
Can HTCondor manage a condominium cluster?
Understanding resource binding parameters

Todd Tannenbaum

May 10, 2013

Abstract

The goal of this project was to conduct a study to understand the basic issues and trade-offs involved in
how well the HTCondor system manages scheduling in condominium cluster environment. In particular,
the trade-offs for adjusting properties such as the time quanta a resource is bound to a specific user is
investigated.

1 Study Background, Justification, and Goals

HTCondor [1] was originally designed to operate across pools of highly heterogeneous non-dedicated desktop
machines [2], and to highly leverage preemptive resume techniques in order to meet scheduling goals [3].
Today, HTCondor is increasingly being asked by administrators to manage so-called condominium clusters.
In a condominium cluster, different user groups purchase the individual servers that make up a homogeneous
shared resource dedicated to batch computing. Given two or more user groups, a typical scheduling policy
would be to assign x% to User A and y% to User B. In HTCondor, a process called matchmaking moves
resources from one group to another; this study investigates how quickly and effectively this can happen by
monitoring both policy enforcement and resource utilization metrics.

In HTCondor matchmaking [4], jobs are submitted into a user agent called a schedd. Periodically, a
centralized service termed the Matchmaker (or alternatively referred to as the negotiator) will assign a CPU
slot on a machine to a specific user according to user prioritization policies configured by the administrator, at
which point the schedd will claim that CPU slot on behalf of the user. This claiming step effectively binds that
CPU slot to a specific user’s workload - that slot will only run jobs submitted from the user that claimed it. In
the event that job preemption is disabled, this binding will endure for a minimum of ClaimWorklife seconds;
the ClaimWorklife is provided by the administrator. Once the amount of time specified by ClaimWorklife has
passed, the claim binding the machine to a specific user will be broken at the next job boundary. At this point,
the machine is said to be unclaimed, and it will sit idle until it is reassigned by the Matchmaker to another (or
potentially back to the same) user.

1

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Parameter Variable(s) Meaning
TimeOfRun T Time of the duration of the experiment
ClaimWorklife CWL Minimum time a CPU slot must be bound to a specific user; directly

corresponds to HTCondor parameter CLAIM_WORKLIFE
NegotiatorInterval N Interval at which the Matchmaker will bind idle unclaimed CPU

slots to a user; directly corresponds to HTCondor parameter
NEGOTIATOR_INTERVAL

MaxJobRunTime Jmax Maximum job runtime in seconds. Actual job runtime is a uniform
distribution between 0 and Jmax − 1 inclusive.

PercentToUserA %A(t) Percent of resources desired to go to User A at time t

Table 1: Control Variables

2 Approach and Experimental Methodology

Our approach is a measurement evaluation. Each experimental run starts with two users, User A and User B,
and a simple policy: User A should get 100% of the machines. After some time, we change the policy so
that User A should get 50% of the machines. Then towards the end of the experiment we put User A back at
100%. We are going to evaluate the system by how closely it can conform to this policy throughout the run.

In the remainder of this section we i) give a detailed explanation of our procedure for running an
experimental trial, ii) present the control variables used and measurements taken, and then ii) explain how
and which sets of experiments were performed.

2.1 Single Experimental Trial Procedure and Control Variables

For each experimental trial, a personal HTCondor pool is instantiated with one startd configured with 20
CPU slots and one schedd. The Matchmaker is initially configured with a policy to give x% of the CPU slots
to User A and 100− x% to User B, and an infinitely long workload of jobs is submitted on behalf of both
User A and User B. During the run, the value of x may be changed to represent a change in the administrator
allocation policy. Throughout the run, metrics are recorded to measure HTCondor’s ability to enforce the
policy and to use the resources efficiently.

More specifically, given a set of control variable values (see Table 1), each experimental trial followed
this procedure:

1. Launch a personal HTCondor instance. Relevant HTCondor configuration settings used for the experi-
ments performed for this study appear in Figure 10 on page 12.

2. Set initial Matchmaker allocation policy for %A(0) via condor userprio commands for User A
and User B. 1

1If you do not know how to do this, see the “How To Configure Fair Share” recipe at http://bit.ly/19egwhx

Page 2 of 13

http://bit.ly/19egwhx

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

3. With HTCondor’s CLAIM_WORKLIFE at 0, submit enough jobs charged to User A and User B such
that neither user will complete the workload within time T . An example submit description file for
Jmax = 120 seconds is shown in Figure 9 on page 11.

4. Let jobs run for Jmax seconds at a Claim Worklife of 0 before we change it in the next step. This is an
attempt prevent our initial experimental start condition from overly influencing monitored dependent
variables; in other words, we are trying to avoid an initial condition where all CPU slots are claimed at
the same time (in practice, it did not help very much).

5. Reconfig CLAIM_WORKLIFE to be CWL via condor config val and/or condor reconfig,
and begin to record the metrics detailed in Section 2.2 by polling the system with condor status
every 2 seconds.

6. Adjust the Matchmaker allocation policy via condor userprio at time t whenever %A(t) 6=
%A(t− 1).

7. At time T , stop recording system metrics and shutdown the personal HTCondor instance.

2.2 Measurements and metrics

While each experiment ran, the following measurements were recorded for each CPU slot by regularly polling
the system with condor status every ≈2 seconds:

1. The state of the slot (value of startd ClassAd attribute State)

2. The time the slot entered the current state (attribute EnteredCurrentState)

3. If the slot is in claimed state, the user who owns the claim (attribute AccountingGroup)

Given these measurements, the following metrics were derived with the intent they could be graphed and
studied:

%C(t) The percent of CPU slots claimed at time t

%CA(t) The percent of CPU slots claimed by User A at time t

CAA(t) The number of CPU slots that transitioned from unclaimed to claimed by User A at time t,
and that were also owned by User A the last time they were in claimed state.

CAB(t) The number of CPU slots that transitioned from unclaimed to claimed by User B at time t,
and that were also owned by User A the last time they were in claimed state.

CBB(t) The number of CPU slots that transitioned from unclaimed to claimed by User B at time t,
and that were also owned by User B the last time they were in claimed state.

CBA(t) The number of CPU slots that transitioned from unclaimed to claimed by User A at time t ,
and that were also owned by User B the last time they were in claimed state.

Page 3 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

m(t) and M The number of matches performed by the Matchmaker at time t and over time interval
T respectively, defined as

m(t) = CAA(t) + CAB(t) + CBB(t) + CBA(t)

M =
T∑
0

m(t)

mwaste(t) and Mwaste When a claim to a slot is broken and subsequently rematched back to the same
user, we call this a “wasted” match, since after all the overhead of consulting the Matchmaker
resulted in no change to the allocation. Defined as

mwaste(t) = CAA(t) + CBB(t)

Mwaste =
T∑
0

mwaste(t)

We also identified two additional useful metrics: Diff (d,D) and Percent Utilization (%U). Let AA(t) be the
percentage of slots that should be allocated to User A at time t according to administrator policy. We then
define

d(t) = |%AA(t)−%CA(t)|

D =
T∑
0

d(t)

to quantify the ability of the system to enforce the administrators allocation policy. If D = 0 the system is
able to react instantaneously and perfectly accurately to an allocation policy. The higher the value of D, the
more off-target the system is performing -vs- the allocation. Next we define percent utilization to be

%U =

∑T
0 %C(t)

T

to capture the ability of the system to efficiently utilize the resources.

2.3 Experiments Performed

In the course of the study, ten experiments each consisting of hundreds of trials were run. For each experiment,
a small subset of variables (usually just one) listed in Table 1 on page 2 were selected to serve as independent
variables while the rest remained as control variables. Next a batch of trials were run, altering the independent
variable in each individual trial. Since each trial typically took more than 20 minutes to run, and an experiment
usually required hundreds of trials in order to sweep a parameter space for an independent variable, I scripted
the above procedure to run an individual trial and submitted batches of experiments into the UW-Madison
CS HTCondor pool. I found it peculiarly satisfying to use HTCondor itself to enable research related to
HTCondor.

Page 4 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Except when stated otherwise below, the default control variable values used for all ten experiments
performed were T = 1080 seconds, CWL = 120 seconds, N = 10 seconds, Jmax = 120 seconds, and

%A(t) =

100 : 0 ≤ t < 1

3T

50 : 1
3T ≤ t < 2

3T

100 : 2
3T ≤ t < T

Experiment Set 1 Explore impact of ClaimWorkLife.

Experiment 1.0 Run 500 trials where CWL = {0, 2, 4, . . . , 998}.
Experiment 1.1 Run 500 trials where T = 4320, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.2 Run 500 trials where N = 5 seconds, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.3 Run 500 trials where N = 20 seconds, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.4 Run 500 trials where N = 40 seconds, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.5 Run 500 trials where Jmax = 30 seconds, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.6 Run 500 trials where Jmax = 240 seconds, CWL = {0, 2, 4, . . . , 998}.
Experiment 1.7 Run 500 trials where Jmax = 480 seconds, CWL = {0, 2, 4, . . . , 998}.

Experiment Set 2 Explore impact of NegotiatorInterval.

Experiment 2.0 Run 60 trials, where N = {5, 7, 9, . . . , 123}.

Experiment 3 Explore impact of MaxJobRunTime.

Experiment 3.0 Run 500 trials, where Jmax = {0, 2, 4, . . . , 998}.

3 Experiment Results

Because lower values for ClaimWorklife give the system more opportunities to correct the current allocation
by breaking the claim more often, it is a key factor in the ability of HTCondor to react to changes in the
allocation policy. In general, lower ClaimWorklife values enable the system to more accurately enforce the
allocation policy. This is demonstrated in Figure 1 on the next page which shows how Diff (D), our metric
for allocation policy adherence, changes for different values of ClaimWorklife. However, we did discover that
setting this value too low had the opposite impact — note how D increases in Figure 1 when CWL drops
below 144 and approaches 0. We found that at these low values for CWL, the system was having trouble
adhering to the allocation because every time a claim is broken, the slot must sit idle waiting to be re-matched
by the Matchmaker. The high rate of claim breaking ultimately resulted in lower overall system utilization;
this effect is shown in Figure 3 on page 8. The large drops in D in Figure 1 that begin at time 330 and 690
seconds, or Jmax/2 seconds before each time the allocation policy changed, is primarily due to an initial
conditions artifact from our experimental method – specifically the fact that all claims were created within
Jmax seconds of each other (see step 4 in Section 2.1). Figure 2 graphs the same metrics, but TimeOfRun

Page 5 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 1: ClaimWorklife impact on Diff from Experiment 1.0, with linear regression trend-line. T = 1080
seconds.

(T) has been increased four-fold; increasing T did not change the fundamental behaviors we had already
observed with smaller values for T .

Utilization decreases as the number of unclaimed slots waiting to be matched increases. The time it takes
to match an unclaimed slots is the sum of the time the slot must wait for 1) a Matchmaking cycle to begin,
plus 2) the time it takes for the Matchmaking cycle to complete, plus 3) the claiming protocol overhead.
The time it takes for a Matchmaking cycle to complete is primarily a function of the number of unclaimed
slots to match and the number of auto-clusters in the job queue. In our study, because all jobs and machines
match each other (i.e. Requirements=True), and because there are only 20 CPU slots in the test pool, the
Matchmaking cycle completes in less than a second once started. Thus in our study, the primary influence on
how long a slot remains unclaimed is how long it must wait for a Matchmaking cycle to begin, which ≈ N/2.
Therefore we would expect the utilization to decrease as N increases as slots will spend an increased amount
of time unclaimed. In addition, we would expect D to increase, since unclaimed slots do not adhere to the
desired allocation policy. Both expectations were confirmed by the results from Experiment 2.0 shown in
Figure 4 on page 9. The influence of different values of N on a sweep of CWL shown in Figure 5 on page 9,
which plots the results from experiment 1.2, 1.3, and 1.4, show that a faster Matchmaking cycle translates to
better scheduling policy enforcement.

Because shorter jobs enable more opportunities for the Matchmaker to correct allocation imbalances
across users, we observe in Figure 6 on page 10 that shorter job run times result in better policy enforcement
(i.e. a lower D value). The zigzag nature of the plot line is because the actual run time of our workload is
using a uniform distribution between 0 and Jmax.

Lastly, we made a couple discoveries by looking at plots of individual trials. In Figure 7 on page 10, the
blue (top) line tracks %CA(t), the percent of jobs assigned to User A at time t, while the red (bottom) line

Page 6 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 2: ClaimWorklife impact on Diff plot from Experiment 1.1, with linear regression trend-line. T = 4320
seconds, i.e. four times longer than in Figure 1.

tracks d(t), the Diff at time t. Note that the number of jobs drops from ≈ 100% to 50% at a faster rate than it
is able to climb back up from 50% to 100%. This behavior is not a anomaly; we found

2T/3∑
T/3

d(t) <
T∑

2T/3

d(t)

to be true in all experiments, typically by a substantial margin. This behavior can be explained because when
the allocation of User A is initially lowered, every claim that is broken can be re-assigned to User B, but
when the allocation is then subsequently raised, only a subset of broken claims (those belonging to User B)
can be re-assigned.

Figure 8 on page 11 investigates the matchmaking situation for the very same trial, and shows that 91 of
119 matches made during run were wasting time in that the slot was simply given back to the same user. In
fact, during this trial, we see that 37 claims were unnecessarily broken before t = 360 when the allocation
was first changed down from 100%. The price paid for essentially constantly “being ready” to change the
current allocation in the event the policy changes in the future is lower system utilization.

When looking at some other trial plots, we noticed that the Matchmaker would occasionally give out one
match to User B during a time when User A had a 100% allocation. This is apparently due to a previously
undetected round-off error in the Matchmaker’s implementation.

Page 7 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 3: ClaimWorklife impact on M and %U plot from Experiment 1.0

4 Conclusions and Future Work

In conclusion, we found in a condominium cluster situation there is a tension between HTCondor’s resource
utilization and ability to accurately adhere to a scheduling policy allocation. The administrator can balance
utilization vs policy adhesion via setting of the ClaimWorklife parameter especially in the event the job
workload includes a significant number of jobs that run for a short period of time. What defines “short” here is
relative to the time interval between completed negotiation cycles. A five minute job runtime is not considered
here to be short if this interval is 20 seconds, but if the negotiator interval is 20 minutes the situation is very
different. Given the negative impact on utilization occurring from increased negotiation times, future work
could include finding a way to decrease negotiation time in HTCondor especially in situations where the
average job runtime is low. One potential solution would be to enable the schedd in certain situations to
re-allocate slots between users on its own without waiting for the Matchmaker.

Additional future work could include leveraging the framework developed for this study into HTCondor’s
regression testing (to catch bugs like the Matchmaker round-off error we discovered), and/or using the
metrics identified in Section 2.2 as the basis for a scheduling quality benchmark. Another area of study could
investigate a mechanism to enable HTCondor to dynamically adjust ClaimWorklife based upon the the current
allocation policy in order to reduce the amount of needless matchmaking depicted in Figure 8. Finally, the
parameters of this study could be broadened to look at different workloads, pool sizes, and policies.

On a personal note, in the course of performing this study I learned first-hand that even an apparently
simplistic system can have a richness of complex interactions that can take significant effort to uncover and
understand.

Page 8 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 4: NegotiatorInterval (N) impact on %U (left graph) and D (right graph) plot from Experiment 2.0.
As N is typically much smaller than Jmax in production settings, we chose to examine values for N in the
range 5 to Jmax + 5 = 125 seconds.

Figure 5: Plots from Experiments 1.2, 1.3, and 1.4 showing the influence of different values for Negotiator-
Interval (N) upon Diff (D) given a range of different values for ClaimWorklife (CWL).

Page 9 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 6: MaxJobRunTime impact on Diff plot from Experiment 3.0.

Figure 7: One trial from Experiment 1 (CWL = 120) showing %CA(t) and d(t)

Page 10 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

Figure 8: Data from same trial depicted in Figure 7 on the preceding page (Experiment 1 CWL = 120)
showing contribution of wasted matches (

∑t
0mwaste(t)) towards sum of all matches (

∑t
0m(t))

transfer_executable = false
should_transfer_files = NO
universe = vanilla
executable = /bin/sleep
arguments = $RANDOM_INTEGER(1,120)
+AccountingGroup = "userA"
queue 10000
+AccountingGroup = "userB"
queue 10000

Figure 9: Sample HTCondor submit description file for Jmax = 120 seconds

Page 11 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

DAEMON_LIST = MASTER,SCHEDD,COLLECTOR,NEGOTIATOR,STARTD
NUM_CPUS = 20
CLAIM_WORKLIFE = 0
UPDATE_INTERVAL = 2
NEGOTIATOR_INTERVAL = $ENV(NegotiatorInterval)
Need to also set NEGOTIATOR_CYCLE_DELAY if the
NEGOTIATOR_INTERVAL is less than 20 seconds
NEGOTIATOR_CYCLE_DELAY = $ENV(NegotiatorInterval)
Disable automatic adjustment of user priorities
I.e. turn off the up-down algorithm so only priority factor is used
PRIORITY_HALFLIFE = 1.0e100
Always match jobs, and never suspend, preempt, or kill a running job
START = TRUE
SUSPEND = FALSE
KILL = FALSE
PREEMPT = FALSE
PREEMPTION_REQUIREMENTS = FALSE
RANK = 0
NEGOTIATOR_CONSIDER_PREEMPTION = FALSE
NEGOTIATOR_INFORM_STARTD = FALSE
Enable setting of config parameters via condor_config_val command
ALLOW_CONFIG = */*
ENABLE_RUNTIME_CONFIG = TRUE
SETTABLE_ATTRS_CONFIG = *
Use an ephemeral port for collector instead of the well-known port
COLLECTOR_HOST = $(CONDOR_HOST):0
Keep log, spool, execute directories in scratch dir if running
experiments under HTCondor itself
LOCAL_DIR = $ENV(_CONDOR_SCRATCH_DIR)

Figure 10: Relevant personal HTCondor configuration settings used when running trials

Page 12 of 13

Todd Tannenbaum HTCondor Condo Cluster Scheduling Study

References

[1] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid. In Fran Berman, Geoffrey
Fox, and Tony Hey, editors, Grid Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons Inc., December 2002.

[2] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter of Idle Workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems, June 1988.

[3] Alain Roy and Miron Livny. Condor and preemptive resume scheduling. In Jarek Nabrzyski, Jennifer M.
Schopf, and Jan Weglarz, editors, Grid Resource Management: State of the Art and Future Trends, pages
135–144. Kluwer Academic Publisher, 2003.

[4] Miron Livny and Rajesh Raman. High-throughput resource management. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1998.

Page 13 of 13

	Study Background, Justification, and Goals
	Approach and Experimental Methodology
	Single Experimental Trial Procedure and Control Variables
	Measurements and metrics
	Experiments Performed

	Experiment Results
	Conclusions and Future Work

