful, servers must accommodate them by using careful protocols.... “

www.cs.wisc.edu/~miron
Being a Master

Customer “delegates” task(s) to the master who is responsible for:

• Obtaining allocation of resources
• Deploying and managing workers on allocated resources
• Delegating work units to deployed workers
• Receiving and processing results
• Delivering results to customer
Master must be ...

- Persistent - work and results must be safely recorded on non-volatile media
- Resourceful - delegates “DAGs” of work to other masters
- Speculative - takes chances and knows how to recover from failure
- Self aware - knows its own capabilities and limitations
- Obedience - manages work according to plan
- Reliable - can manage “large” numbers of work items and resource providers
- Portable - can be deployed “on the fly” to act as a “sub master”
Master should not do ...

- Predictions ...
- Optimal scheduling ...
- Data mining ...
- Bidding ...
- Forecasting ...
The Ethernet Protocol

IEEE 802.3 CSMA/CD - A truly distributed (and very effective) access control protocol to a shared service.

- Client responsible for access control
- Client responsible for error detection
- Client responsible for fairness
Never assume that what you know is still true and that what you ordered did actually happen.
Every Community can benefit from the services of Matchmakers!

eBay is a matchmaker
Why? Because ...

.. someone has to bring together community members who have requests for goods and services with members who offer them.

• Both sides are looking for each other
• Both sides have constraints
• Both sides have preferences
Being a Matchmaker

- Symmetric treatment of all parties
- Schema “neutral”
- Matching policies defined by parties
- “Just in time” decisions
- Acts as an “advisor” not “enforcer”
- Can be used for “resource allocation” and “job delegation”
Bringing it all Together
desktop
From Condor to Condor-G to Condor-C
The Layers of Condor

Submit (master)
- Application
- Application Agent
- Customer Agent (schedD)

Matchmaker

Execute (worker)
- Owner Agent (startD)
- Remote Execution Agent
- Local Resource Manager
- Resource
Be matched, claim (+maintain), and then delegate
Job Submission Options

- `leave_in_queue = <ClassAd Boolean Expression>`
- `on_exit_remove = <ClassAd Boolean Expression>`
- `on_exit_hold = <ClassAd Boolean Expression>`
- `periodic_remove = <ClassAd Boolean Expression>`
- `periodic_hold = <ClassAd Boolean Expression>`
- `periodic_release = <ClassAd Boolean Expression>`
- `noop_job = <ClassAd Boolean Expression>`
How can we accommodate an unbounded need for computing with an unbounded amount of resources?
The words of Koheleth son of David, king in Jerusalem

Only that shall happen
Which has happened,
Only that occur
Which has occurred;
There is nothing new
Beneath the sun!

Ecclesiastes Chapter 1 verse 9
Close by storage is small and fast. Faraway storage is big and slow.
Many data challenges ...

Managing data is a hard problem. Doing it in a distributed environment does not make it easier or simpler:

- Catalogs and metadata
- Access control
- Consistency and coherency
- Revocation and auditing
- Replication/cashing management
- Planning (optimization?)
Almost everything we do requires a dependable data placement mechanism.
We are making progress ...

- The Storage Resource Management (SRM) protocol - management of file copies and support for space reservations
- The Reliable File Transfer (RFT) service - management of large numbers of GridFTP requests
- The File Transfer Service (FTS) - manages file transfer requests and supports the concept of "channels"
- The Planning for Execution in Grids (Pegasus) planner - supports data placement steps in the workflow
High capacity networks are deployed all over the world and almost everyone is concerned about how to allocated their bandwidth. However, is bandwidth the real issue?
ESnet4 Target Configuration

- **Science Data Network Core**
- **IP Core**
- **IP core hubs**
- **SDN hubs**
- **Primary DOE Labs**
- **High Speed Cross connects with Internet2/Abilene**
- **Possible hubs**

Fiber path is ~ 14,000 miles / 24,000 km

North America:*
- **Europe** (GEANT)
- **Asia-Pacific** (GEANT)
- **North America**
 - **Chicago**
 - **New York**
 - **Atlanta**
 - **Washington DC**
 - **Dallas**
 - **Los Angeles**
 - **San Diego**
 - **Seattle**
 - **Denver**
 - **Boise**
 - **Boston**

South America:*
- **South America** (AMPATH)
- **Argentina**
- **Brazil**
- **Chile**

Europe:*
- **Europe** (GEANT)
- **CERN** (30 Gbps)
- **Europe**
 - **CERN**
 - **GLORIAD** (Russia and China)

Asia Pacific:*
- **Asia-Pacific** (GEANT)
- **New York**
- **Seattle**
- **Tokyo**
- **Jakarta**
- **Singapore**

Canada:*
- **Canada** (CANARIE)
- **Canada**
 - **Montreal**
 - **Toronto**
 - **Edmonton**
 - **Vancouver**

South America:*
- **South America** (AMPATH)
- **Argentina**
- **Brazil**
- **Chile**

Australia:*
- **Australia**
- **Sydney**
- **Melbourne**
- **Adelaide**
- **Perth**

South America:*
- **South America** (AMPATH)
- **Argentina**
- **Brazil**
- **Chile**

High Speed Cross connects with Internet2/Abilene

Possible hubs

Production IP core (10Gbps)
SDN core (20-30-40Gbps)
MANs (20-60 Gbps) or backbone loops for site access
International connections
Main trend

The ratio between the size of the organization and the volume (and complexity) of the data/information/knowledge the organization owns/manages/depends on will continue to dramatically increase

• Ownership cost of managed storage capacity goes down
• Data/information/knowledge generated and consumed goes up
• Network capacity goes up
• Distributed computing technology matures and is more widely adopted
Managed Object Placement

Management of storage space and bulk data transfers plays a key role in the end-to-end effectiveness of many scientific applications:

- Object Placement operations must be treated as “first class” tasks and explicitly expressed in the work flow
- Fabric must provide services to manage storage space
- Object Placement schedulers and matchmakers are needed
- Object Placement and computing must be coordinated
- Smooth transition of Compute/Placement interleaving across software layers and granularity of compute tasks and object size
- Error handling and garbage collection
Customer requests:

Place $y = F(x)$ at L!

System delivers.
Simple plan for $y = F(x) \rightarrow L$

1. **Allocate** $(\text{size}(x) + \text{size}(y) + \text{size}(F))$ at SE_i
2. **Place** x from SE_j at SE_i
3. **Place** F on CE_k
4. **Compute** $F(x)$ at CE_k
5. **Move** y from SE_i at L
6. **Release** allocated space at SE_i

Storage Element (SE); Compute Element (CE)

www.cs.wisc.edu/~miron
The Basic Approach*

DAG specification
DaP A A.submit
DaP B B.submit
Job C C.submit
.....
Parent A child B
Parent B child C
Parent C child D, E
.....

DAG-Manager

Compute Task Queue

Object-Placement Task Queue

* DAG - Directed Acyclic Graph
Stork – A possible solution

A portable, flexible and extensible Object Placement Scheduler.

- Uses ClassAds to capture jobs and policies (just like Condor)
- Supports matchmaking (just like Condor)
- Provides a suite of data transfer jobs that interface with a broad collection of storage systems and protocols and provide end-to-end reliability
- Supports storage allocate/release jobs
Customer requests:

Place y@S at L!

System delivers.
Basic step for y@S→L

1. **Allocate** size(y) at L,
2. **Allocate** resources (disk bandwidth, memory, CPU, outgoing network bandwidth) on S
3. **Allocate** resources (disk bandwidth, memory, CPU, incoming network bandwidth) on L
4. **Match** S and L
Or in other words, it takes **TWO** (or more) to Tango (or to place an object)!
When the "source" plays "nice" it "asks" in advance for permission to place an object at the "destination"
I am S and am looking for L to place a file

GridFTP Control

I am L and I have what it takes to place a file

GridFTP Put File
The SC’05 effort

Joint with the
Globus GridFTP team
Stork controls number of outgoing connections

Destination advertises incoming connections
A Master Worker view of the same effort
When the “source” does not play “nice”, destination must protect itself
NeST

Manages storage space and connections for a GridFTP server with commands like:

- ADD_NEST_USER
- ADD_USER_TO_LOT
- ATTACH_LOT_TO_FILE
- TERMINATE_LOT
How can we accommodate an unbounded amount of data with an unbounded amount of storage and network bandwidth?