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Abstract

In a metacomputing environment like Condor the availability of computational resources changes very rapidly and randomly. Applications designed to work in such an environment should be written to take care of such dynamics. In this paper we describe MW, a software framework that allows users to quickly and easily parallelize scientific computations using the master-worker paradigm in such an environment. MW takes care of systems events like workers joining/leaving allowing users to focus on the implementation of their algorithm. Because MW is based on a layered architecture, users can move from one underlying resource manager like Condor to another like PVM with minimum work. Also MW exposes a very flexible scheduling mechanism that allows users to group their work into classes. This mechanism cuts the communication costs dramatically for some applications as shown by a case study.

1 Introduction


With advances in computer architecture and underlying electronics users today have access to a lot of computational resources. Also with increasing connectivity between machines (most often connected together by the ubiquitous LAN) there is an increasing trend towards metacomputing wherein these sets of machines are used to solve large problems, problems which a decade ago could be solved only with supercomputers. However to effectively use these metacomputers the problem of dividing and distributing a complex computation has to be solved. Although projects like Condor[6], Legion[7] and Globus[8] provide the underlying infrastructure for resource management to support metacomputing, there are still a host of problems encountered in adapting algorithms to work in these environments.


Condor, an example of a metacomputing environment, is essentially an idle cycle scavenger. Condor resides on a set of workstations (also called a Condor pool) observing their characteristics like load average. If it finds machines idle for a considerable period of time it starts jobs submitted to the system on them. However when the owner of machine comes back, Condor either suspends or kills the job running on that machine. 


It is clear that Condor represents a volatile metacomputing system. Machines can be acquired at any time and can go away at any point of time with little notice. This dynamic nature poses new kinds of problems for a user implementing a distributed algorithm. The user has to have an elaborate mechanism to monitor which nodes have been suspended/killed and has to do reassignment of work pieces for killed workers. This puts a lot of extra work in addition to the actual algorithm. Moreover this also ties the implementation to one particular resource manager (in this case Condor) and a total rewrite may be necessary if the user wants to migrate to another environment.


There has been a lot of work in the area of providing a framework for applications in a metacomputing environment. NetSolve[1] provides an API to access and schedule Grid resources in a seamless way but it is not suited for writing non-embarrassingly parallel codes. Everyware[2] is an attempt to show that an application can draw computational resources transparently from the Grid but it is not abstracted as a programming tool. CARMI/Wodi[9], though a useful interface for programming master-worker applications, is strongly tied to Condor-PVM software tool[3].

The goal of our project is to develop an easy to use software framework that allows users to quickly parallelize their applications in a metacomputing environment. The focus is on hiding the characteristics of the underlying environment by abstracting and exposing a complete API to the user. This framework called MW is based on the master-worker paradigm of distributed computing. MW transparently handles the various system events of the underlying resource manager thereby allowing the user to focus on the main algorithm at hand. Based on a layered architecture, MW makes implementation highly portable across different metacomputing environments. Also MW incorporates a very elegant group management mechanism that allows users to group their work into different classes. Using this mechanism, users have to merely manipulate group memberships of tasks and workers. MW takes care of the distribution of tasks to workers based on group memberships. MW is envisioned to work in a heterogeneous environment where machines differ from one another not only in their architecture and operating system but also in their computation power, memory, disk space etc. Along with these static differences, machines can also have dynamic differences like network connectivity, available bandwidth etc. The current architecture of MW makes it possible to do more intelligent distribution of tasks among workers by taking into account this asymmetry between machines and between tasks.


The rest of this paper is organized as follows. Section 2 introduces MW. In particular it describes the architecture of MW and the interface it provides. Section 3 speaks about the various function performed by MW. The next section talks about the group management mechanism of MW taking the matrix multiplication example as a test case. We end with conclusions and some possible future extensions. 

2 MW


MW (which stands for Master-Worker) is a software framework that allows users to easily parallize their applications in a metacomputing environment. MW essentially is a set of abstract C++ classes. It provides interface for the application writer as well as interfaces to the underlying resource manager. As an application writer the user must implement just a few virtual functions of MW. Similarly the Grid application programmer has to write a few virtual functions to port MW to a new metacomputing environment.


The architecture of MW is shown in fig 1. As shown in the figure MW has a layered approach. The application interacts with MW by using the application interface to define tasks. MW interacts with the Resource Management and Communication layer for acquiring machines and communicating between the master and the workers. The core MW abstracts these system characteristics and provides a uniform interface to the application while also performing task and worker management.
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Fig 1. Architecture of MW

We describe these interfaces first before describing the main functions of MW. 

2.1 Infrastructure Interface


The infrastructure software that interfaces with MW should have at least the following capabilities.

· Communication – It should allow data to be passed between the master and workers

· Resource Management – It should interface with the underlying resource manager and be able to

·  acquire/release resources

· query the state of computational resources in the pool

· start jobs on remote machines.

· Detect when resources fail or leave the computation.

This layer, called the MWRMComm (resource management and communication) layer, is an abstract class and is the part of MW that is tied to the underlying metacomputing environment. It interfaces with MW using Infrastructure Programming Interface which abstracts the core communication and resource management requirements for master-worker applications and acts as the eye of MW on the underlying environment. The actual IPI is detailed in [4]. Here we talk about the existing RMComm layers available.


Currently there are three implementations of MWRMComm class. All of them rely on the resource management facilities provided by the Condor system. Since Condor is a dynamic metacomputing environment, they serve as good test-beds to test the fault-tolerant behavior of MW. 


One implementation uses PVM for communication. PVM uses sockets for the underlying communication and its communication library is highly optimized for high performance. However a disadvantage of using this layer is the requirement of the installation of PVM in all the machines in the environment. In the second implementation, communication is done via Condor’s remote I/O mechanism to write to a series of shared files. Since files are used for message passing, communication is very costly. In the third implementation TCP sockets are used for communication. This combines the best of both worlds, communication is not costly and there is no requirement of installation of any software in the pool. Table 1 summarizes the above points. 

2.2 Application Programmers Interface


The application programmers’ interface is very well suited to the work cycles pattern of master-worker computing. In this pattern the user creates a set of tasks in the beginning, which are distributed to the workers. When the results of all these tasks come, the master creates a new set of tasks and sends them out again. This cycle continues until some terminal conditions are met.

	Services
	Condor-PVM
	Condor-FILES
	Condor-Sockets

	Communication
	Messages buffered and passed through pvm_pk() in XDR format
	Messages passed through shared files via Condor Remote I/O
	Messages passed through TCP sockets.

	Resource Request and Detection
	Requests formulated with Condor ClassAds, served by Condor matchmaking, detection notified by pvm_notify()
	Requests formulated with Condor ClassAds, served by Condor matchmaking, detection by checking Condor log files
	Requests formulated with Condor ClassAds, served by Condor matchmaking, detection by checking Condor log files

	Fault Detection
	Faults detected by Condor-PVM and passed through pvm_notify()
	Faults detected by checking Condor logs
	Faults detected jointly by checking Condor logs and socket status

	Remote Execution
	Jobs started by pvm_spawn()
	Jobs started by Condor
	Jobs started by Condor

	On Master Crash
	All workers lost, should again submit requests to get them
	Workers linger for considerable period. A restarting master can detect and admit them into the system.
	Workers lost, should submit requests again to get them

	Communication Performance
	Optimized for Message Passing
	Slowest of the lot in communication
	Fairly Good.

	Comments
	Condor-PVM should be present across all worker machines
	Worker Object files must be available to relink
	


Table 1. The characteristics of the current RMComm Layers.

In order to parallelize an application with MW, the application programmer must re-implement three abstract base classes- MWDriver, MWTask and MWWorker.

2.2.1 MWDriver


MWDriver corresponds to the master in the master-worker computation. This class manages a set of MWTasks and a set of MWWorkers to execute those tasks. MWDriver base class handles workers joining and leaving the computation, assigning tasks to appropriate workers and rematching tasks when the workers are lost. Section 3 describes the features in more detail.

2.2.2 MWTask


The MWTask is the abstraction of one unit of work. The class holds both the data describing that work and the results computed by the worker. This object is created by the MWDriver and is distributed to a worker. The MWWorker executes the work and returns back the results to MWDriver.

2.2.3 MWWorker


The MWWorker corresponds to the worker in the master-worker computation. The MWDriver starts it on a remote machine. The MWWorker listens for work from the master, computes the results and sends them back to the master.

Readers are referred to [4] for the actual API of MWDriver, MWTask and MWWorker. 

3 MW Functionality

The core MW provides the following functionalities.

3.1 Task Management

MW manages the tasks given to it by the user. To do this MW maintains two lists. The to-do list keeps track of which tasks are still to be done. The running list keeps track of the tasks that are being done at any time. Also maintained in the running list for each task is the worker who is executing that task. When a worker running a task goes away, MW moves the task from the running list to the to-do list. In some environments like Condor workers can get suspended. In this case MW either moves the task back to the to-do list or waits for the worker to resume. This policy is configurable by the user. 

MW distributes tasks from the front of the list. Tasks are inserted into the list either at the beginning or at the end. MW also provides ways to sort the task list using some user-defined key.

3.2 Worker Management

MW keeps track of all the workers that it has at any point in the computation. At the start the application typically asks for a certain number of workers. The method of acquiring the desired number of workers is left to the underlying Resource Manager/Communicator (RMComm) interface layer. This enables the RMComm layer to acquire the workers in a manner that is most suitable to the underlying resource manager. Once a worker comes alive MW maintains the state of the worker on the basis of the information provided by the RMComm layer. The RMComm layer communicates the various system events like host doing down, getting suspended to MW using the interface specified earlier.

3.3 Task Distribution

The basic work of MWDriver is the distribution of tasks to the workers. Whenever a worker comes alive MW first sends it a benchmarking task. This benchmarking is user defined and is intended to serve as an indicator of the power of the worker. After the worker returns with the benchmarking results MW starts distributing the user tasks to the worker. This distribution works on a group membership mechanism that is described separately in section 4.

3.4 Checkpointing

Because the MWDriver reschedules the tasks when the workers running these tasks go away, applications running on top of MW are fault tolerant in the presence of failures of all processor failures-except for the master processor. In order to make computations fully reliable, MWDriver offers features to logically checkpoint the state of the computation on the master process on a user-defined frequency. To enable this checkpointing, user must re-implement checkpointing functions for writing and reading the state contained in its application’s master and task classes. During checkpointing MW dumps the state of the computation in a file. This state includes the tasks to be done, the tasks that are being done, underlying RMComm state and a few other system parameters.

3.5 Debugging Facilities

Debugging an application in such an environment is a major issue considering that the entire computation is distributed across machines. To help users debug their applications, MW can operate in a mode called MW-Independent. In this mode the entire computation is contained in a single process with the master and a single worker. The underlying send/recv functions of the RMComm layer map into memcpy operations. There is also a switching from the master to worker and vice-versa at the time of send and recv functions. Since this is a self-contained applications users can debug their implementation using the well known debugging facilities like gdb.

4 Group Management Mechanism

In the architecture described above the application writer doesn’t have sufficient control over the distribution of tasks to the workers. Whenever a worker is ready to receive work, MW would pick the next task from the to-do list and send that task to it. Although the application can order the task list, it may not be sufficient. In particular the driver may want to have a say on which workers a task might be sent to. 

There are several reasons why applications need such a capability. Applications may break up their work into uneven pieces. Some tasks may be difficult (computationally expensive) and some may be relatively simple. In a heterogeneous environment workers too may differ in their computational power. Applications may therefore want bigger tasks to be sent to powerful machines. Another reason why applications may need more control in the distribution of tasks is because of the incapability of some workers to compute some tasks. For example consider an image processing application wherein the master initially sends some chunk of image to each worker. Now if each task is modeled as acting upon a particular area of the image, then it is easy to see that only those workers who have the image area corresponding to a task can operate that task.

The above discussion necessitates a framework in MW wherein applications have enough control over the distribution of tasks. In particular this framework must be

· Easy to Use: - MW must do the actual scheduling work. The application writer must just set a few parameters that would trigger the scheduling

· Scalable: - The framework must scale linearly with the number of tasks.

· Efficient: - The process of selecting next task to give to a ready worker is a frequent operation. Hence the process of selecting the next task must be efficient.

We have developed a framework in MW that gives applications the above-mentioned control over the distribution of tasks. This framework, called Group Management Mechanism, provides applications the capability to do intelligent scheduling. While MW does the actual distribution, applications have only to set a few parameters to enable it. Also this framework scales linearly with respect to the number of tasks. The next couple of sections describe this framework, the workings and the application programmers’ interface.

4.1 Group Management Framework

MW introduces the concept of work classes. These work classes are created by the application and their meaning is therefore application specific. MW provides the API for applications to enroll tasks and workers into these work classes. The basic idea is to group the workers and tasks into appropriate work classes and use this grouping to distribute tasks to the workers. 

As described earlier applications can group their tasks into work classes in any manner. For example one way is to grade the complexity of tasks from 0 to k and assign tasks of complexity i to work class i. Similarly workers can be assigned a work class depending upon their computational power (this could be done by executing a benchmark task on each worker and measuring the time it takes to execute it). All the application writer has to do is to use MW APIs and assign work classes to each task and worker. MW takes care of the actual scheduling.

Tasks and workers can belong to more than one work class. This feature is very useful as it offers great flexibility to the applications in defining the work classes. Thus the scheduling policy of MW is as follows. It distributes a particular task to a worker if the task and the worker belong to at least one common work class. Also MW does not try to distribute a task to that worker that most resembles it (i.e. has more work classes in common with the task than others). We deemed this would add significant extra computation needed to determine the most suitable worker and thus could be a potential bottleneck.

4.2 Application Programmers’ Interface

This section describes the API exposed by MW to enable applications to use the group management framework.

· MWDriver::set_num_work_classes ( int num ) – This function declares the number of work classes the application wants to create.

The following function relate to assigning work classes to the tasks.

· MWTask::addGroup ( int num ) – This function enrolls the task into work class num.

· MWTask::deleteGroup ( int num ) – This cancels the enrollment of the task from the work class num.

Next, these below functions relate to assigning work classes to the workers.

· MWWorker::addGroup ( int num ) – This function enrolls the worker into work class num.

· MWWorker::deleteGroup ( int num ) – This cancels the enrollment of the worker from the work class num.

The MWDriver manages the group information of tasks and workers. When a worker is ready to receiver a task, it finds any available task that has at least one common work class as the worker. For each work class MW maintains a bitmap of tasks belonging to it. This enables MW to do a fast search to find the next eligible task.
4.3 Test Case

To illustrate the advantages offered by MW’s group mechanism, lets take the example of the matrix multiplication example. The example consists of multiplying two large square matrices using MW’s Master-Worker framework. In both implementations the master divides the matrix into smaller pieces and ships these pieces to the workers who multiply these sub-matrices and return the results. The master then reconstructs the resulting matrix. The first implementation does not use the group mechanism while the second uses it. In this section we will compare the communication costs between two implementations illustrating the benefits of the mechanism.

The first example divides the two matrices of size n as shown in Fig 2a. Both the input matrices (labeled A and B) are divided into sub-matrices of size k (assuming k divides n). This results in n2/k2 small matrices for both A and B. The master then ships pairs of these small matrices to the workers to multiply as shown in Fig 2b. Thus in this example the pair of the sub-matrices defines a task. The workers multiply these pairs and return the result (also a square matrix of size k) to the master. The result represents a particular segment of the answer that is reconstructed by the master.


Fig 2a. Shows Matrices A and B


Fig 2b. Shows the sub-matrix paired tasks.

It is easy to see that for each sub-matrix of matrix A there are n/k sub-matrices of B that have to be multiplied with. Since there are n2/k2 sub-matrices of A, the total number of tasks denoted by N is given by the equation
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Since each task is composed of two matrices of size k, the amount of data that is shipped with each task to the worker is given by
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Thus the total data that is shipped from the master to the worker is given by
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The result is just a square matrix of size k. Hence the size of result Sr is given by
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With this the data D2 transferred from the worker to the master is 
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The total data D transferred is then the sum of D1 and D2.
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The second implementation makes use of the group mechanism provided by MW. As in the previous implementation A and B are divided into n2/k2 sub-matrices each of size k. The driver creates n2/k2 work classes. As shown in Fig 3a, each work class corresponds to one segment of matrix B. A worker is assigned a particular work class when it is given a sub-matrix of B as initial data. As in the previous implementation each task comprises of a sub-matrix multiplication. In this case however only one sub-matrix data is included as the task data. The basic idea is to assign each task a work class so that it is routed to only one particular worker who has the corresponding sub-matrix to multiply against. This is depicted in fig 3.

As in the previous case the total number of tasks N is given by
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Since each task is composed of one matrix of size k, the amount of data that is shipped with each task to the worker is given by
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Thus the total data that is shipped from the master to the worker is given by
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The result is just a square matrix of size k. Hence the size of result Sr is given by
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With this the data D2 transferred from the worker to the master is 
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A sub-matrix of B of size k is sent to each worker as initial data. Since the total data equals the matrix of B, this component D3 is given by
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Fig 3a. Shows the sub-matrices of A and B. The bracket number in B’s sub-matrix indicates its work class






Fig 3b. Shows the sub-matrix comprising each task. The bracketed number stands for the work class of the task

The total data D transferred is then the sum of D1 ,D2 and D3.
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As can be seen, the second implementation cuts the communication costs by C where  
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which is significant if n/k is large. This equation also says that as the task size remains the same, as the size of the matrix increases, the difference between the first and the second implementation increases significantly.


The key reason why communication costs in the second implementation are lower is because each piece of data is sent only once to each worker. In the first case it may happen that a worker, who has already worked on a task comprising of the sub-matrix pair (a, b), gets a task comprising of the sub-matrix pair (c, b). Thus the sub-matrix b is transported twice. The second implementation avoids this situation by creating work classes that make sure that a worker with initial data b receives tasks comprising of c and a.

4.4 Experimental Results


In order to verify these savings we implemented the above-mentioned strategies in MW. We counted the number of bytes sent and received by the master in both strategies. The master was given as input a 10000x10000 size square matrix. We then ran both the strategies for various values of k. The graph in fig 4 gives the communication costs of both strategies for various values of k. For comparison purposes, we fixed the number of workers at 12 for all runs.


Fig 4. Shows the Communication Costs of the two strategies


As can be seen the group management cuts down the communication costs significantly. One can see that in all cases, the implementation using group management has communication costs that are almost one-third less than the other implementation. Another interesting thing to note is the increasing gap between the communication costs of the two strategies with the decreasing k. This re-affirms our analysis that as the grain size decreases with respect to the total problem size, the advantages of group management become increasingly clear.

5 Conclusions

MW provides a software framework that allows programmers to quickly and easily parallize their applications in a dynamic metacomputing environment like Condor. This framework hides the system characteristics from the user allowing the application writers to focus on the algorithm at hand. Because of layered architecture, applications written with MW can be ported from one environment to another with minimum effort. Its checkpoint facilities ensure that computational cycles are not wasted in a crash. Its debugging facilities make it an integrated developmental platform.

6 Future Work

In this section we talk about possible enhancements to the current MW architecture.

6.1 Control Tasks

The main work of MWDriver is to distribute the tasks submitted by the user and collect the results sent by the workers. However there are cases when MW itself may want the workers to do some other tasks. Benchmarking is one example of a control task where the task is not strictly related to the actual computation. There could be other information that MW may want from workers that is not directly available from the underlying RMComm layer. For example the Condor system does not maintain network connectivity information between the machines in the pool. MW could use the information such as these to distribute tasks better among the workers. 

The idea is group the MWTasks into two classes. Apart from the class of tasks that are application specific and that are added by the user, we can have some control tasks that are not related directly to the computation. These control tasks are MW specific tasks and they do work for the MW like collecting network information.

6.2 Network Measurement Architecture

The idea is to have an application programmers’ interface through which the user tells MW about the communication requirements to distribute a particular task. By developing a network measurement infrastructure, MW could periodically collect information from the workers regarding network connectivity between the master and the worker. This work of collecting the data can be grouped into the set of Control Tasks as outlined in the previous section. MW can then intelligently match the network requirements of a task with the network connectivity of the workers. For example it can give a task that involves a lot of data transfer to worker that has a high bandwidth connection with the master.

6.3 Task-Task Dependency


Presently MW maintains the tasks as a list. However there may be certain interdependency between the tasks. An example of such a dependency is one where say task 2 must be distributed only after results of task 1 are received. Presumably this occurs because of some boundary value information that needs to be passed with task 2 and is available only after task 1 is evaluated. Thus a more general way to maintain the tasks is a Directed Acyclic Graph (DAG). An arc from A to B in such a DAG would mean a dependency from task A to task B. This would require extension to the existing API to facilitate users to express such a requirement.

6.4 Hierarchical Masters

Currently the architecture has only one master controlling all the workers. Although this is a very simple framework and a lot of applications can be molded into it, the single master may prove a performance bottleneck. One way of dealing with this is to have another level of hierarchy with one master controlling a bunch of other masters and these masters responsible a particular number of workers. This would pose new problems like master-master protocol and task distribution across the masters.
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