

1http://www.cs.wisc.edu/condor

Getting popular

Figure 1: Condor downloads by platform Figure 2: Known # of Condor hosts

2http://www.cs.wisc.edu/condor

3http://www.cs.wisc.edu/condor

Interfacing Applications w/
Condor

› Suppose you have an application which
needs a lot of compute cycles

› You want this application to utilize a
pool of machines

› How can this be done?

4http://www.cs.wisc.edu/condor

Some Condor APIs
› Command Line tools

condor_submit, condor_q, etc
› SOAP
› DRMAA
› Condor GAHP
› MW
› Condor Perl Module
› Ckpt API

5http://www.cs.wisc.edu/condor

Command Line Tools
› Don’t underestimate them
› Your program can create a submit file

on disk and simply invoke
condor_submit:
system(“echo universe=VANILLA > /tmp/condor.sub”);

system(“echo executable=myprog >> /tmp/condor.sub”);

. . .

system(“echo queue >> /tmp/condor.sub”);

system(“condor_submit /tmp/condor.sub”);

6http://www.cs.wisc.edu/condor

Command Line Tools

› Your program can create a submit file
and give it to condor_submit through
stdin:
PERL: fopen(SUBMIT, “|condor_submit”);

print SUBMIT “universe=VANILLA\n”;

. . .

C/C++: int s = popen(“condor_submit”, “r+”);

write(s, “universe=VANILLA\n”, 17/*len*/);

. . .

7http://www.cs.wisc.edu/condor

Command Line Tools

› Using the +Attribute with
condor_submit:
universe = VANILLA

executable = /bin/hostname

output = job.out

log = job.log

+webuser = “zmiller”

queue

8http://www.cs.wisc.edu/condor

Command Line Tools

› Use -constraint and –format with
condor_q:
% condor_q -constraint ‘webuser==“zmiller”’
-- Submitter: bio.cs.wisc.edu : <128.105.147.96:37866> : bio.cs.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
213503.0 zmiller 10/11 06:00 0+00:00:00 I 0 0.0 hostname

% condor_q -constraint 'webuser=="zmiller"' -format "%i\t"
ClusterId -format "%s\n" Cmd

213503 /bin/hostname

9http://www.cs.wisc.edu/condor

Command Line Tools

› condor_wait will watch a job log file
and wait for a certain (or all) jobs to
complete:

system(“condor_wait job.log”);

10http://www.cs.wisc.edu/condor

Command Line Tools
› condor_q and condor_status –xml

option
› So it is relatively simple to build on

top of Condor’s command line tools
alone, and can be accessed from many
different languages (C, PERL, python,
PHP, etc).

› However…

11http://www.cs.wisc.edu/condor

DRMAA

› DRMAA is a GGF standardized job-
submission API

› Has C (and now Java) bindings
› Is not Condor-specific -- your app could

submit to any job scheduler with minimal
changes (probably just linking in a
different library)

12http://www.cs.wisc.edu/condor

DRMAA

› Unfortunately, the DRMAA API does
not support some very important
features, such as:

Two-phase commit
Fault tolerance
Transactions

13http://www.cs.wisc.edu/condor

Condor GAHP

› The Condor GAHP is a relatively low-level protocol
based on simple ASCII messages through stdin and
stdout

› Supports a rich feature set including two-phase
commits, transactions, and optional asynchronous
notification of events

› Is available in Condor 6.7.X

14http://www.cs.wisc.edu/condor

GAHP, cont
Example:

R: $GahpVersion: 1.0.0 Nov 26 2001 NCSA\ CoG\ Gahpd $
S: GRAM_PING 100 vulture.cs.wisc.edu/fork
R: E
S: RESULTS
R: E
S: COMMANDS
R: S COMMANDS GRAM_JOB_CANCEL GRAM_JOB_REQUEST GRAM_JOB_SIGNAL

GRAM_JOB_STATUS GRAM_PING INITIALIZE_FROM_FILE QUIT RESULTS VERSION
S: VERSION
R: S $GahpVersion: 1.0.0 Nov 26 2001 NCSA\ CoG\ Gahpd $
S: INITIALIZE_FROM_FILE /tmp/grid_proxy_554523.txt
R: S
S: GRAM_PING 100 vulture.cs.wisc.edu/fork
R: S
S: RESULTS
R: S 0
S: RESULTS
R: S 1
R: 100 0
S: QUIT
R: S

15http://www.cs.wisc.edu/condor

SOAP

› Simple Object Access Protocol
› Mechanism for doing RPC using XML

typically over HTTP
› A World Wide Web Consortium

(W3C) standard

16http://www.cs.wisc.edu/condor

Benefits of a Condor SOAP
API

› Condor becomes a service
Can be accessed with standard web service tools

› Condor accessible from platforms where its
command-line tools are not supported

› Talk to Condor with your favorite language and
SOAP toolkit

17http://www.cs.wisc.edu/condor

Condor SOAP API
functionality

› Submit jobs
› Retrieve job output
› Remove/hold/release jobs
› Query machine status
› Query job status

18http://www.cs.wisc.edu/condor

Getting machine status via
SOAP

Your program

SOAP library

queryStartdAds()

condor_collector

Machine List

SOAP
over HTTP

19http://www.cs.wisc.edu/condor

Getting machine status via
SOAP (in Java with Axis)

locator = new CondorCollectorLocator();

collector = locator.getcondorCollector(new
 URL(“http://machine:port”));

ads = collector.queryStartdAds(“Memory>512“);

Because we give you WSDL information you don’t
have to write any of these functions.

20http://www.cs.wisc.edu/condor

Submitting jobs
1. Begin transaction
2. Create cluster
3. Create job
4. Send files
5. Describe job
6. Commit transaction

• Two phase commit for reliability

}Wash, rinse, repeat

21http://www.cs.wisc.edu/condor

MW
› MW is a tool for making a master-worker style application

that works in the distributed, opportunistic environment of
Condor.

› Use either Condor-PVM or MW-File a file-based, remote
I/O scheme for message passing.

› Motivation: Writing a parallel application for use in the
Condor system can be a lot of work.

Workers are not dedicated machines, they can leave the
computation at any time.
Machines can arrive at any time, too, and they can be suspended
and resume computation.
Machines can also be of varying architechtures and speeds.

› MW will handle all this variation and uncertainly in the
opportunistic environment of Condor.

http://www.cs.wisc.edu/condor/pvm/

22http://www.cs.wisc.edu/condor

23http://www.cs.wisc.edu/condor

MW and NUG30
quadratic assignment problem
30 facilities, 30 locations
• minimize cost of transferring materials

between them

posed in 1968 as challenge, long unsolved
but with a good pruning algorithm & high-
throughput computing...

24http://www.cs.wisc.edu/condor

NUG30 Solved on the Grid
with Condor + Globus

Resource simultaneously utilized:
› the Origin 2000 (through LSF) at NCSA.

› the Chiba City Linux cluster at Argonne

› the SGI Origin 2000 at Argonne.

› the main Condor pool at Wisconsin (600 processors)

› the Condor pool at Georgia Tech (190 Linux boxes)

› the Condor pool at UNM (40 processors)

› the Condor pool at Columbia (16 processors)

› the Condor pool at Northwestern (12 processors)

› the Condor pool at NCSA (65 processors)

› the Condor pool at INFN (200 processors)

25http://www.cs.wisc.edu/condor

NUG30 - Solved!!!
Sender: goux@dantec.ece.nwu.edu
Subject: Re: Let the festivities begin.

Hi dear Condor Team,

you all have been amazing. NUG30 required 10.9 years of

Condor Time. In just seven days !

More stats tomorrow !!! We are off celebrating !
condor rules !
cheers,
JP.

26http://www.cs.wisc.edu/condor

Condor Perl Module

› Perl module to parse the “job log file”
› Recommended instead of polling w/

condor_q
› Call-back event model
› (Note: job log can be written in XML)

27http://www.cs.wisc.edu/condor

“Standalone” Checkpointing
› Can use Condor Project’s checkpoint

technology outside of Condor…
SIGTSTP = checkpoint and exit
SIGUSR2 = periodic checkpoint

condor_compile cc myapp.c –o myapp
myapp -_condor_ckpt foo-image.ckpt
…
myapp -_condor_restart foo-image.ckpt

28http://www.cs.wisc.edu/condor

Checkpoint Library Interface

› void init image with file name(char *ckpt file name)
› void init image with file descriptor(int fd)
› void ckpt()
› void ckpt and exit()
› void restart()
› void condor ckpt disable()
› void condor ckpt enable()
› int condor warning config(const char *kind,const char

*mode)
› extern int condor compress ckpt

