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Profiling Workstations’ Available Capacity For Remote Execution
Martt W. Mutka and Miron Livny

Department of Computer Sciences
University of Wisconsin
Madison, W1 53706

ABSTRACT

Powerful workstations have become widely available as sources of computing cycles.
These stations are brought together into networks for the distribution of mail and the
sharing of servers. The networks allow for the sharing of computing capacity among
the stations. In order for capacity sharing to be effective, there must be algorithms
that allocate the available capacity and long periods when owners do not use their sta-
tions. To understand the profile of station availability, we analyzed the usage pat-
terns of a group of workstations. The workstations were available approximately
70% of the time observed. Large capacities were steadily available on an hour to
hour, day to day, and month to month basis. These capacities were available not only
during the evening hours and on weekends, but during the busiest times of normal
working hours. A stochastic model was developed based on an analysis of the rela-
tive frequency distribution and the correlation of available and non-available interval
lengths. A 3-stage hyperexponential cumulative distribution has been fitied to the
observed cumulative relative frequency of available periods. The fitted distribution
closely matches the observed relative frequency distribution. This stochastic model
is important as an artificial workload generator for the performance evaluation of
remote capacity sharing strategies of a network of workstations. The model assists in
the design of resource management algorithms that take advantage of knowing the
characteristics of the usage patterns.

1. Introduction

Many users now have workstations on their desks to serve their computing needs. These sta-
tions are powerful tools that provide users available computing capacity when needed. The sta-
tions can execute computationally intensive programs that formerly were run on mainframes.
When supplied with a workstation, the user owns the resource. Owners can control access to these
stations and configure them with software to suit their individual needs. To improve the quality
of provided service, stations are brought together into networks to allow sharing of servers, and
the distribution of mail. The network of stations provide flexibility and availability of computing
service. This is an improvement to the previous times when during peak working times of the
day many users competed for computing capacity of mainframe computers. The total computing
capacities of these workstation networks can be huge. As an example, in addition to other com-
puters, the University Of Wisconsin Computer Sciences department has over 100 DEC Micro-
VAXII® workstations. Each workstation has a single chip processor which has roughly the capa-
city of a VAX 11/780 [1]. This capacity is a little less than 2 MIPS {2]. This means the depart-
ment has, from workstations alone, about 200 MIPS at its disposal.

. T This research was supgoned in part by the National Science Foundation under grant MCS81-05904 and by the
Wisconsin Alumni Research Foundation.

® VAX 11/780 and MicroV AXII are trademarks of Digital Equipment Corporation.
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An additional improvement in the quality of service can be obtained if the network of sta-
tions allows the sharing of computing capacity. When a user needs more capacity than what
his/her workstation can supply, available capacity can be allocated from other stations. Networks
where computing capacity is shared among stations can allow a single user to expand the capacity
of his/her station to that of the entire network. The capacity of the user’s station is expanded by
remotely executing background jobs. We have observed in our department a large number of
background jobs that could exploit capacity sharing if the opportunity existed. These jobs ran for
long periods of time with little interaction from users. As an example, we have observed a user
who maintained a queue of 20-30 background jobs awaiting execution for several months. Each
job executed about 1 hour on a MicroVAXTI workstation. Another user maintained a queue of
more than a dozen jobs where each job consumed weeks of cpu time. One of the jobs was
observed to consume 1 month of cpu time on a MicroVAXIL We call networks that allow the
remote execution of background jobs LOcal COmputing capacity eXpanded (LOCOX) networks.
LOCOX networks can contain not only workstations, but other processors (which we call proces-
sor bank nodes) that have no specific owners but serve exclusively as sources of extra computing
cycles. Figure 1 illustrates this environment.

Computing capacity is available to share because stations are not used by their owners con-
tinuously. A number of studies have addressed the problem of allocating remote capacity in a
distributed environment. These include papers on the V-Kemel {3], Process Server [4], and the
NEST research project [5]. For all of these system, the authors recognized that workstations
often are available for remote cycles. The authors of the paper on the V-Kemnel stated that many
workstations are available even during the busiest times of the day. However, these papers did
not profile the availability of the workstations. The focus of these studies was the design of facili-
ties to provide remote execution of jobs on workstations. To evaluate approaches of managing
capacity sharing, we need to understand the characteristics of workstation usage. This means we
must properly profile the workload of workstation activity. A major component of any study is
the workload used. No system evaluation study can avoid confronting the problem of modeling a
workload [6]. If inappropriate workloads models are chosen when studying scheduling policies,
then inappropriate results can occur. Performance indices to be evaluated in a study are critically
dependent on the workload processed by the system [7]. This paper explores the patterns of
activity which owners have with their workstations, and characterizes the extent which capacity is
available for sharing. A model of the workstation utilization is developed as a stochastic process.
Our work enables others the opportunity to use realistic workloads when evaluating capacity
sharing policies. Also, when usage patterns are understood, algorithms that take advantage of the
patterns can be designed. This work enables one to estimate the expected capacity available from
a workstation network, and therefore to predict the turnaround time for background jobs that exe-
cute remotely.

Processor Bank

Figure 1.
LOCOX Network
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To obtain the workload usage profile, we monitored 11 stations at our department for a
period of 5 months. In order to model the workstations as a stochastic process, workstation usage
patterns were analyzed to provide insight on how workstations are used, and how much capacity
is available. The distribution of workstations’ available and non-available intervals has been
profiled. The correlation between available and non-available periods has been characterized.
We looked at how the availability of a station changes from hour to hour, day to day, and month
to month.

Many studies have used exponential distributions for the interarrival times and the service
demand of jobs [8-12]. A number of researchers have observed that the cpu requirements of jobs
on multiuser computers are not exponential. However, these studies profiled processes and not
users. One example is of Leland and Ott [13] who present a study from the observation of 9.5
million Unix® processes and showed that probability distribution of cpu time used is far from
exponential. The distribution of cpu capacity used by processes was approximately 1-rx~¢,
where 1.05<c<1.25. Another example is presented by Zhou [14] who traced Unix processes on a
VAX 11/780 computer. The trace included the arrival patterns and cpu demands of the jobs. The
arrival and cpu demands were observed to have a large coefficient of variation.

Our work profiles the workload of a network of workstations and not of a multiuser com-
puter. It gives the characteristics of the availability of workstation for remote cycles. It is not a
model of individual job’s response times or cpu utilization. We conservatively profile how
workstations can be used by other users without compromising the owner’s control of the works-
tation. The workstation owner maintains control and only allows cycles to be used by others if
the user load of the station is lower than a very small threshold. We present the behavior of the
user as a stochastic process with hyperexponential state time distributions.

In section 2 we describe the technique used for acquiring data on workstation usage. An
analysis of this data is presented in section 3. Section 4 includes a description of a family of sto-
chastic models based on the analysis of section 3. In section 5 we describe how the workload
model can assist the design of resource allocation algorithms. Conclusions and a description of
continuing work are laid out in section 6.

2. Technique Of Acquiring Data

We have monitored the usage patterns of 11 DEC MicroVAXII workstations running under
Berkeley Unix 4.2BSD over a period of five months from the first of September to the end of
January. The stations observed were owned by a variety of users. They were 6 workstations
owned by faculty, 3 by systems programmers, and 2 by graduate students. Two additional sta-
tions used by systems programmers that were only available for monitoring from September
through November have their traces included in the results reported.

We have obtained the profile of available and non-available periods of each of the worksta-
tions. An unavailable period, NA, occurs when a workstation is being used, or was recently used
by its owner so that the average user cpu usage is above a threshold (one-fourth of one percent) or
was above the threshold within the previous 5 minutes. The average cpu usage follows the
method the Unix operating system uses for the calculation of user load in a similar way as the
ps(1) [15] command (process status) computes the cpu utilization of user processes. This load is
a decaying average that includes only the user processes, and not the system processes. The value
of the threshold is chosen so that activities resulting from programs such as time of day clocks or
graphical Representations of system load do not generate user loads that arise above the thres-
hold. An available period, AV, occurs whenever the workstation is not in the NA state.

The workstation usage patterns were obtained by having a monitoring program [16] execut-
ing on each workstation. The monitor on each station executes as a system job and does not affect
the user load. When the workstation is in the NA state, the monitor on each workstation looks at
the user’s load every minute. If the user’s load is below the low threshold for at least 5 minutes,
the workstation’s state becomes AV. During this time the workstation’s monitor will have its

® Unix is a trademark of AT&T Bell Laboratories.
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“"screen saver” enabled. The monitor looks at the user’s load every 30 seconds when the worksta-
tion is in the AV state. Any user activity, even a single stroke at the keyboard or mouse, will
cause the "screen saver” to be disabled and all user windows on the workstation’s screen to be
redrawn. This activity brings the user load above the threshold, and causes the state to become
AV. If no further activity occurs, approximately seven minutes pass before the station’s state
changes to AV. This is because it takes the user load average 2-3 minutes to drop below the thres-
hold, and an imposed waiting time of 5 minutes. The waiting period is imposed so that users who
stop working only temporarily are not disturbed by the "screen saver” reappearing as soon as they
are ready to type another command. The waiting time is adjustable, but it has been observed that
it is a good value to choose without causing an annoyance to users [17). This conservatively
decides whether a station should be a target for remote cycles. Stations are idle much more than
what appears in the AV state. The user load with the imposed waiting time is used as a means of
detecting availability because the station should not be considered a source of remote cycles if an
owner is merely doing some work, thinking for a minute, and then doing some more work. Oth-
erwise a station would be a source of remote cycles as soon as the owner stopped momentarily.
The workstation’s owner would suffer from the effect of swapping in and out of his/her
processes, and the starting and stopping activities of the remote processes.

The monitor keeps records of the workstation’s last 100 state changes. Every ten hours, one
of the workstations gathers the records from all other workstations. This station maintains a log
for the entire LOCOX network. When records are gathered from a workstation, the user load is
not affected. This is because the monitor on the workstation which sends the records executes as
a system job. Since NA states last at least 7 minutes, at most 9 state changes can occur within an
hour. Therefore, we will not lose records due to our sampling rate. Some records were lost

because a few stations had their monitors disabled for a short while, and then enabled later. This

happened rarely and has little significance on our traces. During intervals when station monitors
were disabled, the time was marked as an NA interval.

3. Analysis Of Data

We want to represent the usage patterns of the workstations as a stochastic process so it can
be used to model workstation availability. Such a model can be used in performance evaluation
studies of LOCOX networks, or to support design decisions of resource management algorithms
that take advantage of knowing the properties of the usage pattern. With the workload modeled
as a stochastic process, we do not need to use traces to drive simulation models.

In order to define a stochastic process we have to know the distributions of AV and NA state
lengths, and how state lengths are correlated. The data gathered from each workstation was
analyzed to determine the relative frequency distributions of the AV and NA state lengths. Indivi-
duals stations were analyzed and the characteristics of their distributions are reported. We show
how the length of AV intervals was correlated to the length of subsequent NA intervals, and vice
versa. We report how the availability of remote capacity varied from hour to hour, day to day,
and month to month.

3.1. Distribution Of Usage Patterns

A graph of the cumulative relative frequency of the AV states for all of the stations during
the entire time monitored is shown in figure 2 (the solid line). For each time 7 on the horizontal
axis, the corresponding percentage on the vertical axis is the percentage of AV intervals that were
less than ¢+] minutes. The figure shows that there were many short AV intervals of less than a
few minutes and many very long intervals of an hour or longer. The solid line curve in figure 3
shows the cumulative relative frequency of NA state lengths. As in figure 2, for each time 7 on the
horizontal axis of figure 3, the corresponding percentage on the vertical axis was the percentage
of NA intervals less than ¢+ minutes.

When we look at figures 2 and 3, we notice that there were many short intervals for both the
AV and NA graphs. This leads us to believe that a significant component in the relative frequency
was from short intervals. However, there were more long intervals than what one would expect
to see in an exponential distribution. The graphs show that the percentage of intervals larger than

Profiling Workstations’ Available Capacity for Remote Execution 533

100

901

801

704

60

— Monitored Data — Monitored Data

B R
]

e Fitted Distribution e Fitted Distribution
40- 40-
304 301
207 20+
101 104
0 v . . . \ 0 . . . .
0 120 240 360 480 600 0 120 240 360 480 600
Minutes Minutes
Figure 2. Figure 3.
Distribution Of AV Distribution Of NA

State Durations (all stations) State Durations (all stations)

one hour is greater for AV intervals than for NA intervals. In figure 2 we see that there was a large
number of AV intervals beyond $ hours long (300 minutes). This leads us to the belief that the AV
periods were dominated by three types of periods: short, medium, and long. Short intervals
occurred when users did some work, and then stopped to think for a while before resuming the
use of their workstations. Medium intervals were the result of users leaving their desk for short
intervals, or stopping to do other work during the day. Since users left their offices in the evening
and weekends, scheduled long meetings, and taught or attended classes, long available intervals
occurred. For the NA periods we have identified two types of periods: short and long. The short
component is the result of frequent short activities. The user typed a few simple commands and
then stopped to do something else. The user might have had some jobs that executed for short
intervals even when he/she was not at the station. These short jobs contributed to the user load
which briefly made the station unavailable. The long components are the result of prolonged
activity by the user. Long intervals occurred if the user had long running jobs to execute, which
continued to execute after the user left the station. With this intuition, we seek to match a distri-
bution to each of the relative frequencies observed. Figures 2 and 3 appear to have exponential
components because they increase similarly to an exponential distribution and have long tails. A
mixture distribution of exponentials seems to be a good candidate to fit the observed data [18].
This distribution is sometimes referred to as a k-stage hyperexponeniial distributions, when the
distribution has k components [19). The k-stage hyperexponential distribution function of a ran-
dom variable T is defined as

i=k i=k
F(T)=Y0;F:(t), where Fi(t)=1-¢ ™', and Yo;=1. )
i=] i=1

We look for a k-stage distribution that fits our monitored data well and has a small number of
components. Each component i of a k-stage distribution introduces two parameters that must be
adjusted: A; and ;. On one hand, the more components introduced the better the fit is, but on
the other hand it is more complex to assign values to a large number of parameters. It is
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important to capture the characteristics of a relative frequency distribution with as few com-
ponents as possible. For the AV relative frequency distribution, a good match was achieved by
using a 3-stage hyperexponential distribution. The stages represent the small, medium, and large
AV intervals. The components were assigned the expected values of 3, 25, and 300 minutes.
Weights were assigned by using a least-squares fit [20] for these components to obtain the follow-
ing 3-stage distribution

-t —t —t
F(T4)=0.32(1~¢ 3 10.44(1-¢ B }+0.24(1-¢ 39), @

The small component contributes approximately 1/3 of the distribution. The larger components
account for approximately 2/3 of the distribution of which a little less than 2/3 is the medivm
component, and the remainder is the largest component.

Figure 4 shows the match of the cumulative distribution to the monitored traces for AV inter-
vals smaller than 60 minutes. The curve derived analytically for figure 4 was generated from
equation 2. The distribution of intervals that were less than 60 minutes is an important portion of

" the distribution to match. This is the region one must study to determine whether it is worthwhile
to use workstations as a source for remote execution. We see that the match is excellent between
the two curves. Figure 2 shows the match for AV intervals that were up to 600 minutes in length.
The overall difference between the fitted distribution and the relative frequency distribution is
very small.

Less complexity is introduced when matching the NA intervals because its relative fre-
quency distribution has fewer long intervals. A good match for the NA intervals, Ty, is
obtained if we use a 2-stage hyperexponential distribution. The two components have the
expected values of 7 and 55 minutes. Since each NA interval lasted at least 7 minutes, the distri-
bution is modified so that the probability that an interval is less than 7 minutes is zero. The distri-
bution of NA intervals is defined as

—t —t
0.68(1-¢ 7 )40.32(1-e 55), if 127
F(Tna) =1, if 0<r<7. 3

Figure 5 shows the match between the cumulative distributions of Tys and the monitored relative
frequency for NA intervals less than 60 minutes. The curve derived analytically for figure 5 is
generated from equation 3. The match in figure 5 is very good. Figure 3 shows the match for NA
intervals that were up to 600 minutes in length.

Beyond the first five minutes, the greatest amount the fitted curve in figure 2 deviates from
the curve of the monitored data at any point is approximately 2.5% from below and 1.0% from
above the monitored data. For figure 3, the greatest the fitted curve deviates beyond the seven
minute interval from the observed data is 1.0% from below and 1.5% from above. By using the
Kolmogorov-Smirnov test (KS test) for curve matching [21], we calculate the likeliness that our
observed data could be generated from a random sequence of our fitted distribution. If random
sequences were generated from the distribution of equation 2, it would have approximately an
45% chance of deviating from below as much as our monitored data, and an 85% chance from
above. Random sequences generated from a distribution like equation 3 would have approxi-
mately an 85% chance of deviating from below, and an 80% chance from above as much as our
observed data. These ranges mean that random sequences with distributions of equations 2 and 3
are likely to deviate as much as our monitored data. This gives added confidence in using equa-
tions 2 and 3 as matches for our observed data. We believe that equations 2 and 3 can serve as
means of artificially describing AV and NA interval characteristics for studies involving remote
allocation strategies of workstations.

Each individual workstation had its own usage patterns. The overall results depend on how
individual workstation usage patterns differ. Most of the workstations can be characterized by
their own mixture distributions as defined by equation 1. They can be characterized by three
exponential components for the AV intervals, and 2 exponential components for the NA intervals.
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A good fit was obtained for each of these stations taken individually. Although the magnitude
and contribution of each component varied, each station’s AV distribution had a short component
with expected values that ranged from 3-5 minutes, a medium component that ranged from 25-60
minutes, and a large component that ranged from 150-600 minutes. For the NA components, the
stations had short components ranging from 7-11 minutes, and long components from 45-95
minutes. Two stations did not follow these characteristics. They were stations 5 and 12. They
had an unusual large number of short AV and NA intervals. If our analysis did not include sta-
tions 5 and 12, the overall relative frequency distributions would have fewer short intervals.
Nevertheless, we would still need a three-component hyperexponential distribution to match the
AV intervals and a two-component distribution to match the NA intervals. By doing the analysis
without these stations, we get extremely good matches of the fited distributions to the relative
frequencies by using the same exponential components with only a small difference in the
weighting of each component.

3.2. Correlation Of Available And Non-Available States .

When we build an artificial workload generator, information beyond the distribution of the
states is needed. Given that distributions that closely match the observed distributions of the two
types of intervals can be generated, we need to know how the length of AV and NA intervals
correlate. What can the length of the current interval tell us about the length of the next interval?

Pairs of NA and AV periods were analyzed to determine whether such a correlation exists.
We looked at the traces and labeled AV intervals as short, medium, or long samples. All samples
that were less than 9 minutes were labeled short samples. (Ninety-five percent of intervals of an
exponential distribution with mean of 3 minutes are less than 9 minutes.) Intervals greater than 9
minutes and less than 75 minutes (which is the 95 percentile of an exponential of the medium dis-
tribution with mean 35 minutes) were called medium samples. The remaining AV samples were
labeled large samples. We similarly classified NA samples less than 21 minutes (the 95 percentile
of an exponential distribution with mean of 7 minutes ) to be short samples, and the remaining
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samples long.

With this labeling method, we show a conditional probability graph in figure 6. It shows
that 41% of all AV samples were short, 36% were medium, and 23% were long. Equation 2
weighted the components as 32% short, 44% medium, and 24% long. Our labeling gave a greater
percentage of short intervals than what appears in equation 2. This was expected since some
intervals from the medium and long components are less than 9 minutes in length and therefore
counted as short. This is demonstrated in figure 4 by the curve generated by the distribution func-
tion of equation 2. About 41% of its intervals shown in figure 4 are less than 9 minutes. Of the
NA samples, figure 6 shows that 74% were short, and 26% were long.

We show how NA periods followed AV periods in figure 6. The conditional probability dis-
tribution is very close to the unconditional probability distribution. Short, medium, and long AV
periods followed NA intervals in approximately the same proportion that they occurred. There-
fore we conclude that there is no correlation between the length of the AV and NA periods. This
observation was verified by computing the correlation coefficient [21] of NA and AV periods. It
was a very small positive value.

Although the AV and NA intervals were uncorrelated, a correlation between pairs of intervals
of the same type was identified. An AV pair is two AV periods that are separated by a single NA
period. ' Likewise, an NA pair is two NA periods that are separated by a single AV period. A
correlation was expected because of the way individuals use their workstations. Users tend to
have a cluster of short idle periods, or a cluster of several long idle periods. Some users work on
their workstations infrequently, so they have mostly long AV intervals separated by long or short
NA intervals. Figure 7 shows the conditional probability graph of AV pairs. Short AV intervals
were more likely (64%) to be followed by short AV intervals. Medium AV intervals were more
likely (52%) to be followed by medium AV intervals. Similarly, long AV intervals were more
likely (48%) to be followed by long AV intervals. Furthermore, if a long interval was not fol-
lowed by a long interval, then it was more likely to be followed by a medium interval instead of a
short interval. Short, medium, and long AV intervals were nearly twice as likely to follow the
corresponding short, medium, or long AV interval than any other kind of AV interval. A correla-
tion also existed for NA pairs as shown in figure 8. However, it was much less significant. Short
NA intervals followed short NA intervals only slightly more than they followed long NA intervals.

3.3. Monthly And Daily Variation Of Availability Of Workstations

The availability of remote cycles of individual stations varied from month to month, but the
total system availability of remote cycles remained steady for the entire 5 months. Table 1 shows
the percentage of time each station was available for remote cycles from month to month. The
row labeled as system gives the system availability of cycles. Notice how the system availability

| !

AVAILABLE | NOT-AVAILABLE |  AVAILABLE
|
I

Figure 6.
Conditional Probability of AV, NA State Changes
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remained steady within 3% deviation from the average. This means that there was a large steady
amount of available cycles. The column and row labeled "COV" represent the coefficient of vari-
ation, which is the standard deviation of the availability divided by the average. The coefficient
of variation was computed for each station and for each month. There was a small variation in
most cases. Overall, the stations’ availability was stable. Figure 9 graphically shows how some
individual stations varied their availability, while the system availability remained steady. We
emphasize that the actual idle time of the workstations was much larger than the available time
reported. Our available time value was conservative. A portion of the larger idle time is due to
the fact that any user activity causes a workstation to be unavailable for at least seven minutes. 1f
the seven minute interval for each busy period did not occur, the system availability would
increase approximately 4%. Additional idle time occurred during the NA intervals between user
activities. Therefore, if we were less conservative, there would have been greater observed avai-
lability.

The availability of remote cycles varied during the course of a day. It varied during the
work week and the weekend. It is assumed that there would be a lot of available capacities dur-
ing the evenings, and on the weekends when most people were not working. One might wonder
if there was large available capacity during normal working times. Figure 10 shows how the
availability of remote cycles varied during the week from Monday through Friday between 8am -
and Spm (8-17 hour). It shows how some individual stations’ availability changed during the
day. Early in the morning the system availability was large, and then dropped to about 50%
between 2-4 in the afternoon (14-16 hour). Even at the busiest time of the day there was a large
amount of capacity to use. Figure 11 shows the system availability of capacity on the weekends
between midnight and 11pm (0-23 hour). It confirms the intuition that there was a larger amount
of capacity available at those times. The availability on weekends was between 70-80%. The
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Machine Specific Months Monitored, Percent of Time In Available State
Name September | October | November | December | January | Average Cov
Station 1 89 80 81 88 84 84 0.1
Station 2 86 89 91 94 90 90 0.0
Station 3 73 28 26 63 67 51 04
Station 4 87 84 85 86 81 85 0.1
Station 5 21 0 45 45 32 29 0.6
Station 6 78 81 74 63 69 73 0.1
Station 7 67 27 87 57 91 66 03
Station 8 85 72 70 70 47 69 02
Station 9 79 88 83 85 80 83 0.0
Station 10 82 89 82 80 78 82 0.1
Station 11 81 84 86 81 86 84 0.0
Station 12 3 96 17 - - 39 -
Station 13 80 86 75 - - 80 -
System 70 70 69 74 73 71
cov 0.4 04 04 0.2 03 0.3

Table 1: Availability Of Stations From Month To Month.
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Availability Of Remote Cycles (Month To Month)

busiest time for the workstations on weekends is shown to be between 2pm and 5pm (14-17
hour).

A remote capacity scheduler is likely to want to know on an hourly basis how individual sta-
tions are used. It might wish to know the likelihood that a job placed at a station will be
preempted in the next hour. Table 2 gives a profile of the hourly utilization of individual works-
tations. A station’s hourly utilization is the percentage of the hour the station was in the NA state.
It shows that on the average the hourly utilization of a workstation was less than 10% (NA for less
than 6 minutes) for 53% of the time. For 21% of the time, the hourly utilization was greater than
90%. The only other significant frequency is the 10-20% hourly utilization. This is due primarily
10 single 7 minute NA intervals occurring during an hour period. Table 2 shows that if each hour
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was observed individually, a station was either available for almost the entire hour (VA for more
than 50 minutes), or was busy for the whole hour.

The row labeled "COV" in table 2 is the coefficient of variation. Across all the stations, the
variation of the hourly utilization was small with the exception of the hours that were 10-20% and
90-100% utilized. Although most stations were often busy for the entire hour if they were busy at
all, the larger variation in the 90-100% hourly utilization occurred because some infrequently
used stations such as stations 1 and 2 were rarely kept busy for an entire hour at a time. The large
variation in the 10-20% category occurred because some stations, such as station 3, automatically
ran short programs periodically even when the owner was not at the console. These programs
kept the station unavailable for at least 7 minutes of a large number of hours. Because most sta-
tions do not have these programs, this utilization category has a greater variation.

In addition to the utilization of individual stations, the utilization of the entire system is of
interest to a remote capacity scheduler. It would be beneficial to know the relative frequency dis-
tribution of the system utilization, SUj, of all intervals of length /. The system utilization during
an interval is the average number of stations in the NA state during the interval divided by the
total number of stations. The SU; would help a scheduler estimate the fraction of the system
capacity that is available for the next / minutes. Knowledge of the SU; would help a scheduler
know how likely all stations would be in the NA state simultaneously. Our analysis of the traces
of the stations shows that it was highly unlikely that all stations were in the NA state at the same
time. We observed that during the five months the system was monitored, the longest period in
which no station was available was 10 minutes. This means that from a practical point of view,
there was always one or more stations available. The longest period that one would have to wait
for 2 stations to become available was 25 minutes. The longest period that one would have to
wait for 3 stations to become available was 2 hours.

Table 3 shows the relative frequency distribution of the system utilization for intervals
lengths of 60 minutes, 30 minutes, 10 minutes, and 1 minute. Notice that the system utilization
was less than 40% for almost 80% of all hour intervals. This means that the probability that at
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Machine Percentage Of Hours With This Utilization
Name 0-10 | 10-20 | 20-30 | 3040 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100
station 1 2 8 3 3 2 2 2 2 3 4
station 2 72 8 3 3 2 2 2 2 2 3
station 3 8 44 2 2 2 2 2 1 2 36
stationd | 13 7 3 2 2 2 2 2 2 7
station 5 10 4 8 5 4 3 3 2 4 58
station 6 46 17 7 4 2 2 4 2 3 11
station 7 59 3 2 1 1 1 1 1 1 31
station 8 41 13 6 5 3 3 4 3 3 18
station 9 69 5 3 2 2 2 1 1 2 14
station 10 | 59 14 5 3 2 2 2 1 2 9
station 11 67 5 1 1 1 1 2 1 2 19
station 12 55 2 1 1 1 1 1 1 1 37
stations 13 | 58 3 2 1 1 1 1 1 1 31
Average 53 10 4 3 2 2 2 1 2 21
cov 0.4 1.1 0.3 0.5 03 04 0.5 04 0.1 08

Table 2: Hourly Utilization Of Individual Stations.

least 6 stations were available is almost 80%. There was never an hour where the average
number of NA stations was greater than 9 stations.

Figure 12 shows how, on an hourly basis, the system utilization and individual station utili-
zation compare. The solid curve in the figure comes from data in Table 3 and the dashed line
comes from data in Table 2. Individual stations were likely to be either AV or NA for entire
hours, while the system was likely to have a total of 2-4 stations in the NA state. Because indivi-
dual stations are likely to be either AV or NA for the entire hour, the prediction of whether a sta-
tion is available for an entire hour can be approximated by a Bernoulli distribution. We can view
the station as having a probability p that it is in the NA state, and /-p that it is in the AV state. If
we assume that the behavior of each station is independent, then the probability that £ stations are
in the NA state, ng, can be approximated by the binomial distribution

ng = [ k'(1%+llc)'] prQ-p)-*.

The dashed line in figure 13 is the Bemnoulli density function for p = 0.3 and the solid line is the
corresponding binomial density function. P = 0.3 is shown because the hourly utilization of the
individual stations was more than 50% for approximately 30% of the time. Notice the similarity
of the shapes of the curves in figures 12 and 13. This indicates that the stations can be viewed as
independent and the system utilization can be approximated by a binomial distribution.

Utilization, p | SUe | SUs | SUy | SU,

0<p< 10 6.0 84 [ 130 | 18.0
10 <p< 20 28.1 | 252 | 244 | 246
20 <p< 30 28.2 | 29.1 | 247 | 22.7
30 <p< 40 162 | 153 | 154 | 134
40 <p< 50 8.7 8.8 8.9 7.8
50 <p< 60 6.5 6.7 6.4 5.7
60 <p< 70 44 4.4 43 4.0
70 <p< 80 1.6 1.7 2.1 23
80 <p< 90 0.3 0.4 0.8 1.1
90 <p<100 0.0 0.1 0.1 0.4

Table 3: Relative Frequency Distribution Of System Utilization, SU
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System And Individual Station Utilization Bemoulli and Binomial Probability
Density Functions
Large availability of system capacity means that if a long running sequential job can be dis-
tributed, several stations are likely to be available to serve it. Suppose a user has a job that would
execute on a station for 5 hours. Because it is very likely that more than 6 stations are available
simultaneously for an hour interval, a version of the long running job distributed into 6 or more
processes will likely be able to acquire enough available processing cycles to complete within an

hour.

4. Development Of Stochastic Models

From our results we can define a family of models that describe the behavior of the users at
different levels of accuracy. A first approximation is a model where state times are independent
random variables. In this model, the state lengths are distributed exponentially. The expected
value of the distribution is the mean of the observed AV and NA state lengths.

A more detailed model will include the observations that 3-stage and 2-stage hyperexponen-
tial distributions closely fit the relative frequency distributions of the AV and NA state lengths. In
this model the distribution of the state lengths of the first approximation are replaced by the 3-
stage and 2-stage hyperexponential distributions.

By taking into account the correlation of the state lengths, further detail is put into the
model. This leads to our stochastic model of workstation usage. The length of the next AV
period depends on the length of the current AV period. Likewise, the length of the next NA period
depends on the length of the current NA period. In this model, the type of next interval, whether
it is small, medium, or large, is based on the conditional probabilities presented in figures 7 and 8.
When the next interval’s type is known (small, medium, or large), the next sample’s length is
specified as a random sample from an exponential distribution that is a component of equations 2
or 3 that represent the sample’s type. For example, long AV samples are chosen from an
exponential distribution that has an expected value of 300 minutes.

Further accuracy can be introduced into the model by giving each workstation its own distri-
butions and correlations of state lengths. A workstation’s availability depends on the time of day,
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and the day of the week. A model which includes this information is more complex, and more
precise. We plan to study the models to understand which level of complexity is necessary in
order to capture the important characteristics of workstation availability.

5. Applying The Workload Model To The Design Of Resource Management Algorithms

Design strategies can take advantage of our observations of workstation behavior. Our
model describes when, how much, and for how long remote capacity is available. This informa-
tion is important because there must be long periods of time where owners are not using their sta-
tions in order for capacity sharing to be feasible. This is because a remotely placed job using
shared capacity is preempted whenever the station’s owner resumes with local usage of his/her
station. The remotely placed job can remain at the same location until the workstation becomes
available again, or can be moved elsewhere. Our observations indicate that workstations moni-
tored for a particular hour tend to remain either available or non-available for the entire hour.
This information is ideal for designing schedulers. A scheduler can remotely place a job at a
location and know there is a high probability that the job will stay there for most of an hour
without being preempted. Another important observation was that a workstation with a long AV
interval was likely to have its next AV interval to be long. This information provides an impor-
tant heuristic for a scheduler to use when deciding which available stations to allocate as sources
of remote capacity. Those workstations with recent long available intervals should be considered
before workstations with recent short available intervals when targeting stations as sources of
remote cycles. .

The results of this paper are useful for the development and evaluation of algorithms that
schedule and predict completion times of long running background jobs that execute in a LOCOX
network. Algorithms can be developed that schedule jobs based upon the priority for completion
that a user gives to the jobs, and predict for the user when the jobs complete. In order to predict
completion, an algorithm needs to know the expected availability patterns of remote capacity in
the system. This paper gives insight of this information. The scheduling algorithm can internally
reserve expected future capacity of the system to jobs based both upon the priority that the user
assigns to jobs, and the global priority the user has in relation to other users. From this informa-
tion, an algorithm could give good estimates of when submitted background jobs are expected to
complete. A user could use this information interactively with the scheduler to decide how to
give priority to jobs.

Other applications of the workload characteristics and results presented in this paper are pos-
sible. These examples only serve to give insight on the benefits of knowing the characteristics of
workstation workloads.

6. Conclusions

Networks of powerful workstations have become prevalent in modem computing environ-
ments. These networks of workstations provide the possibility of expanding the capacity avail-
able to a user beyond his/her local workstation to that of the entire network. With the advent of
the LOCOX networks, large computing capacity can be available for general computing usage.
However, special attention is particularly important due to the fact that workstations are private
resources under the control of their owners and only become sources of remote cycles when own-
ers of workstations make them available. In our LOCOX network, the system availability was
approximately 70% for the time observed. Long available intervals were common. Although
availability varied from station to station, the variation of each station was typically small. The
system availability was stable from month to month. Not only during evenings and weekends
was the availability large, but also during the busiest times of weekdays. When stations were
observed for hour intervals, they typically were either available for most of the hour, or unavail-
able for the entire hour.

In this paper, we have presented the profile of the workload of a LOCOX network and a sto-
chastic model that matches it very closely. Since performance evaluation studies are critically
dependent on the workload processed by a system, the workload description is especially impor-
tant. The model of workstation activity presented is based on the observed distributions of AV
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and NA intervals, and their correlation. An exponential distribution does not adequately represent
the relative frequency distributions of AV and NA state lengths. Observations presented in this
paper show that 2-stage and 3-stage hyperexponential distributions fit the relative frequency dis-
tributions extremely well. We found that the length of AV intervals was not correlated with the
length of NA intervals, but the length of pairs of intervals of the same type were correlated with
each other. Additional observations show that each workstation has its own distributions of AV
and NA patterns. :

) Thc complexity of a stochastic model depends on the level of deails included in the model.
It is important to understand which level of complexity is necessary to capture the important
characteristics of a workload. To help understand this, we plan to study scheduling algorithms
described in [22] with the different stochastic workloads presented in this paper. By contrasting
performance results of algorithms when using different workload models, we can learn which
level of detail is necessary. In addition, we plan to develop new algorithms for remote capacity
scheduling and performance prediction in a LOCOX network that take advantage of the
knowledge of the workload characterization.

7. Acknowledgements

The authors would like to thank Mike Litzkow for placing the monitoring program on each
of the workstations so that we could gather the data.

References

[1] C. G. Bell, "Technology 86: Minis and Mainframes Expert Opinion", IEEE Spectrum,
23(1), pp. 36-37, (January, 1986).

[2] P. Ein-Dor, "Grosch’s Law Re-Revisited: CPU Power And The Cost Of Computation,”
Communications Of The ACM 28(2) pp-142-151 (February, 1985). -

[3] M. M. Theimer, K. A. Lantz, and D. R. Cheriton, "Preemptable Remote Execution Facilities
for the V-System," Proceedings of the 10th Symp. on Operating Systems Principles, pp. 2-
12, (December, 1985).

[4] R. Hagrqann, "Processor Server: Sharing Processing Power in a2 Workstation Environment,”
Proceedings of the 6th IEEE Distributed Compuing Conference, Cambridge, MA, (May,
1986), pp. 260-267.

[51 R._Agrawal and A. K. Ezzat, "Processor Sharing In Nest: A Network Of Computer Works-

- tations," Proceedings of Ist International Conference on Computer Workstations,
(November, 1985).

[6] D. Ferrari, "Workload Characterization An Selection In Computer Performance Measure-
ment," Computer 15(4) pp. 18-24 (July-August, 1972).

[7] D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Englewood Cliffs,
N.J. (1978). Chapter 5.

[8] . A. Stankovic, "Simulations of Three Adaptive Decentralized Controlled, Job Scheduling
Algorithms,” Computer Networks, 8(3), (June, 1984).

[9]1 J. A. Stankovic, "Stability and Distributed Scheduling Algorithms", JEEE Transactions on
Software Engineering, SE-11(10), (October, 1985).

[10] J. A. Stankoyic, "An Application Of Bayesian Decision Theory to Decentralized Control of
Job Scheduling,” IEEE Transactions on Computers, C-34(2), (February, 1985).

[11] Y-T Wang and R. J. T. Moris, "Load Sharing in Distributed Systems," IEEE Transactions
on Computers, C-34(3), (March, 1985).

[12] A'. D. Eager, E. Lazowska, and J. Zahorjan, "Adaptive Load Sharing in Homogeneous Dis-
tributed Systems,” IEEE Transactions on Software Engineering, SE-12(5), (May, 1986).

{13] W.E. Leland and T. J. Out, "Load-balancing Heuristics and Process Behavior," Proc. of the
1986 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems



544 Profiling Workstations® Available Capacity for Remote Execution

(May, 1986).

[14] S. Zhouz "A Trace-Driven Simulation Study of Dynamic Load Balancing,” University Of
California Technical Report UCB/CSD 87/305, (March, 1987).

[15] Unix 4.2BSD Manual Page for PS (Process Status).

[16] M. Litzkow, "Remote Unix," Proceedings of the 1987 Summer Usenix Conference Phoenix,
Arizona (June, 1987).

[17] M._ Litzkow, Private Correspondence, Computer Sciences Department, University Of
Wisconsin, Madison, Wisconsin, (April, 1987).

[18] K. S.. Tri.vedi, Probability And Statistics With Reliability, Queueing, And Computer Science
Applications, Prentice-Hall, Englewood Cliffs, N.J., (1982). pp. 129-130.

[191 K. Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Addison-Wesley Publishing Company, 1981.

[20] M. L.' James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital Com-
putation, Harper & Row, Publishers (1977), pp. 285-287.

[21] D. E Knuth, The Art Of Computer Programming, Vol 2: Seminumerical Methods,
Addison-Wesley Publishing Company, (1981).

{22] M. W. Mutka and M. Livny, "Scheduling Remote Processing Capacity In A Workstation-
Proc;ssor Bank Network,"” Proceedings of the 7th IEEE Distributed Computing Conference,
Berlin, West Germany, (September, 1987).

PERFORMANCE ‘87
P.J. Courtois and G. Latouche (editors)
©Elsevier Science Publishers B.V. (North-Holland), 1988 545

ROUTING AND CAPACITY ALLOCATION
IN QUEUEING AND LOSS NETWORKS

F.P Kelly*

Statistical Laboratory
University of Cambridge
16 Mill Lane
Cambridge CB2 1SB
England

How should demands be routed in a network so as to improve the
performance of the network? We consider the question, paying
particular attention to the common features of queueing and loss
networks. We outline how product-form solutions and related
approximation procedures can be used to provide important struc-
tural insights into optimization issues. In particular, they lead to
implicit shadow prices associated with each route and with each
component of the network, where the equations defining these
prices have a local character.

There are a number of implications concerning the extent to
which control and planning can be decentralized. At one level the
results suggest adaptive routing schemes, capable of responding
automatically to local overloads or failures. At another level the
shadow prices can be used as a basis for pricing policy or the
apportionment of revenue between different sections of a network
operation.

In a queueing network an arriving demand makes use of different resources
sequentially in time, and congestion causes delay. In aloss network an arriv-
ing demand requests simultaneous use of different resources, and congestion
causes blocking. Despite these differences there is a remarkable similarity
between the models used to analyse queueing and loss networks. In both
areas product-form solutions arise as exact equilibrium distributions for
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