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Abstract

A High Throughput Computing (HTC) environment deliverggleiamounts of computing capacity
to its users over long periods of time by pooling availablmpating resources on the network. The
HTC environment strives to provide useful computing sesito its customers while respecting
the various resource usage policies set by the many differeners and administrators of the com-
puting resources. Matching jobs with compatible computegpurces according to the job’s needs
and the attributes and policies of the available resoureggires a flexible scheduling mechanism.
It also requires mechanisms to help jobs to be more agileheyp ¢an successfully compute on
the resources currently available to them. A checkpoint igraion facility enables long-running
jobs to compute productively on non-dedicated resourcdse Work the job performs with each
allocation is saved in a checkpoint, so the job’s state catrdresferred to a new execution site
where it can continue the computation. A remote data aceesi#yf enables jobs to compute on
resources that are not co-located with their data. Remagead@ess might involve transferring the
job’s data across a local area supercomputer network or@avieh network. These checkpoint and
data transfers can generate significant network load.

The HTC environment must manage network resources caréfulise computational resources
efficiently while honoring administrative policies. Thigsertation explores the network require-
ments of batch jobs and presents mechanisms for managingnketesources to implement ad-
ministrative policies and improve job goodput. Goodputespnts the job’s forward progress and
can differ from the job’s allocated CPU time because of nétvaverheads (when the job blocks
on network 1/0) and checkpoint rollback (when the job mustl“back” to a previous checkpoint).
The primary contribution of this work is the definition andglementation of a network and CPU
co-allocation framework for HTC environments. Making tretwork an allocated resource enables
the system to implement administrative network policied tmimprove job goodput via network
admission control and scheduling.
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Chapter 1

Introduction

1.1 Motivation

Many users are unsatisfied with the computing capacity eV by a single server, be it a desktop
computer or supercomputer. The user’s computational neegssimply be greater than the ca-
pacity of the server, or the server may be oversubscribeld that the user can obtain only a small
fraction of its resources. At the same time, other serverngsitadle [40]. These users can benefit
from some form of distributed computing, enabling them tmleas additional computing capacity
available on the network.

To distribute a computation manually, the user must chobeeekecution site, transfer any
required data to that site, launch the computation, anagacothe results when the computation
completes. The user chooses the execution site from thef seingers where he or she has an
account based on static server characteristics, inclugipgcted availability and performance, and
current server load, obtained from a network informatiorvise or by probing the state of each
server. If the servers do not share a common file service,abernust manually distribute the data
for the computation to the execution site using a file transfechanism and manually retrieve the
output when the computation completes.

Manually distributing jobs quickly becomes unwieldy as thenber of jobs or potential ex-
ecution sites grows. A distributed job scheduler frees ther from the burden of choosing the
execution site and manually launching the computation. réJeeed not be aware of the state of
the resources in the system or which resources are allotatbe job. The job scheduler locates
resources compatible with each job and allocates resotogelss according to a performance goal,
such as minimizing weighted job response time or maximizitgl system throughput. The sched-
uler can use load information gathered from the availabézetxon sites to quickly choose the best
execution site based on current conditions.

The scheduler manages the allocation of resources to ingpieadministrative policies (such
as user and group priorities) and to ensure that resoureeschroversubscribed. For example, if
a server’s memory is oversubscribed, performance can diegignificantly due to virtual memory
thrashing where CPU utilization drops because jobs are blocked omgagtivity. One solution to
the oversubscription problem, callsgace sharingis to allocate resources (or resource partitions)
to jobs when they are scheduled. The user indicates thergdxgirce requirements when submitting
the job to the system, or the system predicts the job’s resotequirements based on previous
experience with similar jobs. The job scheduler locatesdheired resources and allocates them to
the job. If the job exceeds its resource allocation, the dwlee suspends it until its resource needs
can be met with a larger allocation. While the job is suspdndts resources may be allocated
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to other jobs. The scheduler can also monitor resourcemitications of oversubscription (for
example, high paging rates and low CPU utilization) anddnntally decrease the load on the
oversubscribed resource, by suspending or migrating joiig,performance improves.

The main goal of a space sharing scheduler is to effectiddgate primary resources to jobs,
such as threads of execution on a CPU, memory space, anchdisk. sThe scheduler must consider
many resource characteristics in determining which ressucan potentially service a job, includ-
ing relatively static characteristics such as CPU archite¢ operating system version, and mounted
file systems as well as dynamic performance and load methidditionally, diverse and complex
policies may be associated with the resources in the dis#ibsystem. For example, resources
may be available to different job types at different timeshaf day, and each resource’s policy may
prioritize jobs and users differently, depending on who swrat particular resource. The scheduler
must often address issues of resource fragmentation agpaeking jobs into the available memory
and disk space at a server and packing parallel jobs into/dilable CPUs to minimize unallocated
resources.

An important secondary scheduling goal is to ensure thataiéd resources are in fact used
efficiently. Efficient use of the primary resources can bergfion of the performance of secondary
resources, such as remote servers (for example, netwodefiers), as well as memory, disk, and
network bandwidth. Unlike the allocated partitions of therary resources, these secondary re-
sources are shared with other jobs or users. Other processgng at the same execution site will
compete with the job for memory and disk bandwidth, and @mses at many execution sites may
compete for bandwidth on a shared network or for service fasshared remote server. Allocation
of these secondary resources can achieve similar benefifotmtion of the primary resources,
namely, to police access to the resources according to &traiive policies and to ensure that
resources are not oversubscribed. Oversubscription eéthecondary resources reduces the effi-
ciency of the primary resource allocations because jobsdsp®re time waiting for bandwidth or
remote service and thereby take longer to complete.

1.2 Remote Execution

Distributing jobs to servers on the network resultsemote executignwhere data and other re-
sources required for the job’s execution are not preserlljoon the execution site. In some
systems, jobs are submitted from a front-end node, and e glata must be transferred between
the front-end node and the allocated compute node duringuére. Long-term disk allocations
at execution sites are often limited, so jobs with large sltamust transfer their data between a
mass storage facility and allocated scratch disk spaceabdbcution site during their run. When a
shared network file system is used, the job’s data must bsfeaad between the network file server
and the execution node, using either direct remote proeechlt style operations (as in NFS [72])
or via a local disk cache (as in AFS [30]). In computationatlgmvironments [23, 63, 64], a job
often must provide its own remote data access mechanisr2d [B6,/, 68] to transfer data between
the home site and the allocated remote site, because thajpmake few assumptions about the
computing environment provided at the remote site.

Data transfer can be characterized as a cost of remote edecilthbs must pay this cost to obtain
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the benefit of the additional computing capacity availalvié¢re network. If the job is charged for
network or file server usage, then data transfers can haveeet dost. If the job is charged for
its allocated CPU time, any data transfers that cause thmsjblock have an associated CPU cost,
because the job is charged for the CPU even though it is nogusiwhile the transfer is being
performed. Even if CPU and network resources are free, tteetdansfer can add a utility cost in
terms of increased job run-time. Intelligently managinmoée data access in a remote execution
environment can reduce these costs, allowing the systemlit@dgreater computing throughput to
its users.

1.3 Thesis Statement and Research Contribution

This dissertation explores the efficiency of compute jobdistributed systems by focusing on the
network costs of remote execution. As resources become distrébuted and I/O requirements
grow, data movement on the network presents significantestgis for the efficient use of compute
resources.

The thesis of this work is that scheduling and allocatingvoek transfers in a distributed job
scheduling system can significantly improve deliveredesysthroughput. We demonstrate this
thesis with the following research contributions.

e We propose ajoodputmetric [3] to evaluate the execution efficiency of jobs in enoée
execution environment.

e \We present a profile of scheduling and network usage in thel@atistributed system [37],
deployed in the Computer Sciences department at the UitivefsWisconsin-Madison, to
understand the network requirements of jobs in the systehtaamotivate our network man-
agement mechanisms.

¢ We present a mechanism, calledkecution domainpt], for clustering compute services on
the network to improve data locality.

e We present an implementation of CPU and network co-allonati the Condor scheduling
framework [2].

1.4 Organization of the Dissertation

The dissertation proceeds as follows. Chapter 2 preserageamiew of the Condor High Through-
put Computing (HTC) environment, in which this research w@asducted. We develop our thesis
in further detail in Chapter 3 by describing the network iiegments of remote execution in a dis-
tributed system and presenting @oodputmetric for evaluating the network efficiency of remote
job execution. Chapter 4 presents a case study of exectfioiercy in the Condor job scheduling
system deployed at the University of Wisconsin. Then, ingiés5, we present a simple mechanism
for improving data locality in job scheduling environmeatsd show how we can apply this mecha-
nism in the Condor resource management environment. Gtaptesents the primary contribution
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of this dissertation, a network and CPU co-allocation frawrd for HTC environments, and de-
scribes an implementation of the framework in the Condaruse management system. Chapter 7

concludes the dissertation with a summary of our contriimsgtiand a discussion of possible future
work.



Chapter 2

High Throughput Computing with
Condor

2.1 Introduction

In this chapter, we give an overview of the Condor High Thitgug Computing environment [37],
which served as the platform for the research presentedsrdibsertation. A High Throughput
Computing (HTC) environment [42] strives to provide largeaunts of processing capacity over
long periods of time by exploiting the available computimgaurces on the network. The HTC
system must meet the needs of resource owners, customedrsystem administrators, since its
success depends on the support and participation of eables# groups. Resource owners donate
the use of their resources to the customers of the HTC envieah Before they are willing to do
this, the owners must be satisfied that their rights will speeted and the policies they specify
will be enforced. Customers will use the HTC environmentun their applications only if the
benefit of additional processing capacity is not outweigihyethe cost of learning the complexities
of the HTC system. System administrators will install andrmzén the system only if it provides a
tangible benefit to its users which outweighs the cost of taaimg the system.

Resources on the network are often distributively ownedammgy that the control over pow-
erful computing resources is distributed among many iddials and small groups. For example,
individuals in an organization may each have “ownershipa goowerful desktop workstation. The
willingness to share a resource with the HTC environment vaay for each resource owner. Some
resources may be dedicated to HTC, while others are unbiailar HTC during certain hours or
when the resource is otherwise in use, and still others whrehavailable to only specific HTC
customers and applications. Even when resources arelalesitat HTC, the application may be al-
lowed only limited access to the components of the resourdereay be preempted at any time. Ad-
ditionally, distributed ownership often results in decatited maintenance, when resource owners
maintain and configure each resource for a specific use efuribreasing resource heterogeneity.

The Condor environment addresses these challenges wih gmimary mechanisms [41]:
checkpointing, remote system calls, and classad matcimguakiach of these mechanisms has im-
portant implications for scheduling and allocating netabansfers. The checkpointing mechanism
allows Condor to save a snapshot of a job’s state so it cammtetiat job and migrate it to a new
execution site. These snapshots can be large, and trangférem between execution sites can
generate significant network load. The remote system cathar@sm allows Condor to present a
friendly environment for jobs running on remote executigessby forwarding system calls that can
not be serviced at the execution site to the job’s home nodprficessing, providing transparent
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access to remote data for Condor jobs and enabling morgtenmal control of the job’s behavior
at the remote site. The classad matchmaking mechanisnmdpsothe powerful scheduling mecha-
nisms required for harnessing heterogeneous, distritegetputing resources. We will see in later
chapters that the flexibility of the matchmaking framewankleles the clustering and co-allocation
mechanisms we have developed. We present additional slataut each of these mechanisms in
the following sections.

2.2 Checkpointing

A checkpoint is a snapshot of the current state of an apmitdahat can be used to restart the
application from that state at a later time, potentially ahfierent machine. Checkpointing enables
preempt-resume scheduling. If the scheduler decides tongel allocate a CPU to an application,
the scheduler can checkpoint the application and preemjithiout losing the work the application
has already accomplished. The scheduler can then resurapgheation at a later time when a CPU
is available. Preempt-resume scheduling is essential HTa environment for implementing the
resource allocation policies specified by resource ownaida allocating resources fairly to long-
running jobs. The scheduler preempts running jobs to akoeEsources to higher priority jobs and
when resources are removed from availability. A checkpoamt be transferred over the network to
implement process migration. Checkpointing also provide# tolerance, allowing an application
to restart from the most recent snapshot in the event of &senterruption.

Condor provides user-level, transparent checkpointi@j. [A job linked with the checkpoint
library can be checkpointed at any time by sending it a cheickpsignal. The signal hander,
installed by the checkpoint library, writes the job’s stata file or network socket. Checkpointing
parameters can be set at run-time, allowing the checkpestirthtion and compression options to be
chosen immediately before performing each checkpoint.chieekpoint contains the entire memory
state of the job, as well as additional information aboutdides, pending signals, and other process
attributes, so jobs with large memory image sizes geneaiege theckpoints. Disk space for storing
these large checkpoints may not be available locally at Xkeewgion site. Checkpoint servers can
be deployed around the network to provide dedicated chéukptmrage space. Chapter 5 presents
a mechanism for localizing checkpoint transfers to and foeckpoint servers.

2.3 Remote System Calls

Condor’s remote system call mechanism, illustrated inifedL exports the job’s home environment
to the remote execution site, so jobs need not be re-writtenge with the heterogeneity inherent in
the HTC environment. Condor jobs can be linked with a remgstesn call library that interposes
itself between the job and the operating system [31] at tls¢esy call interface. When the job
performs a system call, the system call library can reditteetcall to a server, called tlehadow
running in the job’s home environment.

Some system calls, such as memory allocation calls, areyalparformed locally and never
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Figure 1: Remote System Calls

redirected to the shadow. Other calls, such as timezoneeoridsntity lookups, are always redi-
rected to the shadow, so it appears to the job that it is rgninirits home environment, instead of
running in a guest account in a potentially different timezo

The remote system call mechanism allows the shadow to ddmive the job accesses files at
the remote execution site. When the job opens a file, the epystem call library makes a request
to the shadow for instructions on how the file should be aetksEhe shadow chooses if the library
should access the file using remote procedure calls backetsttadow, local file access on the
execution site, or a connection to a file server on the netwatll the shadow provides a filename
translation to the library when necessary. The shadow magsehlocal access for a file to improve
performance if the file has been staged locally at the exa@tsite or is available directly from the
execution site using a distributed file system. The shadowatso choose to enable buffering or
compression in the remote system call library for each file.

Trapping system calls in the remote system call libraryvedlthe shadow to monitor and con-
trol the job’s behavior. The shadow sees many of the job'tesysalls directly because they are
redirected to the shadow for execution. For calls that ateredirected, the library can provide
callbacks to the shadow to keep the shadow informed of thHe fp@ihavior and to allow the shadow
to control local system calls as well. The shadow can rectatisics about the job’s run to be
presented to the user and can monitor the job’s resourceicgri®n to detect if the job’s resource
allocation should be modified. The checkpoint and remotéeryall libraries can be integrated
to provide callbacks to allow the shadow to control the jathisckpointing as well. The clustering
and co-allocation mechanisms presented in later chaptiérase this functionality to implement
resource management policies for running jobs in the shadow
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2.4 Classad Matchmaking

Job scheduling in Condor is implemented with the classadmadking framework [56, 57]. The
matchmaking architecture consists of resource providesgurce requesters, and a matchmaker.
Resource allocation follows a three step protocol. Emstfiist advertise resource requests and offers
in the classad language to the matchmaker. The matchmageutes the matchmaking algorithm
to locate compatible resource requests and offers andesotife advertising entities when a match
is found. The requester then contacts the providers dyréxitlaim their resources. The requester
and provider may perform additional negotiation in the rolatep, and either party may decide
not to complete the allocation. If the allocation succedis,entities actively maintain the claim
relationship during the allocation’s lifetime to monitoncaupdate the allocation’s status. Either
entity may sever the relationship at any time, dependindherpblicies and the service guarantees
negotiated between them. Claim monitoring can also incluleep-alive mechanism to detect if
one of the entities has failed. This protocol is illustraiteérigure 2.

The classad language uses a semi-structured data modékrsoi¢ no fixed schema for the
representation of resource requests and offers. Eachroesmequest or offer contains a set of at-
tribute definitions which describe the request or the offeresource. They each also contain a
Requi r enent s expression which specifies the compatibility between rsguand offers and a
Rank expression which indicates preferences. To locate a mathkielen a request and an of-
fer, the matchmaking algorithm evaluates the off€équi r ement s expression in the context
of the request and the requesRsqui r enent s expression in the context of the offer. If both
Requi r ement s expressions evaluate 1o ue, the classads are successfully matched.

The Condor matchmaker executes the matchmaking algoritiodically. The algorithm or-
ders resource requests according to customer priorit@és@arches for the best matching resource
offer (i.e., the offer which the requestfank expression ranks the highest), for each resource re-
guest in turn. Resource requests represent a request frostaareer agent to run a job, and resource
offers represent an offer from a compute server to run a jokudeessful match and claim therefore
results in a job placement on the matched compute servemmaiehmaker supports a preemption
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policy expression, configured by the Condor administrafojob can be matched with a claimed
compute server only if the preempting job’s owner has highe@rity than the preempted job’s
owner and both the compute server’s local policy and the innaéder’s preemption policy expres-
sion allow the preemption. In this case, the running job eepipted during the claim protocol so
the preempting job can start running in its place.

2.4.1 Gang-Matching

Until recently, matchmaking in Condor was strictly bilatkras described above: matches occurred
between a job and a compute server. However, some envirdaaroan benefit from co-allocation
of multiple resources. For example, jobs in a distributesteay may require a software license to
run. Software license managers can limit the number of §edrapplications running at any time
and can control where software licenses may be used. Theroesoin the distributed system may
have heterogeneous license configurations: some compegensay have an unlimited use license,
others may have a license limiting the number of runningiagfin instances, and others may have
no license at all for a given application. Network-basednges are not tied to specific servers but
instead control the usage of an application across a newariain. Managing such an environment
requires co-allocation of licenses and servers, to ensatgdbs run only when and where there is
a license available for them.

Recent research [55, 58] has definedghag-matchingnodel, which extends the matchmaking
framework to support co-allocation. The advertisementigigation is extended to support a dock-
ing paradigm, to specify the relationships between estitiea match. Each advertisement defines
an ordered list of labeled ports. Each port specifies a rédaea bilateral match, so multilateral
match requests are indicated by including multiple porth@advertisement. The gang-matching
algorithm searches for classads that can successfullyk*dd@ request’s ports such that the bilat-
eral constraints specified for each port are satisfied.

A naive implementation of the gang-matching algorithm #raimerates all possible combina-
tions in search of a successful gang-match quickly becomiemable because of the combinatorics
involved. Gang-matching research to-date has therefangséml on performance optimizations to
make the gang-matching algorithm feasible in practice.nf8img classad indexing and heuristic
search strategies have been developed [55].

We developed the network and CPU co-allocation framewoesgmted in Chapter 6 concur-
rently with the gang-matching research, and we have stiiwedake our work compatible with
the gang-matching model. While the gang-matching resdamtised on the general co-allocation
problem, we have explored issues specific to co-allocatetgark and CPU resources and eval-
uated network and CPU co-allocation strategies that canmptemented in the gang-matching
framework. The remaining work required to integrate thesedfforts is detailed in Section 7.1.

2.4.2 Flocking

As described above, resource requesters obtain matchgns&imices by simply advertising their
resource requests to a matchmaker, making it convenientstns to participate in the distributed
system remotely. Users can configure a local job managebtoisvesource requests to a “remote”
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matchmaker (in a different administrative domain, acroggde-area network), and assuming the
user has sufficient priority and permission, the matchmakiématch the job’s resource requests
with resource offers in its domain. Using remote systemscdhe user’s jobs can transparently
access the user’s files while running at the remote compig¢®. si

A job manager that submits resource requests to multiplehmedkers is said to Heocking i.e.,
grouping many “condors” together into a “flock” of resourtleat can be harnessed to run the user’s
jobs. Flocking extends the pool of resources available @auter. When there are insufficient re-
sources available to satisfy the user’s requests, the jolagea sends requests to more matchmakers
until the user’s resource needs are satisfied or until alWknmatchmakers are consulted.

The flexibility provided by the flocking mechanism enablesrago harness increasingly remote
resources, making it more important to manage the efficieficgmote execution. Flocking jobs
between administrative domains requires more data moveawoss longer network distances.
Managing that data movement is the subject of this dissantat

2.5 Summary

Checkpointing, remote system calls, and matchmaking aee tlundamental services provided by
the Condor system to meet the challenges of distributed @hipeand resource heterogeneity. Each
of these services has important implications for the nedtwedficiency of remote execution. Check-
point transfers and remote system calls can generate s@mifnetwork load, and matchmaking
makes it easier for users to harness resources distribuggdamger network distances. In the fol-
lowing chapters, we will examine the network load in the Gumsl/stem, present mechanisms we
have developed to improve remote execution efficiency indégrand describe how these mecha-
nisms can be applicable in other contexts.
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Chapter 3

Goodput

3.1 Introduction

The termgoodputis used in the study of computer networks to describe theatatehich data is
successfully received at the destination of a network stra 59]. Goodput differs from the low-
level throughput of the network stream due to lost or disedrdata packets (i.e., “badput”) and
protocol overheads.

goodput = throughput — badput — overheads Q)

In the general sense, goodput is a measure of the servideaéed a higher system level, compared
to the raw throughput measured at a lower level. It is a meastithe amount of useful work
accomplished by the system and how efficiently system ressuwere used to accomplish that
work.

The goodput versus throughput distinction can be applie@R& allocations as well. Job
scheduling systems often charge users for the elapsed lwak tme of their CPU allocation.
However, users are not generally interested in the amoumtatifclock CPU time they obtain.
Instead, they are interested in the amount of work their lj@ve accomplished. We define a goodput
measure for CPU allocations in an attempt to understandiffeeesthce between the allocated CPU
throughput and the amount of useful work accomplished bysugbs.

For CPU intensive jobs, we can define goodput as the accusdu@PU time of the job and
compare CPU time to wall clock time. However, this definiticem not be applied to other job
classes. We can also define goodput in terms of applicagienHc metrics, like the number of
simulation events processed or frames rendered. Howeegprefer a measure in units of time so
we can directly evaluate the efficiency of the system.

For the purposes of this study, goodput is equal to the tim@utld take to execute a job using
local, dedicated compute resources. The badput and owkri@aoduced by the job scheduler are
a function of the use of distributed or non-dedicated resesur This definition is somewhat subjec-
tive, since the distinction between local and distributad between dedicated and non-dedicated
resources is not always clear. The distribution of computasources ranges from internal mem-
ory and I/O busses to crossbar supercomputer intercoonsctd high speed local area networks
to wide area networks. Likewise, the spectrum of dedicatatbh-dedicated computing resources
ranges from systems where the job competes only with systeaegses to systems where the job
is guaranteed some level of service (with some level of cenfid—no system can make absolute
guarantees) to systems where the job may be preempted atany Therefore, when we apply
the goodput measure to a system, we also define the boundargdrethe benchmark environment
(local, dedicated resources) and the system environmemioe or non-dedicated resources).
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3.2 Goodput of a Batch Job

We begin with a description of the factors that determinegbedput of batch jobs. A batch job
is submitted to a queue where it waits until the schedulerfoahresources available to run it.
When the scheduler decides to run a queued job, it must finstdfi” the job on the allocated
compute resource before the job can begin execution, dthimgobplacemenphase. In an early
batch system, the placement phase would require loadingpbthffom a card or tape reader. In
current batch systems, the placement phase often requadmg the job’s data from a front-end
submission node to a compute node over a network. Once ticerpént is complete, the job
begins its execution. When the job’s execution completesjab enters aleanupphase, where the
scheduler transfers the job’s output to the front-end nodeo(the printer in early batch systems)
and deallocates the disk resources associated with thenjaheocompute node. The phases of
batch job execution are illustrated in Figure 3. The job’sdymut occurs in the execution phase
(shown in bold in the figure). The queueing, placement, aadrzip phases are overheads of the
job scheduling environment. If the job were instead run @alodedicated resources, it would not
need to wait in a queue for resources to become availableibfowéts data to be transferred to and
from a compute node.

The scheduler may terminate the job’s resource allocat@borb the job completes (callgule-
emptingthe job), when for example the job exceeds its resourceatltmt (by running too long
or using too much memory) or if the system must be shutdowmi@intenance. Preempt-resume
schedulers also preempt jobs to give resources to highmiitprjobs. Schedulers on non-dedicated
resources will preempt jobs when the resource is reclaingatslowner. When possible, the job’s
intermediate state is saved in a checkpoint when the jokesmppted, allowing the job to continue
execution from where it left off when it obtains a new allécat Figure 4 shows an example of a
job that is preempted during its run. A job’s run may includanyexecution phases interrupted by
preemptions. To continue execution from the checkpoir@,ctireckpoint data must be transferred
to the new execution site during the placement of the job.

If the job is unable to checkpoint its state when preempteslntork it has accomplished at the
execution site will be lost and must be redone (i.e., it ispd)d analogous to a dropped network
packet that must be retransmitted. Not all jobs on all systeam be checkpointed. Only some op-
erating systems support process checkpointing. Uselkdbeekpointing services [35, 36, 52] often
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require the job to be re-linked with a checkpointing libréoften not possible for commercial appli-

cations) and checkpoint only a subset of system state (Bmple, inter-process communication is
often not fully supported). In some cases, jobs implemegit hwn checkpoint/restart functionality

to work around these restrictions.

Evenif the job is able to checkpoint, it may not have the timesources it needs to successfully
complete a checkpoint. The batch system may preempt theyjamnediately killing it without
warning, or the job may have a limited amount of time to evéeEail resources at the execution site
upon receiving a preemption notification. If the job can mahsfer its checkpointed state over the
network in that time, the checkpoint will be lost.

The job’s execution can also be interrupted for remote detass and periodic checkpointing.
In many cases, it is not possible to anticipate all of the dagaired by the job during the placement
phase. Additionally, local disk resources on the execusiten may be limited, so the job can not
store all of its data locally during execution. In these sasee job will need to access data from
remote sources during its run using a remote I/O library &,41] or a network file system such
as NFS [72] or AFS [30]. The job may also interrupt its exemutperiodically to save its state in
a checkpoint to guard against system failures. In particpkriodic checkpoints can guard against
losing too much work if the job is unable to checkpoint wheegmpted. Figure 5 illustrates how a
job’s execution can be interrupted by remote 1/0 and petiotieckpointing.

3.3 Improving Batch Job Goodput

The goal of this work is to improve the goodput delivered téchgobs. We want jobs to use
allocated computational resources efficiently to impraleresponse time, improve overall system
throughput, and enable users to get more computing doneswittller allocations. A batch job’s
goodput is determined by two factors: the amount of time tewaits on synchronous network
operations (placement, cleanup, checkpoint transfedsr@mote 1/0) during its allocation and the
amount of lost work due to failures, including a failure teckpoint when preempted.

goodput = throughput — network wait time — lost work (2)

Lost work is directly related to the efficiency of checkpaigt in the system. Reducing the
amount of time or resources required to perform a checkmaintimprove the success rate of pre-
emption checkpoints. For example, if the system gives jolsiia of one minute to checkpoint
when they are preempted, then faster checkpointing wilblenaore checkpoints to complete be-
fore the deadline. Additionally, if we can make periodic ckmoints less expensive, then they can
be performed more frequently, resulting in less work losewh failure occurs.
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We present two techniques for improving goodput. The firgh isverlap I/O with computation
whenever possible. The second is to schedule network I/@poave the performance of large
I/O operations. Scheduling network I/O is important for tveasons. First, it can increase the
system’s ability to overlap I/O with computation. Seconden it is not possible to overlap 1/0
with computation, scheduling can improve the performarfcgynchronous 1/0. We begin with a
discussion of two standard techniques for overlapping lith eomputation.

3.4 Overlapping 1/0 with Computation

Overlapping I/O with computation to improve performancen@ a new idea [28]. Traditional
approaches includgpoolingandmultiprogramming65]. Spooling interposes a higher performance
intermediate storage device between the job and its lowéspeance data sources and targets. The
spooler transfers the job’s input data from the data sourtlee intermediate storage in advance of
its execution. The job performs all I/O to the intermedigtrage device, and the spooler transfers
the job’s output data from intermediate storage to its firtichation. In this way, the job offloads
blocking 1/0 operations to the spooler. In contrast, muottipamming keeps the CPU busy by
allocating the CPU to an idle job when the running job blocksan I/O operation. The job still
blocks on 1/0O, but it relinquishes the CPU when it can not wge make forward progress. We
consider spooling and multiprogramming in more detail elo

3.4.1 Spooling

The concept of spooling evolved from the operation of eaatgb processing systems. The punched
cards for many jobs were assembled into a batch and the batehe&d onto magnetic tape by an
inexpensive peripheral computer. The operators traresfdire tape to the main computer, which
read the jobs from tape, executed them sequentially, antevtheir output to another tape. The
operator then transferred the output tape to another paplcomputer which printed the tape’s
contents. Spooling systems (from Simultaneous Peripl@pakations On Line) were introduced
to automate peripheral operations, so human operatorsatide®d to transfer tapes between the
peripheral and the main computers. The computer ran a readea writer program in addition to
the compute job (using multiprogramming). The reader @ogwould read input data for the next
job(s) from punch cards to tape (or later, to disk) while ayeds running, and the writer would
move job output from tape (or disk) concurrent with the jatcution.

Modern operating systems implement a form of spooling infilbesystem buffer pool. When
an application issues a read request to the operating sysitenoperating system reads a block
from disk into a memory buffer and returns the requested tathe application. File blocks are
cached in the buffer pool so that later requests to prewaesid disk blocks can be satisfied directly
from memory. The application writes data to the memory bdfed continues processing, and the
operating system commits the data to disk asynchronousbtriliuted file systems, such as AFS,
use local disk buffers to spool data from remote file servers.
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3.4.1.1 Spooling Input

In general, spooling input requires some form of advancdigtien or planning to ensure that the
job’s input data is available in the spooler’s buffers whers irequested. Prediction can occur at
two levels in the batch job environment. At the file accessllethe job’s future read requests are
predicted based on past read requests. For example, read-ptedicts that the job will access a file
sequentially. When the job requests a file block, the 1/0esysdlso schedules reads for the next few
blocks in the file. At the job scheduling level, the schedidads input data for a job at the compute
site before launching the job. To do this, the scheduler mlusbse the compute site for the job in
advance of the job’s execution. In multi-server systemis, riequires a prediction of future server
availability, including when currently running jobs wilbmplete. Priority inversion can result if
the system predicts poorly, with high priority jobs waitifay servers that are not available when
predicted while lower priority jobs run on servers that ar@lable earlier than expected. Predicting
when running jobs complete requires an estimate of the réngarun-time of each job. One “rule
of thumb” for estimating job run-times based on a study of ljidtime distributions is that the
median remaining lifetime of a process is equal to its curage [27, 33].

Enforcing run-time limits on jobs can limit the penalty forgpredicting run-times. Users sub-
mit their jobs to queues with configured run-time limits, obimg the appropriate queue based on
their own estimates of their jobs’ behavior. The scheduter then use these run-time limits as
worst-case run-time estimates for currently running jobsignificant drawback to run-time lim-
its, however, is that users often find it difficult to accuhateredict their jobs’ run-times, so they
overestimate to avoid job preemptions [19], particuladyjbbs that are not checkpoint-enabled.

In a dynamic resource environment, such as a cluster of edicated workstations, the ef-
fectiveness of spooling input data can be limited becaug@eotlifficulty of predicting resource
availability. In addition to uncertainty about job run-&s) there are no guarantees that a compute
resource will be available to run the next job when the presvimb completes. The resource can
potentially drop out of the pool at any time when it is reclagrby its owner for another purpose.
Likewise, compute resources can join the pool at any timekimgait impossible to overlap the
placement of the first job on a newly available compute resouith computation on that resource.

It can also be difficult for users to give information abouithobs’ file access patterns in
advance. The job’s I/O requirements may depend on the ifputise run and the results of complex
calculations in the job. However, read-ahead strategizs1&, 45, 50] can still be useful in these
cases. The job’s first access to a file will be synchronouslabert sequential accesses to the same
file can be serviced from speculatively pre-fetched dataksldn the spooling area.

3.4.1.2 Spooling Output

Spooling output can be much simpler than spooling inputhéat it does not require any advance
prediction or planning. One concern, however, is the fatgpobled data when the job terminates
or is preempted. Ideally, the job should release its CPltation when it terminates, and any re-
maining spooled output data should be transferred fromxbetgion site by the spooler as network
resources permit. Just as input spooling requires a diskatlbn at the execution site in advance
of the CPU allocation, output spooling potentially reqaitee disk allocation to persist beyond the
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end of the CPU allocation. If the job must quickly vacate alaurces at the execution site when
preempted, some of the job’s spooled output may be lost. i$sisnilar to a failed checkpoint: the
job must rollback and reproduce the lost output.

Kangaroo [66] is an example of a simple user-level mechafisrspooling batch job output to
overlap 1/0 with computation and hide network errors. Agstlated in Figure 6, clients connect to
the Kangaroo server to issue block file read and write requédte server satisfies read requests
for local files by reading the requested file block and sendinga reply to the client. Likewise,
the server satisfies local write requests by writing the estpd file block to disk. For writes to
remote files, the server hands the requests over to the Kemgaover by writing each file block
to a local spool directory, acknowledging the client’s resfy and notifying the mover that a new
block is ready. The mover is responsible for reliably segdipooled file blocks over the network
to the destination server. For reads of remote files, theeséirgt checks the local spool directory
to see if the request overlaps with any previously writtehumcommitted data. If the read can not
be satisfied from the local spool directory, the server fodsdhe read request to a remote server
running on the remote host and forwards the server’s replydelient.

Kangaroo gets its name from the fact that data “hops” thrantgrmediate servers and buffers
on its way to the destination. In the scenario described @bdata in Kangaroo hops from the
application to the local disk buffer and then directly to encde server where it is committed at
the destination filesystem. The architecture allows foreramivanced configurations that route data
through intermediate servers, allowing Kangaroo to takeaathge of variations in link capacity
along the network path and to be more resilient to individink failures.

3.4.1.3 Opportunities for Spooling

Spooling can be used to overlap a job’s I/O with its own corapoih or to overlap one job’s I/O with
another job’s computation. The job itself can implementrabhead and write-behind buffering with
a separate thread of execution for spooling. Parallel Béties (such as Nexus [22]) can be used to
add this functionality to jobs. When the job completes itsaKion, it must transfer any remaining
buffered output from the execution site before relinguighthe allocated resource. In many cases,
the remaining output will be minimal, because the spoolezatt will have been transferring the
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job’s output as it was produced. However, the job may perfartarge write at completion time
to report the final results of the calculation. If the job’'stmut rate is greater than the available
network bandwidth, there can be a significant amount of bedffeutput remaining at the end of the
job’s run. Ideally we would like to overlap this synchrondi(@ at the end of the job’s run with the
execution of another task or job.

The master-worker paradigm [5, 26, 34] provides a promisimgortunity for overlap between
a single user’s tasks or jobs. In a master-worker (MW) appibn, the master partitions the goal,
assigns a sub-goal to each worker, and receives resultswdrirrs complete their assigned tasks.
The master can overlap network 1/0 with computation by segdiata for the next work-step to a
worker before that worker has completed its current woegp-sWWhen the worker completes a work-
step, it uses a separate spooler thread to send the resthtfoltie master. The compute thread(s)
begin processing the next work-step immediately upon cetimg the previous work-step. The
master can use application-specific knowledge to schedolk-steps effectively.

The job scheduler can overlap the I/O of one job with anothidraut advance planning during
preemption. When the scheduler preempts a lower priofiitygoa higher priority job, the scheduler
can spool the input data for the higher priority job beforetavg the lower priority job. When the
higher priority job is ready to run, the scheduler startsnid @victs the lower priority job. The
timeline for this case is illustrated in Figure 7, where leigpriority job B preempts lower priority
job A. This strategy is most effective when both jobs fit in noeynat the execution site. Otherwise,
when the new job starts, the jobs will compete for memory atiie preempted job is checkpointing.

Previous work has shown that spooling techniques can beedpia reduce migration costs.
Pre-copying [69] uses a copy-on-write mechanism to firse segheckpoint of the job’s state while
it continues running. Then, after the initial concurrenéckpoint is written the application is sus-
pended and any memory pages modified since the concurreckpmdiet are transferred again.
Copy on reference [15, 79] allows an application to begircatien on a destination workstation
before all memory pages have been transferred. When theeafomh references a page which has
not yet been restored, the page fault handler first readsathpe fpom the network and then allows
the memory reference to proceed. Memory pages may be ofitiatlig prefetched to reduce the
latency of synchronous page transfers.

3.4.2 Multiprogramming

Multiprogramming relies on the ability to context switchtiween jobs at an execution site. Load
balancing schedulers run multiple jobs per CPU, leveragitegmultiprogramming services pro-

vided by the local operating system at each execution sitadlsharing schedulers, on the other
hand, allocate one or more CPUs exclusively to one job andotitypically implement any form
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of multiprogramming. However, load sharing systems coldd @otentially benefit from multi-
programming for large I/O events. The challenge is that @mgnting multiprogramming at the
load sharing layer has greater overhead, because stamtingg@ping jobs is more costly than local
process context switches.

Figure 8 illustrates an example of multiprogramming in alsharing system. Job A issues a
read request on a file that currently resides on “distantagi® (for example, a tape archive or re-
mote ftp server). Upon receiving the request, the remotséi®ice determines that the request will
block for a long time. For example, a query to the tape arcinigicates that the file is currently not
staged to disk or the remote ftp server is currently unrdaehdob A suspends and/or checkpoints
itself and allows its CPU(s) to be allocated to job B until fihe can be retrieved. When the file is
ready, job A wakes up and preempts job B. Since the checkpbiome job can be overlapped with
the computation of the other, the primary cost of the congeich is the placement cost of job B.
If this placement cost is significantly lower than the time jbb is expected to block waiting to
retrieve the distant file, then switching the jobs will impessystem goodput. Multiprogramming at
this level preserves the exclusive CPU allocations pravioethe load sharing system to maximize
performance rather than requiring that the job share its @®ftUother jobs throughout its lifetime,
as in load balancing systems. The job relinquishes the CRyJvdmen it knows it will not be able
to use it for a significant period of time.

3.4.3 Need for Network Scheduling

As described above, techniques for overlapping I/O with potation can significantly improve the
goodput obtained by batch jobs. However, there are liroiatio the effectiveness and applicability
of spooling and multiprogramming techniques in real systeBoth techniques require additional
buffering (in memory or on disk) at the execution site. WHaemhuffer space is exhausted, remotely
executing jobs must resort to synchronous remote 1/O tgciesi. In dynamic environments, where
resources frequently switch between available and uraleilstates, prediction for input spooling
is very challenging. If CPU availability can not be preddtehen the scheduler must perform
synchronous placements when CPUs become available. lskeiresources may be reclaimed by
their owners at will, jobs may have limited time for checkpaig.

For these reasons, network scheduling can play an impadknin improving the effectiveness
of techniques to overlap 1/0 with computation and can imprthe performance of synchronous
network 1/0 when the techniques can not be applied. For el@mptwork reservations can help
the scheduler ensure that data for the next job will be reatlyeacompute site before the previous
job is expected to finish. The scheduler can also prioritegvark traffic to improve goodput. For
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example, synchronous network 1/O, such as blocking readse¢onote server, should take priority
over asynchronous write-behind of spooled data, assumniffigisnt buffer space at the compute
site.

3.5 Summary

We have presentedgnodputmetric for measuring the efficiency of remotely executingchgobs,
reviewed standard techniques for overlapping I/O with cotation, and described examples where
these techniques can be applied in distributed job scheglalistems. 1/O and computation overlap
is not always possible due to the inability to predict futaystem state and to limited buffer space.
In later chapters, we investigate scheduling techniquasdb not rely on overlap to improve the
efficiency of network I/O. In the next chapter, we providetifier motivation for the goodput metric
by presenting performance statistics gathered in a prmauCtondor installation.
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Chapter 4

Goodput Case Study

4.1 Introduction

In this chapter, we examine the factors that effect goodpthe Condor pool at the University of
Wisconsin-Madison Computer Sciences department. Wemiretsistics gathered over atwo and a
half year period. In that time, the size of the pool has grosemf300 to over 500 CPUs, in part due
to the addition of 192 dedicated Intel Linux CPUs. The posbahcludes approximately 100 non-
dedicated lab workstations that are rebooted nightly ariirih-dedicated desktop workstations
for graduate students, professors, and departmental staff

Significant network upgrades were performed during thigogerAt the start of the period, the
machines were distributed between about 20 10 Mbps Ethsuabetets and 10 100 Mbps Ethernet
subnets. The subnets were linked by a subset of the depdidraigyit routers, which each provided
approximately 30 Mbps throughput to a switched 155 Mbps ATadKbone. Since then, most
machines were moved from 10 Mbps to 100 Mbps Ethernet nesyarkd the subnets were linked
by a single backbone router capable of routing at link speeds

4.2 Goodput Index

To evaluate the goodput delivered in the Condor pool, weeémginted a “goodput index” by sub-

mitting a small number of representative jobs and monitptineir performance. The goodput index
functions like an index in the stock market. Focusing on tegggmance of a small number of rep-
resentative jobs gives an indication of the overall behagfadhe system and allows comparisons
of system behavior over time. In a distributed system likedw, it can be difficult to gather and

analyze statistics for all jobs in the system, particulavlyen jobs cross administrative domains
using flocking. The data gathered for the index jobs can shmwdystem changes (in policy con-

figuration, job workload, and available resources) effeetgoodput of different types of jobs.

We constructed the index by submitting 10 jobs with chedkbsizes of 4, 24, 48, 96, and
180 MB between July 1998 and March 1999, to represent jolisatbald run efficiently on the
32, 64, 128, and 256 MB workstations available in the Conaml.pEach job simply executed a
busy-loop and did not perform any file I/O. The jobs’ logs meleml how long each job ran at each
execution site, when the job successfully checkpointed hav much CPU time was saved in each
checkpoint. From the logs, we computed the “badput” for tiesjas the difference between the
job’s run-time and saved CPU time. The badput has two compsneork lost due to checkpoint
rollbacks (i.e., when the job is unable to checkpoint whexeprpted, so work since the last check-
point is lost) and low CPU utilization of checkpointed workedto remote execution overheads. The
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total “badput” recorded for these jobs is plotted as a paaggnof total run-time in Figure 9. The
figure also plots the remote execution overhead (the pexgerdf the allocated CPU time that went
unused) and the percentage of the job’s run-time that wasll@sto checkpoint rollbacks.

The figure shows that all jobs used less than 90% of theiratatCPU time (i.e., the overhead
for each job is over 10%). We believe that most of this ovedhieacaused by Condor’s suspend
policy. When interactive activity is detected on a workstat Condor suspends the job instead of
immediately preempting it. If the interactive activity lsat-lived, the job can be resumed, avoiding
the overhead of preempting and re-scheduling the job. Jab$e suspended frequently if there
is intermittent interactive activity on a machine for longripds of time. Further evaluation of the
suspend policy and its impact on system efficiency was bettomdcope of our study but would be
worthwhile future work.

The figure shows an additional increase in badput for the yalis larger checkpoints. Two
factors account for this. First, the jobs with larger chegifs spent more time saving and restoring
their checkpointed state, accounting for an additional §%aalput for the job with a 180 MB
checkpoint compared with the 4 MB job. Second, we see andser work lost due to checkpoint
rollbacks for the jobs with larger checkpoints. Rollbacksaunted for less than 1% of the 4 MB
job’s badput, but the 180 MB job lost approximately 4% of im+time to checkpoint rollbacks.
During this time, we frequently saw throughputs of 3 Mbps awer for individual checkpoint
transfers to the checkpoint server, causing transfers @MB checkpoints to take over 8 minutes.
Condor was configured with a 10 minute preemption window,cds jthat took longer than 10
minutes to checkpoint were killed, accounting for 70% ofltrge job’s failed checkpoints.

Two additional causes of checkpoint rollbacks are appdrent the cumulative distributions
shown in Figure 10. Over 85% of all rollbacks resulted in lgss 10 minutes of lost work. This
is explained by the fact that Condor was configured to chaokpmly those jobs that have run for
at least 10 minutes. Jobs that were preempted within 10 esnoit startup were killed without a
checkpoint because the cost of checkpointing was seen wealt the benefit of saving the small
amount of work. Because only a small amount of work was lostanh case, those rollbacks
accounted for under 20% of the lost work. A second clustehetkpoint rollbacks appears at the 3
hour mark. Condor jobs performed periodic checkpointsye8drours. Unfortunately, the periodic
checkpoint process was slightly error prone and would c#usgob to abort and rollback under
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some circumstances. Even though this error occurred vémquently, it accounted for another
20% of the lost work because 3 hours of work was lost each time.

In summary, we saw approximately 12% badput related to guoktransfers for large jobs:
8% caused by the overhead of performing synchronous trasffearge checkpoints and 4% caused
by checkpoint rollbacks. We have seen greater badput latetites that do not allow jobs to
checkpoint when preempted (i.e., the job is immediateliedtito avoid any interference with the
workstation owner). For example, a set of jobs running in@uador pool at the University of
Bologna, where jobs were not allowed to checkpoint whenmpted, lost over 25% of their run-
time to checkpoint rollbacks. Increasing the frequency exiquic checkpoints can help increase
goodput in these environments.

4.3 CPU Availability

We monitored keyboard activity for all non-dedicated hasthe Condor pool between November
1999 and April 2001 to profile the capacity available to benbased by Condor jobs. Condor jobs
only run on lab and desktop workstations when they are nosénhy interactive users, according
to keyboard activity and load average. We define an idle gdetdobe a time interval between
keystrokes of duration greater than 15 minutes. We loggedlal periods for 566 hosts during
the monitoring experiment (241 lab workstations and 32%ktd@sworkstations). Some hosts were
online for only a part of the monitoring time.

Figure 11 presents cumulative distribution plots for therkstation idle times. Overall, the
hosts were idle 75% of the time. This agrees with an earliggysthat found more than 70% of
workstation capacity in the department went unused by viatik& owners [48]. As a group, the
lab workstations are significantly less idle than the dgsktorkstations, and the lab workstations
are never idle for more than 24 hours because of the dailydsitée reboots. We categorize each
idle period as either short (less than one hour), mediunwget one and three hours), or long
(greater than 3 hours). 51% of the idle periods lasted one twoless, accounting for 7% of total
idle time. 25% of the idle periods lasted more than three $icaccounting for 83% of total idle
time.
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Figure 11: Distribution of Available Computing Capacity

The large number of short idle periods has important impboa for the goodput in the system.
The system can potentially expend a significant amount aforét resources chasing the last 7%
of capacity delivered from the short idle periods. If we caedict the future availability of CPU
resources, we can avoid paying too high a cost for those sitlodations. Previous work [47]
explored simple predictors of future availability in ther@@or system with promising results. Future
availability was accurately predicted based on availgbih the same hour on the previous day
(accounting for weekday vs. weekend patterns) and on reseittibility. Selecting the workstation
that had been available the longest was shown to cause feggmptions than random selection.

The Network Weather Service [75] provides sophisticatafiopmance forecasting using time-
series analysis. In one study [76], the NWS made short tefirsétonds) and medium term (5
minutes) predictions of CPU performance with a reportedcglpnean absolute error of less than
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Figure 12: Available Condor CPUs (February 2001)

10%, where error was computed as the difference betweenddefed CPU performance and the
performance obtained by a test process.

We have added some simple support for future availabiligdiation into the current version of
the Condor system. Condor’s description of each machineinciwdes how long that machine has
been available to run jobs, the length of the machine’s tastval of availability, the percentage of
time that machine has been available over its lifetime insysem, and Condor’'s own prediction
of the machine’s future availability based on past histarg a configured level of confidence. If
the machine’s current period of availability #sseconds and the level of confidencd.i%, Condor
predicts that the machine will be available for anotlieseconds, wheré of the past available
intervals greater thad were P seconds in duration or longer. If there were no previousvate
greater thamd, Condor simply predict® = A % (2.0 — L). Jobs are free to use any combination of
these availability statistics in choosing their execusdan.

Figure 12 plots the percentage of available CPUs in the Qgmalal for two weeks in February
2001. Daily cycles of CPU availability are clearly prese®PU usage increases steadily from about
8 AM to a daily peak at 4 PM, with another smaller increaser let¢he evening. Two sharp drops
in the number of available CPUs occur each morning, firstradai AM when the Windows lab
workstations are rebooted and then again at 4 AM when the ldhiworkstations are rebooted.

4.4 Job Placements

Figure 13 plots the number of job placements and preempimiireted by the Condor matchmaker
between November 1998 and April 2001. The matchmaker preseanjpb when it decides to run
a higher priority job in its place. Job preemptions causeddspurces becoming unavailable (for
example, a workstation owner reclaiming the workstatior) iaitiated locally at the execution
site without the matchmaker’s involvement and so they ateimeduded in these statistics. The
upper plot illustrates that the number of job placementsdagr varies between 500 and 43000,
with a median of 4279 job placements per day (i.e., approéiyne8 per minute). Frequent job
placements can generate significant load on the network.ekample, 3 placements per minute
for jobs that have 64 MB of data (on average) will generate\emage of 25 Mbps of placement



25

45 T T T T T T T T T

a0 L Job Placements——
Job Preemptions------

35 1

30t -
25
20 |
15}
10 | -

Daily Totals (thousands)

I -

W o U gy
R Tl s LT ] Lol i

121 23 45 6 7 8 9101112 1 23 4 5 6 7 8 91011121 2 3 4
1998 1999 Month 2000 2001

S Ll e
o JLSMACA I o (T T T gt s Ut B - Do il gt e g AT i T

Figure 13: Job Placements and Preemptions

140 T T T T T T T T T T T T T T T

I Jol; Plalcemlents;
120 - Job Preemptions------ -

40 .

,,,,,,,,,,,,,,,,,

Daily Average (10 min periods)

20 |- ; ) ) .
I S e S S S S e M W T i Lot i

1 1 1 I 1 1 1 |:7| |m Tz 1 1 1 H|> : mjl_jul:it;'rUlk»qr:‘/;m——
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 14: Job Placements and Preemptions by Time of Day

traffic. On average, about 18% of these scheduled job platsmesempt a lower priority job. The
frequency of job placements varies significantly from dayday according to the job workload.
Large numbers of short-running jobs submitted to the systamgenerate significant spikes in
scheduling activity, as seen, for example, in Septembed.200

Figure 14 illustrates how the number of job placements am@mptions varied throughout
the day in the first quarter of 2001. The number of job placéamend preemptions increased
during work hours, when workstation activity increasesisiiag CPUs to frequently switch between
available and unavailable states. A spike in the numberxblacements occurred after 5 AM, when
the lab workstations completed their reboots.

4.5 Checkpointing

Condor job checkpoints include the job’s entire memory imafje see checkpoint sizes range
from 1 MB to over 512 MB. Checkpoint sizes have been incrgaginthe pool as the memory
available on workstations in the department increasedluassrated in the cumulative distribution
plots in Figure 15. In 1998, over 97% of all checkpoints veritwvere under 64 MB in size. That
percentage decreased to 76% in 1999, 69% in 2000, and 51%®in 20terestingly, there was a
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greater percentage of checkpoints over 192 MB in 1999 an@ #Gh seen so far in 2001.

Figure 16 graphs the daily total amount of checkpoint dattiem by Condor jobs to the check-
point servers, showing the general trend in increased goguktraffic, as checkpoint sizes and the
number of CPUs in the pool increase. It is not uncommon to see%D GB of checkpoint writes
in one day, for an average checkpoint write load of over 5 Mbps

A Condor job will only read the same checkpoint more than aifickere is a rollback, so
comparing checkpoint write traffic to checkpoint read tcadfn give insight into the goodput of the
Condor pool. A job will fail to successfully read or write agztkpoint if its allocation is terminated
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before the checkpoint is completely read or written or ifréhis a checkpointing error, so failed
checkpoint writes are a sign of rollback and failed checkpmads are a sign that some allocations
are shorter than the job placement time. Figure 17 showsaihetdtal number of checkpoint reads
and writes to the main checkpoint server, both successtulinauccessful, for the first three months
of 2001. There were more checkpoint reads than writes in 36%eadays shown the upper graph,
signalling a potentially significant amount of lost alldcattime due to checkpoint rollbacks. An
investigation of the Condor logs found two problems caushogdor jobs to abort after reading a
checkpoint: missing data files and corrupt checkpoints. dGokept attempting to restart the jobs
each time they failed, causing the large number of additiohackpoint reads. These errors can
generate significant badput in the pool, because CPU anddret@sources are allocated to jobs
that keep failing shortly after startup.

The lower graph shows over 3000 failed checkpoint reads &06Q failed checkpoint writes.
A failed checkpoint read occurs when a job is preempted bdfdras finished reading its check-
point. Since the job has not begun computing in this caséniplyg aborts the checkpoint restore
and vacates the execution site immediately. An investigadf the Condor logs shows two causes
for the failed checkpoint writes. In many cases, the job weaable to establish a connection to the
checkpoint server (after the job’s resource manager iadithe transfer request), either because of
a network error or because of high server load, resultingregaest timeout appearing in the logs.
The remaining checkpoint writes failed because the job wieslkby the workstation owner for tak-
ing too long to complete its checkpoint when preempted. Asgfahis study, we added a module
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Figure 18: Checkpoint Transfers by Time of Day

to the CondorView tool to display checkpointing statistios a pool, so users and administrators
can use the statistics to detect and diagnose these typesbtéms.

Figure 18 shows the average number of checkpoints writterugfinout each day in the first
quarter of 2001. The Bezier curve plotted with the data shiwxascheckpointing traffic increases
by approximately 25% during business hours (8-17), wheg @b preempted more often by work-
station owners. There is also an increase later in the egeffims curve is mirrored by the keyboard
activity statistics presented above in Section 4.3. Thgelamumber of checkpoints after 4 AM re-
sulting from the daily lab workstation reboots are cleatpwn. Note that the 2 AM reboots don’t
appear in the graph because Condor is not yet able to chetRpdows jobs.

4.6 Summary

We have presented a profile of the Condor pool in the UniwedsitVisconsin-Madison Computer
Sciences department. We illustrated the difference betakecated throughput and obtained good-
put with a simple set of “goodput index” jobs. Significane@lomputing capacity is available in the
network, but short idle periods provide diminishing retilrecause of the overheads of job setup
and teardown. Changes in workstation availability and jaibkioad can generate large scheduling
events with high network load.

The profile illustrates that the efficiency of a distributeth jscheduling system can vary dra-
matically based on available capacity, workload, and salivegi policies. When job placement and
migration are inexpensive, the system can schedule agglysto harness all available computing
capacity. Jobs can run efficiently on workstations that ballavailable for only a short time and can
migrate away immediately at the first sign of workstation ewactivity. However, when network
overheads increase, because of large checkpoints or arlargber of CPUs relative to available
network capacity, the high network load can significantlp@ot goodput, due to increased blocking
on network 1/0 and an increase in checkpoint rollbacks. éfthlowing chapters, we present two
mechanisms we have developed to improve execution efficiertiese types of environments.
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Chapter 5

Execution Domains

5.1 Introduction

In this chapter, we present a mechanism cadigdcution domaing4] that we have developed to
improve data locality in job scheduling environments byutering” compute nodes based on ac-
cess to data resources. Execution domains ensure thahgmhsguire a given level of access to a
data resource run at compute sites that can provide the sheedess. If a job’s input data is stored
on a network file server, execution domains ensure that theuos only on CPUs with reliable,
high-speed access to that network file server. For jobs tlvaluge large volumes of output, ex-
ecution domains ensure that the job runs only on CPUs withsacto sufficient storage capacity
for the job’s output. If the job produces large intermedisti@e (for checkpointing or out-of-core
computation), execution domains ensure that, once theggmd its execution using a storage de-
vice, it migrates only among CPUs with high-performancesasdo that storage device. Since data
resources may not be accessible from all CPUs in a wide-anegutational grid for system ad-
ministration and security reasons, execution domains sg&ileven for jobs that can tolerate low
data rates, to ensure that the job only runs on CPUs with sgpeedf access to the job’s data. An
execution domain may be empty if a dataset is not yet availalibbs that require the dataset will
not run until it is produced, so execution domains can alseesas a mechanism for controlling
data dependencies between jobs.

An execution domain is a set of CPUs with a defined level of s&te a physical or logical data
resource. Levels of access may be defined according to pefmre, network distance, reliability,
security, or other criteria. Execution domains may be defetedifferent access levels for a given
data resource. However, a CPU is a member of at most one exedoimain for each data resource.
A data resource may besarveror dataset A server is any data storage device, including network
file servers and database servers. Servers occupy a fixdtbpasi the network and can not be
easily relocated. A dataset is a file or set of files stored cgrnees Datasets may be dynamically
replicated and migrated between servers on the networkiré&itp illustrates an example execution
domain configuration. Domains A, B, and C are each defined &y groximity to a set of data
servers. As illustrated, a logical execution domain mayuithe multiple physical servers. Domain
D, which overlaps with the other domains, is defined by copfesdataset staged on the local disks
of four CPUs.

Domain managerare responsible for defining execution domain membershdmaaintaining
the affinity between jobs and the execution domains of thegti.dWe propose two types of domain
managersdomain migration agentnddata staging agentsT he domain migration agent schedules
the initial placement of job data files on file servers and mssthat jobs run within the execution
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Figure 19: Example Execution Domain Configuration

domains of the file server(s) that store their files. The agésd monitors the demand for and
availability of CPU and network resources in the server damdf there is an insufficient number
of CPUs in the execution domain of a file server, the domairratiigh agent can transfer the job’s
data files from the current file server to a server in a domaiarevimore CPUs are available. The
agent can then modify the job’s domain requirements so litwilin the new execution domain. The
data staging agent schedules the initial distribution tdisizts and configures the execution domain
membership for those datasets. The agent also monitorsethardl for datasets by watching the
job queues. If there are insufficient CPU and network ressuircthe execution domain of a dataset
to meet current demand, the data staging agent expandsebetiex domain. The agent stages a
copy of the dataset on additional storage devices and add3RkJs in the domains of those storage
devices to the domain of the dataset. Since domain managerexternal to the job scheduler,
they can be used to implement scheduling policies or algnstthat were not anticipated by the
scheduler’'s developers. For example, the domain managersise network load information to
explicitly schedule data transfers for staging and migrativer wide-area links.

5.2 Execution Domains in Condor

The Condor classad matchmaking framework [56, 57], presentSection 2.4, enables easy imple-
mentation of execution domains with no changes to the Comdmurce management system. Clas-
sad matchmaking gives us the ability to dynamically inj@ébimation into the system to achieve
custom scheduling goals.

Domain managers can use the Condor APIs to modify the exgcdtbmain definitions and
job requirements. To modify the domain definitions, the dionmanagers can insert, delete, or
modify attributes in resource offers. When the domain sgigent stores a dataset on the local
disk of a workstation, it inserts a new attribute for thatadat in the workstation’s resource offer.
When the domain migration agent moves a job’s data files tovafile server, it modifies the
Requi r ement s andRank expressions in the job’s resource request so the job wittgi@n in
the domain of the new file server.

For example, the following resource offer describes a SBaftaris workstation with 256 MB
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of memory and a MIPS rating of 200:
OpSys = “Solaris2.6”;

Arch =“Sun4u”;
Memory = 256;
Mips = 200;

To include a workstation’s CPU in an execution domain, thendio manager inserts an attribute
into the resource offer. For example, if this workstatios hacal access to the cs.wisc.edu AFS
network filesystem, the manager inserts the followinglaite:

AFSDomain = “cs.wisc.edu”;

Resource offers with different values defined for &i€SDonai n attribute describe CPUs in dif-
ferent execution domains. The domain manager also ins&t®kean attribute for each dataset to
indicate that the CPU is a member of the execution domainatfdataset. For example:

HasDataSetXYZ97S3 = True;

The dataset may be staged differently for different CPUsndy, for example, be located on the
local disk of some CPUs and available to other CPUs via a n&tie server. If the jobs that
require this dataset have different I/O characteristids,lseful to define more restrictive execution
domains. The domain manager can define an execution donaimdfudes only those CPUs with
the dataset staged on the local disk as follows:

HasDataSetXYZ97S3Locally = True;

Jobs that need local-disk access speeds to this dataséd shownly in this more restrictive exe-
cution domain. The Condor remote I/O library can be usedde thie different file access methods
from the job. The library instruments the job’s I/O systertiscand redirects them to the appropri-
ate file access method. Support for many I/O access prot@cotgler development in the Condor
remote I/O library, including FTP, HTTP, and GASS [7].

A job’s resource request indicates its requirements anigremeces for an execution site. For
example, the resource request below is compatible withabeurce offer above. The request asks
for a Sparc Solaris workstation with more than 80 MB of memaurigh a preference for the CPU
with the highest MIPS rating (i.e., CPUs are ranked in dedicgnorder by their Mips value):

Requirements = (other.OpSys == “Solaris2.6”) &&
(other.Arch == "Sun4u”) && (other.Memory- 80);
Rank = Mips;

To indicate that the job stores its data files in the cs.wikc &FS filesystem and so should run
in the execution domain of that filesystem for best perforteathe domain manager modifies the
Requi r enent s in the job’s resource request:

Requirements = (other.OpSys == “Solaris2.6") &&
(other.Arch == “Sun4u”) && (other.Memory> 80) &&
(other.AFSDomain == “cs.wisc.edu”);
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AFS [30] is an example of a global filesystem, where any file orA&S server can be accessed
from any AFS client, assuming the user has the necessargrtrald, so if this job can tolerate
higher-latency access to its AFS files, it could feasiblyeorany CPU that serves as an AFS client.
In this case, the job’s resource request requires onlyAR8Donai n is defined, indicating that the
CPU is an AFS client. The resource request indicates a praferfor the cs.wisc.edu AFS domain,
however, since a CPU in that domain will have the best accegeetjob’s data files. This example
uses the classasintoperator to test if an attribute is defined. It also uses thikRapression, where
a value of True is ranked higher than a value of False.

Requirements = ... && (other, AFSDomain isnt Undefined);
Rank = (other. AFSDomain == “cs.wisc.edu”);

To indicate that the job should run on a CPU in the executiomaln of a dataset, the domain
manager modifies thRequi r enent s attribute of the resource request as follows:

Requirements = ... && other.HasDataSetXYZ97S3;

When the job begins its run, it uses the location attributgaéresource offer to find the dataset on
the workstation. Jobs that require local disk access spedtiss dataset will require a CPU in the
more restrictive execution domain:

Requirements = ... && other.HasDataSetXYZ97S3Locally;

Other jobs may not strictly require local disk access spdaaswill perform better at higher speeds.
In this case, the domain manager specifies the job’s prefeseim theRank expression of its
resource request (where True is ranked higher than False):

Requirements = ... && (other.HasDataSetXYZ97/$3
other.HasDataSetXYZ97S3Locally);
Rank = other.HasDataSetXYZ97S3Locally;

5.3 Checkpoint Domains

We have also applied the execution domain mechanism to thageaent of checkpoints in Con-
dor. In our experience, checkpoint transfers are often théroause of network overhead for
Condor jobs. As seen in Section 4.5, daily checkpoint traifimur local Condor pool often exceeds
100 GB. The checkpoint of a job’s state includes its entirenmiy state, so memory-intensive jobs
can generate large checkpoints. When long-running jokaiolhort CPU allocations, they must
store a checkpoint at the end of each allocation to save thk they have accomplished. Ded-
icated checkpoint servers, deployed across the netwookjda storage space for these large job
checkpoints.

To localize the transfer of checkpoints in the network, wendeexecution domains according
to proximity to checkpoint servers. Theseeckpoint domainare defined by inserting@ pt Do-
mai n attribute into each CPU’s resource offer. Jobs write thieerckpoints to a checkpoint server
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in the current checkpoint domain and are restricted to regoaly to CPUs in the current check-
point domain, to avoid transferring the checkpoint to a CRydnd the domain. To implement this
policy, theRequi r enent s of the job’s resource request must specify the checkpoimtaiio once
the job has written its first checkpoint. For example:

CkptDomain = “ckpt.cs.wisc.edu”;
Requirements = ... && (self.CkptDomain == other.CkptDomjai

A task may begin execution in any checkpoint domain, but énperforms its first checkpoint, it
executes only on CPUs in the chosen checkpoint domain.

Since a task may wait a long time for an available workstatidts checkpoint domain, we sup-
port migration between checkpoint domains. As with otherceion domains, a domain migration
agent can transfer the checkpoint to a new checkpoint sangemodify theCkptDomainattribute
in the job’s resource request. However, it is also possitMéhfe domain migration agent to migrate
the job without transferring the checkpoint between cheskipservers by simply modifying the
job’s resource request. In this case, the job will trangfercheckpoint from the old checkpoint
server directly to the CPU in the new checkpoint domain whdregins execution. For example,
the domain manager can modify the resource request as ®Bowthe job will run in either the
ckpt.cs.wisc.edu domain or the ckpt.bo.infn.it domain:

CkptDomain = “ckpt.cs.wisc.edu”;

Requirements = ... && ((self.CkptDomain == other.CkptDan)a|
(other.CkptDomain == “ckpt.bo.infn.it"));

Rank = self.CkptDomain == other.CkptDomain;

The Rank expression specifies that the job should remain in the cuoteeckpoint domain if a
CPU is available there. Otherwise, if a CPU is available an¢hpt.bo.infn.it checkpoint domain,
the job will transfer the checkpoint from the ckpt.cs.wéstti checkpoint server directly to that
CPU to resume its execution. If the job is preempted againillisend its checkpoint to the local
checkpoint server in the ckpt.bo.infn.it domain and updtsteesource request to look for a new
CPU in the new checkpoint domain:

CkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && (self.CkptDomain == other.CkptDomjai

It is possible for the migration agent to transfer a cheakiponly to find that CPUs are no longer
available in the new checkpoint domain. By delaying the atign until the CPU is allocated to the
job, the domain migration agent avoids performing potdélgtiannecessary checkpoint migrations.
This savings represents a trade-off, because the job vel teetransfer the checkpoint over alonger
network distance at the start of the CPU allocation, inéngasetwork wait time.

It is also possible to implement migration between cheakipdomains automatically (without
intervention of a domain migration agent) by specifying emoomplexRequi r emrent s expres-
sions. In the following example, the job is allowed to migr&d a new checkpoint domain if it has
been waiting for an available CPU for over 24 hours.
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LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((self.LastCkptDomain == other.dkpimain)||
((CurrentTime - self.StartldleTime} 24*60*60));

Alternatively, the job may be allowed to migrate betweencgipeint domains only at night, when
demand for capacity on the wide-area network is lower, asarekample below:

LastCkptDomain = “ckpt.bo.infn.it”;
Requirements = ... && ((self.LastCkptDomain == other.akpinain)||
(ClockHour< 7) || (ClockHour> 18));

We can also implement an even more permissive policy, whickvs the checkpoint to migrate
to a new domain at any time if there is insufficient CPU capaicitthe current domain. We use
the Rank expression to specify that we would prefer that the job renrathe current checkpoint
domain, but it may migrate to any of the other domains spekifitheRequi r enent s expression
when necessary.

Requirements = (other.CkptDomain == “ckpt.bo.infn.it")
(other.CkptDomain == “ckpt.cs.wisc.edu|)
(other.CkptDomain == “ckpt.ncsa.uiuc.edu”);

Rank = (self.CkptDomain == other.CkptDomain);

Checkpoint domains differ from other execution domains ttu¢he flexibility provided by
checkpoint servers. Unlike file servers, which are often urader the administrative control of
Condor administrators, checkpoint servers may be installie any machines with available disk
space. Since all nodes have access to all checkpoint sehretggh Condor APIs, checkpoint
servers can be used as more general-purpose data stagisgaimprove accessibility to job data,
providing greater scheduling opportunities to the executiomain managers.

5.4 Related Work

Execution domains draw on the techniques of clustering atd staging to improve remote ex-
ecution performance. Clustering is a well-establishedhrieie for improving performance and
scalability in distributed systems.

Liu [38, 39] proposed a clustered load balancing model forgoheduling that leverages the
natural clustering found in large distributed systemsiimgeof network performance and job work-
load. In this model, scheduling is performed independentlyach cluster, enabling more accurate
and dynamic scheduling, and jobs are dispatched globally when local cluster resources are
exhausted.

Ozden et al. [49] proposed a distributed clustering apprdacdesigning load sharing systems.
They show by simulation that the scalability of purely cahied load sharing algorithms is limited
by the capacity of the central server, and the scalabilitdisfributed load sharing algorithms is
limited for non-homogeneous systems due to the increasists of distributed search. Distributed



35

clustering takes a middle ground by performing centraliped sharing within each resource cluster
and distributed load sharing between clusters, resultingnproved scalability.

The Utopia load sharing facility [73, 81] uses a cluster deciure for scalable distribution of
resource load information. Load information can be excbdnigetween clusters according to a
configured directed graph. The default job placement pgi®fers to schedule jobs in the local
cluster but jobs will run in remote clusters if a remote hasavailable with a significantly more
attractive load index value.

Clustering techniques have also been used to improve tpadlmemory references and inter-
process communication in large-scale non-uniform memoecgss (NUMA) multiprocessors.

Zhou and Brecht [10, 80] propose processor pool-based sthgdor large-scale NUMA mul-
tiprocessors. Processor pools are an operating systermacirfer scheduling parallel applications.
The system is partitioned into a fixed set of equal sized pawld the threads of a parallel job are
scheduled to run within a single processor pool to improvenorg locality.

The Hurricane operating system [70] uses a hierarchicateling approach to improve per-
formance and scalability in NUMA multiprocessors. Hurneagpartitions hardware and software
resources into clusters. Operating system resources grgopad and replicated across the clus-
ters to reduce resource contention within the operatingesysApplication requests to independent
physical resources are managed by independent operatitgsyesources. The scheduler per-
forms fine-grained load balancing within clusters and oengrsained job placement and migration
between clusters, minimizing the number of clusters spéiyeparallel jobs to improve commu-
nication locality. The scheduler directs application I&nearby disks and places application data
close to where it will be accessed. Experiments with Humgcound that clustering different re-
source classes independently can result in significanopegnce improvements.

The execution domains mechanism allows cluster definitionse defined at any time and
allows many independent cluster definitions to co-existufgpert custom scheduling policies in the
distributed system.

Data staging and replication are also well-known techrsgioe improving 1/0 performance,
as illustrated by recent work in developing the Globus Datia (34, 71], an architecture for the
management of storage resources and data distributedsamogputational grid environments. In
the Globus Data Grid framework, a metadata service provitfesmation about network connec-
tivity and storage system details useful for choosing dateage sites, and a replica manager can
create and delete copies of file instances (replicas) onttinage systems. A replica catalog pro-
vides information about where replicas are stored, and le&caegelection service chooses the best
available file replica based on user preferences and intmabout storage resource performance
and policies. Condor classad matchmaking mechanisms legre dsed to implement a prototype
Globus Data Grid replication selection service.

Replica selection services in the Globus Data Grid are iedeégnt of job placement services.
A broker can combine replica selection with job placemeritrtplement application-specific co-
scheduling algorithms and policies. In contrast, exeocutiomains are a simple mechanism using
existing scheduling services provided by the Condor sydtetocate an execution site with the
required access to a dataset.
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5.5 Summary

Execution domains provide a flexible scheduling mechanmnefsuring that jobs have access to
required data resources at the execution site. Unlike maisyirgy clustering mechanisms, ex-

ecution domains can be configured dynamically and can beedefor different classes of data

resources on the network. We have shown how execution dsmambe implemented in the Con-

dor environment and illustrated how checkpoint domainsuaesl to localize checkpoint transfers
in Condor.
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Chapter 6

Network and CPU Co-Allocation

6.1 Introduction

This chapter presents a framework for co-allocating ndtvemd CPU resources in batch schedul-
ing systems. The goal of the framework is to avoid oversuibisy network resources. This goal
is motivated by two concerns. First, batch jobs often shateark resources with other best-effort
network users. In many environments, it is important for ba&h system to be a “good citizen”
and not adversely impact interactive resource usage. atmgr (and monitoring) the system’s net-
work usage can help administrators manage available nletv@sources more effectively. Second,
goodput suffers when the network is oversubscribed. Teansg jobs’ data to and from execution
sites take longer, limiting the system’s ability to overl&p with computation. Allocating network
resources gives the system the ability to prioritize nekwgireams when some network transfers
are more time-critical than others.

Our network load control is not motivated by a need to improvelevel network performance
or stability. We assume that underlying network resourcesstable under heavy load. We eval-
uate our mechanisms on Ethernet [46] networks, which haga bbeown to be stable under heavy
load [62]. We are instead motivated to control network loadthe higher-level reasons stated
above: to implement administrative policies and use avklaetwork resources more effectively
to support efficient remote job execution.

To implement CPU and network co-allocation in the matchmgkramework, we define two
types of resource providers: compute servers and networlageas, as illustrated in Figure 20.
Compute servers allocate CPU, memory, and disk resour@s@npute site, and network man-
agers allocate network resources. Compute servers advenailable computing capacity to the
matchmaker, and network managers advertise availableoretvapacity. Job managers make re-
quests for compute and network resources. The matchmakéarele a match when CPU and
network resources are available to satisfy a job’s resoiggeest. The job manager then contacts
the compute server(s) and network manager(s) to claim Hueirees.

The matchmaker and network manager work together to afoestivork resources. The match-
maker implements network admission control at the graitylaf job placements and preemptions,
according to the capacity advertised as available by thearktmanager. The network manager
supports fine-grained network scheduling with advancevasens in the claiming protocol.
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1a. Resource Offer
1b. Resource Request
2. Match Notification

3. Claim
(1a)

Compute | < Job -
Server @ W 3

Figure 20: Network and CPU Gang-Matching Protocol

6.2 Admission Control

Admission control in the matchmaker restricts matches g those allocations that can be im-
plemented with available network capacity within the mateker’s current scheduling horizon.
The matchmaker builds a network map from the informatiorvioked by the network manager
that includes the available capacity of each network resufFor each job placement request, the
matchmaker determines if sufficient network capacity islalke to perform the placement of the
job at each candidate compute site. When it finds a match, gtehmaker subtracts the network
capacity allocated in that match from its network map.

Admission control is particularly beneficial during largdneduling events, when there is a large
change in the job workload or in resource availability. Toldofving scenarios are examples of large
scheduling events.

A high priority user submits a large cluster of jobs. This often occurs in high throughput com-
puting environments, where users submit a large batch eftjodit explore a parameter space
or perform discrete work-steps in a large computation.sib @ccurs in high performance en-
vironments, where large parallel jobs require an allocatiba large cluster of CPUs. Lower
priority jobs are preempted as necessary so that computarces can be allocated to the
new, high priority jobs, and the input data for the new jobsassferred to the execution sites
before they begin execution.

A large cluster of jobs completes.This is also a frequent occurrence in high throughput comput
ing environments, when the last work-step is processed iasaerrworker application and alll
of the workers exit. Similarly, in high performance envinoents, the completion of a large
parallel job can trigger significant scheduling activitheloutput from the completed jobs is
transferred from the execution site(s) to its final desiimgatand queued jobs are scheduled
on the newly available compute resources.

A large number of CPUs join or leave the pool.In a cluster of workstations environment, large
clusters of CPUs may join or leave the pool of available resssias a result of external
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usage. For example, all workstations in a classroom or &bor may become unavailable to
batch jobs as students login at the start of class and becaariatde again at the end of class.
Additionally, large system maintenance events, such asdsitéd system upgrades, network
or power outages, or upgrades to the batch scheduling envent itself can cause these large
events. When CPUs become available, the scheduler attéongtist jobs on those CPUs as
quickly as possible. The input data for the scheduled jobsissferred to the execution sites
before the jobs begin computing. When CPUs become unalgildde result is either a large
number of checkpoint events or a large amount of work lostding junable to checkpoint.
In either case, the preempted jobs return to the queue andmmagdiately preempt a large
number of lower-priority jobs running at other compute site

Taken individually, job placements may not impose a sigaifidoad on the network. However,

when these large scheduling events occur, the large nuniljeb @lacements can dramatically

oversubscribe network resources. Some mechanism oflihgotihe scheduler is required to man-
age these events. Simple controls, such as configured lonithe number of simultaneous job
placements, can be inadequate in large, dynamic, heterogersystems. Network admission con-
trol provides a mechanism for controlling network load dilg

The following example illustrates the benefits of admisstontrol in the matchmaker during
large scheduling events. Our experimental setup cont&imkial-processor machines and a check-
point server connected by a switched, private, Fast EtheB2eSimpleScalar [11] simulation jobs
are waiting in the queue with checkpoints stored on the gbmok server when the 32 CPUs be-
come available. These jobs are taken from examples fourneibhiversity of Wisconsin-Madison
Computer Sciences Condor pool. 16 of the jobs are runningsBEC95 mgrid benchmark and
have 92 MB checkpoint files, and the other 16 jobs are runiegSiPEC95 compress benchmark
and have 278 MB checkpoint files. When the jobs are schedulégdagmission control disabled,
all 32 jobs are scheduled immediately and begin transfgtheir checkpoints from the checkpoint
server simultaneously. The mgrid jobs complete their cpeitk transfers first and begin running
in approximately 4 minutes, and the compress jobs comptetie theckpoint transfers and begin
running in about 8 minutes. When the jobs are scheduled wiithission control enabled, only a
small number of transfers are scheduled simultaneouslthesdirst jobs begin running within 32
seconds. The admission controlled schedule does not ftiligeuthe network capacity due to the
scheduling granularity of the Condor matchmaker, so thé 3if@bs begin running later in the con-
trolled case than they did in the uncontrolled case. Howeherbenefit of starting most of the jobs
earlier results in an overall increase in goodput. The stads for the jobs are plotted in Figure 21.
The area under each curve is the total goodput obtained bjplisewith and without admission
control enabled. Since most of the jobs start running eari¢he admission controlled case, the
area under the admission controlled curve is greater ueyibid the 8 minute mark where the lines
cross because the admission controlled case does not filithe the network. The overall area in
the admission controlled case is greater, however, raguiti over 70 CPU minutes of additional
delivered goodput.
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Figure 21: Allocating Network Capacity

/1l request network capacity for job placenent
/1 returns 2 if capacity is available to this user,

/1 1if user’'s fair-share is already all ocated

11 but capacity is otherw se avail abl e,

/1 Oif the network is already over capacity, and
11 -1 on error

i nt Request Pl acenent (Cl assAd request, ClassAd offer,
Cl assAd preenpt edAl | ocati on);

/1 conmit |ast placenment request (and charge for usage)
/1 returns O on success and -1 on error
int CommitLast Pl acenment Request () ;

Figure 22: Admission Control Module Interface

6.2.1 Implementation

The admission control modulenplements network allocation and accounting in the magdten
The interface to this module is shown in Figure 22. Regjuest Pl acenent method computes
the network capacity required to satisfy the job managecmest with the compute server’s offer,
including the capacity required to preempt current allocest when necessary, from the provided
ClassAd attributes. Théommi t Last Pl acenment Request method commits the last placement
request and charges the requester for the usage. The comenface allows the matchmaker to
test the feasibility of multiple matches before committargallocation when searching for the best
match according to the requester’s preferences.
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Figure 23: Allocating Network Capacity

6.2.1.1 Capacity Allocations

The network manager associates a capacity with each neteswlirce (for example, 10 Mbps) and
defines a time window in which the matchmaker may allocatevorkt capacity (for example, 30
seconds). The window defines the matchmaker’s schedulingamoby restricting the matchmaker
to performing only those allocations that can be supponetth® network in that window. Defining
the window equal to the matchmaker’s scheduling interval the natural result that the match-
maker postpones scheduling decisions until the intervadhich they can be implemented, thereby
enabling the matchmaker to effectively incorporate newrimiation into its scheduling decisions at
the start of each new scheduling period by not committingvagk resources far into the future in
previous scheduling periods.

The admission control module determines if network capasiavailable in the current alloca-
tion window using the following mechanism. The network maptains an “allocation pointer” for
each network resource that tracks previous allocationsh Béocation moves the allocation pointer
forward by the allocated capacity in units of time. For exémpatisfying a request to transfer 100
MB over a 10 Mbps link would move the pointer forwak@) M B x £ML  Lsccond — 8() seconds.
The pointer never falls behind the current time: an unatlet@etwork resource has a pointer equal
to the current time. Figure 23 illustrates the interacti@tween the allocation pointer and the ca-
pacity window. Capacity is allocated until the pointer gasbeyond the current capacity window.
After that point, no additional capacity is allocated ustilfficient time passes for the window to
shift forward to again include the pointer inside its boumneka

We allow the pointer to pass beyond the end of the window ferfihal allocation to avoid
fragmentation problems. Otherwise, the end of the windowld/érequently remain empty when
remaining large requests would not fit in the available spabés also allows the system to support
requests larger than the capacity window. A maximum regsigstcan be configured as a sanity
check to ensure that a single large request does not stdm@eretjuests for a long period of time.
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// returns 0 on success, -1 on failure
i nt LoadRouti ngTabl e(const char filenane[]);

/[l sets current to point to the next network hop

11 in the route between src and dest

[l returns 1 if current is an internedi ate hop

11 Oif current is the final hop (current == dest)
11 -1 on error

i nt Next Hop(unsigned int &current, unsigned int src,
unsi gned int dest);

Figure 24: Router Module Interface

6.2.1.2 Routing

To calculate the network capacity required for a flow, the isdimn control module must determine
the network route of the flow between the endpoints. thwer moduldoads a routing table from
a configuration file and calculates the routes of network flaasording to the configuration on
behalf of other modules. The format of the route configurafite is described in Appendix A.3.
The router module interface is shown in Figure 24.

6.2.2 Goodput Allocations

In some cases, minor deviations from a strict priority-blaalocation of CPU and network re-
sources can significantly improve the total goodput dedigidny the system, especially when user
priorities vary significantly. In particular, a heavy netkaser with high priority can potentially
monopolize network resources to such an extent that a langdber of CPUs are left idle because
of insufficient network capacity to place jobs on them.

For example, consider a 128 CPU cluster served by an NFSrssitte200 Mbps I/0O band-
width, where local users have strict priority over guest$o@al user’s jobs perform transformations
on 20 MB image files. Each job reads an image file and producesvimages of the same size,
requiring 60 CPU seconds to compute each new image from fhe,iso each job performs 120
MB of NFS 1/O every 5 minutes (3.2 Mbps). The scheduler careassfully overlap 1/0 with com-
putation for at most 62 of these jobs. If it runs additiondigpthe file server's bandwidth will be
oversubscribed and the CPUs will be underutilized. Mealeyhiguest user has a large number of
compute-intensive jobs in the queue. Running the guedisgn 66 of the CPUs can double overall
system goodput with minimal impact on the high priority jobowever, with strict priority-based
network allocation, the guest user’s jobs will never statduse the user will not be allocated any
network capacity. We need to give the scheduler some digoret deviate from strict priority-based
allocation when it can significantly improve goodput.

As a second example, consider the same 128 CPU cluster deyedheckpoint server with
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200 Mbps I/0 bandwidth. The job scheduler was disabled oucltister for a day while researchers
benchmarked a distributed database system. A local usex $etsof jobs in the queue, each with
256 MB checkpoint files, and the same guest user from thequs\dxample has a set of compute-
intensive jobs in the queue. If the job scheduler followgspriority-based allocation of network
resources when it is restarted, it will schedule the local’'sgobs on the 128 CPUs. It will take
approximately 22 minutes to load the 128 256 MB checkpoirdmfthe checkpoint server to the
compute nodes. If the scheduler performed those transfexdtaneously, the 128 CPUs would
sit idle for those 22 minutes, for a loss of over 46 hours okptal computing capacity. With
admission control, the scheduler can do much better by peifig the transfers sequentially, so
the first job begins computing in approximately 10 seconfs,second job in 20 seconds, and so
on, limiting the lost CPU time to 23 CPU hours. However, if #oleduler can deviate from strict
priority-based allocation, it can allocate some of thoseCE3J hours to the guest’s jobs without
significantly increasing the startup delay for the localrisgebs.

These examples illustrate that it is useful to give the nratdter discretion to deviate from
strict priority-based network allocation. We therefortal the matchmaker to use some network
capacity for the purposes of improving overall system gabayghen the network is oversubscribed.
The matchmaker uses the capacity to run jobs with low netwegkirements (“backfill jobs”) on
CPUs that would go idle if strict priority-based networkoathtion were enforced. We have imple-
mented this discretionary mechanism in the matchmaker withconfiguration parameters. The
first parameter controls which jobs qualify as backfill jobs@ding to a network usage ceiling. The
second parameter controls how much discretionary netwapldity is available to the matchmaker.
Limiting the amount of discretionary capacity controls hmwch the matchmaker can deviate from
strict priority-based allocation, so high-priority usevgh heavy network requirements will not be
starved.

6.2.3 Fair Allocation

Network and CPU resources are allocated fairly in the masit@maccording to user priorities as
follows. Each user’s fair-share of network and CPU resaiisdased on the usetmse priority
and recent usage of that resource. The base priority defieaglationship between the users. For
example, users with base priority of 1.0 should receivedveis many resources as users with base
priority of 2.0 and three times as many resources as usensbagie priority of 3.0. The allocation
algorithm gives requesters their fair-share of CPU resmitmless they are using more than their
fair-share of network resources. Those using more than fieishare of network resources must
wait until other user’s requests have been satisfied. Ttwitign has two phases. Each phase allo-
cates network and CPU capacity to requesters accordingito@RU fair-share. At each iteration,
the algorithm attempts to allocate an additional CPU to tlustndeserving requester among the
users with outstanding requests (i.e., the user with thatese difference between CPU fair-share
and current allocation). If a request can not be satisfieduse of insufficient CPU or network re-
sources, it is discarded (until the next run of the algorjthAs requests are discarded, the number
of requesters decreases.

In the first phase of the algorithm, requesters are limiteth&r fair-share of each network
resource. The fair-share is calculated according to the pasrities of the outstanding requesters
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Run anal ysis summary. O 32 resource offers,
0 do not satisfy the request’s constraints
0 resource offer constraints are not satisfied by this request
7 are serving equal or higher priority customers
0 do not prefer this job
0 cannot preenpt because PREEVMPTI ON_REQUI REMENTS are fal se
25 are available to service your request
Last successful match: Sat Mar 31 12:07:47 2001
Last failed match: Sat Mar 31 12:27:43 2001
Reason for last match failure: insufficient bandw dth

Figure 25: Scheduler Diagnostics Example

and their past network usage. As the number of requestersadss, the relative share of each
remaining requester increases. Heavy network users agdizenh by this mechanism, allowing

users with lighter network requirements to obtain allawadisooner. It is possible for all remaining
requests to require more than the requester’s fair-shareetwiork resources. In that case, the
algorithm proceeds to the second phase, where the netwoghfare limitation is removed.

The first phase of the algorithm includes both a test for alséel network capacity and a test for
fair-share allocation. The fair-share test can potegtitisure that the network is not overallocated
on its own, making the capacity test superfluous. Howevespime cases the capacity limits and
fair-share limits may not be directly comparable. For exemiair-share may be calculated over a
longer interval than that used by the network capacity cbsitto allow short-term overallocation
to avoid fragmentation problems (as discussed in SectAi 4).

The network allocation required to satisfy a request dep@mdthe execution site. Execution
sites are located on different network segments and mayreedifferent data access methods. For
example, if the job’s data is replicated, the nearest coplyetiata will depend on the execution site.
Both endpoints of data transfers can be located on differetworks depending on the execution
site chosen. For this reason, the algorithm must proceedmsider other matching CPUs when
network capacity is unavailable to match a request with gipus CPU.

6.2.4 Diagnostics

One of the important lessons we learned from deploying nétatbocation in the Condor environ-
ment is the importance of providing feedback to help usessvanthe question “Why isn’'t my job
running?”. Condor users have been trained to expect aHanesof CPU resources. When their
jobs are being restricted by bandwidth limitations, thegeiee less than their CPU fair-share and
want to know why lower priority users are getting more CPlbteses than they are. We modi-
fied Condor’s implementation of the matchmaking protocaktinirn a description of the reason for
each failed match. Users can view the reasons for each josshing a query to the job manager.
Figure 25 shows output from an example query. The first seafahe output lists the standard
Condor diagnostics for the CPU allocation: how many CPUsatcsatisfy the job’s request, how



45

= =
N o
T T

[ee]
T

Jobs Running

N
T

g : Feedback
HJ ! . No Feedbackflf fffff

o

0 1 2 3 4 5 6
Minutes

Figure 26: Job Starts With and Without Feedback

many CPUs are not willing to run the job, how many are servigdr priority customers, etc. The
timestamps indicate when the matchmaker last attempteddariatching resources for the job’s
request. The reasons for match failure now reported indlslgficient bandwidth, network share
exceeded, insufficient CPU priority, and no matching resesifound, so in the above example,
the user can see that the job hasn't started yet, even thbegh are available CPUs, because of
insufficient network bandwidth.

6.3 Network Manager

We have seen in the previous section that the matchmakeeingpits network admission control at
the granularity of job placements. Once the matchmaker t&tegpa match with available network
resources, the job manager contacts the network managecdive additional network scheduling
services, including requests for additional network cépatuture reservations, and bandwidth
control of active network streams.

The job manager also keeps the network manager informesl jobis’ network usage whenever
possible. This helps the network manager determine how matkork capacity is available to
be allocated to other jobs, either in the network managelf its in the matchmaker, as illustrated
by the following example. 16 SimpleScalar compress jobsaaiing in the queue, in the same
experimental setup used previously, when 16 CPUs beconikaldea The network manager is
configured to expect 160 Mbps available throughput from tieckpoint server, even though the
server is on 100 Mbps Ethernet. Without feedback, the maa&lemcontinues to allocate bandwidth
at 160 Mbps, starting new checkpoint transfers before teeigus transfers have completed. When
feedback is enabled, the network manager detects that dukpbint transfers are taking longer
than expected and backs off its allocations to the actualidba bandwidth. As seen in Figure 26,
the jobs start running earlier when feedback is enabledyatilg over sixteen additional CPU
minutes to the jobs (i.e., the difference in area under tlzecwvves).

The network manager can be effective even when its knowletfigeailable network capacity
is limited. Simple static control policies configured by amanistrator can avoid costly scheduling
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Figure 27: Network Allocation Architecture

decisions in the matchmaker, and simple feedback from thenanagers concerning the comple-
tion time of job placement transfers can help the network agan back-off network allocations
when less network capacity than expected is available. Mervéhe network manager can take
advantage of additional information when it is availabler Example, an external network weather
service [75] can provide dynamic predictions of availabétwork capacity to the network man-
ager, and interposition agents [31], such as Bypass [67qi68pndor’s remote system call mecha-
nism [41], can provide additional information about job &eior, including network usage.

Given some knowledge about available network capacity évewlimited), the network man-
ager must decide how that capacity should be distributedwdt& allocation responsibilities are
divided between the matchmaker and multiple schedulereg@metwork manager, as illustrated
in Figure 27. Configured limits ensure that each admissiarirabmodule does not monopolize
network resources. First, advance reservations areatestrio a configured percentage of current
available capacity (for example, 40%). Advance reseraatiorovide only a limited guarantee be-
cause of competing network traffic external to the systenerdfore, this limit also serves to make
advance reservations more conservative, so there is segprabability that the reserved capacity
will in fact be available when the time comes. Second, badtiwcontrolled allocations are guar-
anteed a minimum percentage of available capacity (for el@ni0%). Capacity is available to
the admission control modules to allocate if it is not reedrby the reservation module or allo-
cated from the bandwidth control module’s guaranteed dgpatith the above example limits, the
admission control module will be able to allocate at lea$t5ff available network capacity. The
bandwidth control module can then allocate any remainirgjlocated capacity to active streams.

6.3.1 Reservations

The network managerigservation modulenplements a slot scheduler [20, 74] to allocate advance
reservations of network resources. The reservation aterSupports both capacity and bandwidth
requests. A capacity request is a request to transfer a fixedirst of data between a source and
a destination, and a bandwidth request is a request to ¢éradata over a fixed time interval (for
example, during a job’s run). Capacity reservations ard tmebulk data transfers while bandwidth
reservations are used for ongoing network streams, su@mnasge I/O streams or inter-task commu-
nication. Requests include time and rate constraints dmetisting preferences. The slot scheduler
searches the allocation schedule for each network resautice route between the source and des-
tination of the requested flow for the best reservation (ating to the indicated preferences) that
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Figure 28: Slot Scheduling Example: First Fit

satisfies the request’s constraints. The resulting resernvis defined by a start time, end time, and
a rate. Clients that require allocations that vary in ratestn@ither make multiple reservations or
must use the bandwidth control module, described below oti&e6.3.2.

The slot scheduler supports the following search strasdgieimplementing reservation prefer-
ences.

e First Fit finds the reservation with the earliest start time &agdt Fit finds the reservation
with the latest end time, within the specified time constsinThese search strategies are
acceptable for reservations that are not time critical. é&@mple, the request may be for a
“background” data transfer that need not be completed tisk long as it completes before
the specified end time.

e Earliest Completion finds the reservation with the earliest end time aatest Start finds
the reservation with the latest start time, within the sfpeditime constraints. These search
strategies are used for time critical transfers that shbaldompleted as quickly as possible
after an event or should be completed as late as possibleskgetieadline, for example, when
scheduling checkpoint transfers before a scheduled ewmicteadline, as discussed below in
Section 6.3.1.1. Starting the checkpoint as late as pessibkimizes the job’s compute time
before it must stop and perform the checkpoint.

e Shortest Duration finds the (earliest or latest) reservation with the shortiesation (i.e.,
highest rate). This strategy is useful for blocking trarsfeith flexible time constraints,
to minimize the blocking transfer time. For example, if dk@aint transfers are a blocking
operation, scheduling periodic checkpoints using shbdesation reservations can minimize
the checkpoint time.

Figure 28 illustrates an example first fit reservation (thkdsolack bar). 75% of network
capacity is reserved by two previous requests at the stagt ind the current request can be satisfied
with the remaining 25% of network capacity inside the timeanmtaries. Assuming this reservation
also meets the request’s minimum rate requirement, it iceemable allocation.

It is clear, however, that additional capacity is availaldamprove the performance of this
transfer. Figure 29 illustrates the results of the sameastquith a preference for the earliest transfer
completion time. The start of the transfer is delayed uh&lénd of one of the other reservations so
50% of network capacity can be allocated to it. The doublihtie speed of the transfer more than
compensates for the later start time, yielding an earliemgetion time.

Figure 30 shows the reservation that would be found in theesaxample as above with the
shortest duration strategy. The start of the transfer iayael still further, and the resulting rate
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Figure 30: Slot Scheduling Example: Shortest Duration

increase is not sufficient to result in an earlier completiore than in the previous figure.

For the sake of completeness, we include a “greedy” reservat Figure 31. This type of reser-
vation is not supported by the slot scheduler, due to the fiaggirequirement. Greedy bandwidth
allocations are supported in the bandwidth control mocadejescribed below in Section 6.3.2.

The slot scheduler is implemented with a list of reservatitarkers (a begin and end marker
for each reservation) sorted by time for each network resouEach marker records a change in
the reserved bandwidth. Begin markers record an incredbe ireserved bandwidth (i.e., a positive
delta) and end markers record a decrease in the reservedidémd@.e., a negative delta). Inserting
n reservations is therefore @(n?) operation. Figure 32 plots the worst-case performanceeof th
slot scheduler on a 200 MHz Pentium Pro workstation for tirsgup to 2000 capacity reservations,
where the scheduler must search to the end of the list tdysa@&h reservation. For multi-hop
reservations, the slot scheduler searches the resenliatidor each hop, so increasing the number
of hops increases the search time by a constant. The schathdes 1000 three hop reservations in
about one second. The performance of this simple schedudeceptable for moderate workloads.
We could use tree data structures to improve the scalabilitiye slot scheduler if needed [60].

6.3.1.1 Scheduled Shutdown Events

The initial motivation for developing the slot schedulersata implement scheduled shutdown
events in the Condor environment. As described above, wiRtys@eave the pool, the jobs running
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Figure 31: Slot Scheduling Example: Greedy Reservation
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Figure 32: Slot Scheduler Performance

on those CPUs must be evacuated from the execution sitexhEokpointable jobs, this requires
transferring the jobs’ checkpoints to stable storage leefioe evacuation. The two causes of large
shutdown events in the University of Wisconsin-Madison @ater Sciences department Condor
pool are scheduled system reboots and Condor system maiictenLab workstations are rebooted
each night to cleanup any orphaned user processes reduitinghat day’s activity, and worksta-
tion reboots are frequently scheduled to install systerchgst The Condor system is shutdown
for software upgrades or scheduled server maintenanceddCoras the ability to restart itself on
each machine when a new version of the software is releasadeV¢r, these restarts can generate
a large number of simultaneous checkpoint transfers becaumsing jobs must be evicted before
each compute server can restart. Scheduling these chatkpmsfers ensures that all jobs are
checkpointed before a shutdown deadline. Scheduling canilprove aggregate delivered good-
put by scheduling fewer simultaneous checkpoints, so vthiefirst few jobs are checkpointing,
other jobs can continue computing until their schedulectkpeint time.

A shutdown event scheduler called teeentdschedules the checkpoints for these large shut-
down events. Each scheduled shutdown event is specifiedonfagaration file with a start time,
duration, and constraint. The eventd schedules job préensptor these events so there will be
no jobs running on execution sites that match the consteditite event start time. As the event
approaches, the eventd reserves network capacity toéractsickpoints for all running jobs. First,
it computes the duration of each checkpoint transfer basdkdeocheckpoint size, the route between
the execution site and the checkpoint server, and the dgmd@ach network resource in the route.
Then, for each transfer, from shortest to longest, it makateat startreservation request. Schedul-
ing the longer transfers earlier keeps the largest numlgebsefrunning as long as possible up to the
shutdown event. Once the initial reservations are estaalisthe eventd monitors the state of the
pool until the time for the first transfer arrives. Duringghime, it cancels reservations for jobs that
complete and makes new reservations for new jobs that stamirrg. When the time for the first
checkpoint arrives, the eventd configures all executi@sgiiat match the constraint to no longer
start checkpointable jobs because network capacity wilbecavailable to checkpoint their work.
Without this step, jobs might be scheduled again at the éxecsites after the eventd checkpoints
them. The eventd then initiates the job checkpoints acogrtt the scheduled reservations. When
the start of the event arrives, the eventd preempts all heckpointable jobs and configures all



50

Eventd Cor|1trolled
Manual Shutdown-------

w
N

N}
i
T

[
[}
T

Jobs Running

[ee]
T

o

Minutes Before Shutdown Event

Figure 33: Shutdown Before Deadline

execution sites that match the constraint to not run jobi tlnet end of the shutdown event.

The following experiment demonstrates the eventd’s effesess. 32 SimpleScalar jobs are
running, and 32 CPUs are reserved for a timing experimertirgjaat time 0. To manually evict the
jobs before the experiment, the administrator estimateslbing it will take for all jobs to check-
point and sends shutdown commands to all of the jobs in agvaiitbe deadline. In our experiment,
it took about 11 minutes for all jobs to checkpoint when mélyevicted. Figure 33 shows the man-
ual shutdown case assuming the administrator made a pedttate of the shutdown time. All
jobs stop running approximately 11 minutes before the deadb write their checkpoints. The
results under an eventd controlled shutdown are also showeifigure. The eventd schedules the
checkpoints in advance of the deadline udatgst startreservation requests. All checkpoint trans-
fers share a bottleneck at the checkpoint server, so thevadigms do not overlap. Since the eventd
sorts the reservation requests from shortest to longesmgrid jobs, with their 92 MB checkpoints,
get the reservations closest to the deadline and the 278 MBkpbints for the compress jobs are
performed first. The eventd leaves slack in the schedulese tteere is competing network traffic
or some estimation error in the transfer times, so the nétigonot fully utilized by the eventd’s
schedule. Comparing the area under the two curves in Figish@ws that the eventd’'s schedule
results in over 3 additional CPU hours delivered to the jobsddition to the increase in goodput,
the eventd evicts the jobs automatically before the dead$ia the administrator need not manually
estimate the time required to shutdown the jobs before thdlue.

Scheduling the checkpoints sequentially would be lessuugehe jobs pre-copied their check-
points while they continued execution. However, schedutive checkpoints before the shutdown
event would be equally beneficial, so the jobs can checkmintessfully and avoid a rollback.
Capacity for two checkpoint transfers per job would be reggli First the job would write its full
checkpoint while it continues running. When it completes finst checkpoint transfer, it would
then perform a blocking transfer of any modified state. Salwegl the checkpoints close to the
event would continue to be the most efficient approach, asui@gvminimize the run-time after the
start of the first checkpoint transfer, thereby minimizihg smount of modified state that would
need to be transferred later. Therefore, the larger chétkpansfers would still be initiated before
the smaller checkpoint transfers. The schedule for thetfassfers would need to leave some slack
for the second transfers to complete before the deadline. mMdst conservative approach would
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be to assume the worst case: that all data would be modifietheedi to be re-checkpointed. The
jobs can then transfer the modified data at the end of the dedfwtkpoint reservation, according
to how much data must actually be sent.

As a simple example, consider three jobs to checkpoint otleerBet before a deadline, with
100 MB, 50 MB, and 25 MB checkpoints. The total transfer timethe 175 MB of data would be
approximately 175 seconds (at 1 MB/s), so the eventd wolilddide the first round of checkpoints
to start 350 seconds before the deadline, leaving 175 seadrsthck for the final checkpoints. The
100 MB transfer would be scheduled to begin 350 secondsdéfierdeadline, the 50 MB transfer
300 seconds before, and the 25 MB transfer 250 seconds pafitustrated in Figure 34. Each
job has a second reservation of equal shape for the secocépcilet. However, each job only
modifies 5 MB of its state after the checkpoint, so they eadaydieir final checkpoint transfers
until 15 seconds before the deadline.

In practice, we need not be so conservative when reservimiwieth for the second checkpoint.
The size of the second checkpoint is a function of the job’skimg set and memory reference rate,
and we expect it to be small. We further expect that the sizihefecond checkpoint could be
accurately predicted based on past job behavior. Fin&kycost of failing to perform the second
checkpoint is very low, because the job can always rollbackstfirst checkpoint without losing
much work.

6.3.2 Bandwidth Control

The network manager also supports fine-grained bandwidtitraidor long-lived network streams.
Requesters register a bandwidth request for each acteanstand provide frequent feedback to
the network manager regarding their network usage and neBdes network manager allocates
available bandwidth to the registered streams accordiagriax-min fair share algorithm, modified
from [43]. This supports the notion ofrace stream, tolerant of short-term bandwidth fluctuations,
that the network manager can control to improve the perfaomaf time-critical network flows.
Examples include spooled output, network backups, or bralksfers with deadlines far in the fu-
ture. The network manager sends a message to a requestawehiémeeds to adjust the requesters
sending rate, either because of a change in available bdtid{due to higher priority flows) or a
change in the bandwidth requests.
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6.4 Related Work

The Globus Architecture for Reservation and Allocation & [6, 25], developed concurrently
with our work, defines a general-purpose framework for ¢ocation of different types of resources,
including CPU and network. The architecture provides ABtsdiscovery, reservation, allocation,
and monitoring of generic resource objects. Co-resematgents use these APIs to search for sets
of resources that satisfy their applications’ requireraaarid then reserve the resources. Clients
can register callbacks for event notification on resourgeabd, for example when packet losses are
detected. GARA uses a resource-neutral slot manager t@mmgpit reservation services when the
underlying resource manager for a given resource does ppbsgureservations.

GARA provides mechanisms for performing co-allocation aglges on external agents to use
the mechanisms intelligently. In contrast, our co-allmratmechanism leverages the monitoring and
control provided by Condor’'s remote system call and cheickimg mechanisms to transparently
manage applications’ network requirements. We believedtaapproaches for network and CPU
co-allocation in high throughput computing environmerds be used in the future design of co-
allocation agents in the GARA framework.

We have developed and evaluated our network allocation eservation mechanisms using
best-effort network services. The IETF integrated ses/iéd., 77] standards provide end-to-end
quality of service (QOS) to flows on IP networks. QOS resématare established using RSVP [9,
78]. Scalability, security, and policy control for thesevéees are active areas of study [44] and de-
ployment is in the experimental stage. The differentiatadises [8] framework addresses scalabil-
ity issues present in the integrated services standardsibyg no per-flow state in routers. Instead,
bandwidth brokers [29, 60] allocate and police bandwidtthatnetwork edges, mapping packets
into a small number of configured per-hop service behaviorthé network. In networks where
bandwidth brokers are deployed, our network manager cae s&r an interface between the job
scheduler and the broker, exporting the bandwidth brok@€xs service to the batch system.

Network and CPU co-allocation is a form of load control thatids networkthrashing where
jobs spend a significant amount of their time blocked on nekvi@nsfers because the network
is oversubscribed. Our co-allocation techniques and tesuk similar to previous techniques for
avoiding virtual memory thrashing. LT/RT (Loading Task /riing Task) control in the WS-
CLOCK algorithm [13] limits the number of tasks being comemtly paged in to reduce contention
for paging bandwidth, just as network and CPU co-allocaliimits the number of job placements.
Carr and Hennessy observe that contention for paging batidwauses task loads to take longer,
with the potential for a cascade effect as more jobs compietie time slices, resulting in virtual
memory thrashing. LT/RT control is shown to have a numberesfdiits, including more effec-
tive memory utilization, since fewer memory pages are cameahito loading tasks, and improved
processor utilization by balancing the number of loading amning tasks. We obtain similar re-
sults with network and CPU co-allocation, improving netkvand CPU utilization by balancing the
number of loading and running jobs. Carr and Hennessy alsereé that delaying the activation of
additional tasks allows the system to predict which tasli<ivin memory more accurately because
the memory needs of previously loaded tasks can be takemadctzunt when deciding to load later
tasks, just as delaying job placements until network cayp&cavailable allows the scheduler to take
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the current state of the distribution system into accourgmimaking future placement decisions.
Carr and Hennessy propose two optimizations which also Aaatgies to network and CPU
co-allocation. First, when tasks reach the end of their 8tioe, they should not be deactivated until
their memory can be allocated to a loading task. This is goale to delaying the preemption of
a lower-priority job to run a higher-priority job until sufent network capacity is available to per-
form the preemption efficiently. Second, process page riemdsinning tasks should have priority
over reads for loading tasks, so running tasks continueutixgcefficiently. Our network manager
similarly prioritizes network allocations for running jglover network allocations to loading jobs.

6.5 Summary

We have presented a framework for co-allocating network @R capacity in job scheduling
systems, based on the matchmaking framework used in theo€éfigh Throughput Computing
environment. The framework co-allocates network and CRdurces for job placements and sup-
ports advance reservations and bandwidth control forastieams. We illustrated the effectiveness
of the framework by implementing it in the Condor system arespnting the results of controlled
experiments.
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Chapter 7

Conclusion

7.1 Future Work

The research presented in this dissertation has focusegemifis problems that occur in high

throughput computing environments and mechanisms to sbbvse problems. There are more
problems to solve and many ways in which this work can be elegnWe discuss some possible
areas of future work below.

7.1.1 Overlapping I/0 with Computation

As we have seen, the Condor system currently does littleedagy I/0 with computation. Progress

to date includes the Kangaroo system and buffering in thetentO library. We have discussed

some additional possibilities for /0O and CPU overlap inthigroughput environments in this dis-

sertation. In particular, there are opportunities to @grtheckpoint transfers with computation,

when preempting one job to run another and by performinglgiants asynchronously. Kangaroo

servers can potentially be local spoolers for job checkppiso checkpoints can be performed at
local disk speeds and spooled to central servers as bardpedtits [51].

7.1.2 Compression

One approach for efficient checkpointing reduces the amofuciheckpoint data to be transferred.

Techniques for efficiently compressing checkpoints inelgdving only those memory pages mod-
ified since the last checkpoint [54]. Memory exclusion abailve application to specify ranges of
memory which need not be saved across a checkpoint [52, B@&].p&rformance benefits of com-

pression vary according to the relative speed of the commeslgorithm compared to available

I/0 bandwidth. Compression can be particularly effectiveewmany processors are checkpointing
across a shared network, since the checkpoints can be cesedren parallel to better utilize the

shared 1/0 bandwidth. An adaptive approach could choosaghmpriate compression mechanism
for a job at run-time, according to the available networkazgy.

7.1.3 Goodput Scheduling

The goodput model gave us some intuition about network sdimegstrategies in high throughput
computing environments. Network wait time and checkpaitibacks are two of many factors that
impact the performance of batch jobs. For example, we saindbador’'s suspend policy, where
jobs are suspended at the first sign of workstation ownevigcinstead of being immediately
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preempted, can have a significant impact. It would be intiegg$o extend the goodput model to
better understand the tradeoffs of the suspend policy smibe applied more effectively. Additional
evaluation of mechanisms to choose execution sites baspdréormance predictions would also
be useful.

The expected goodput delivered by a given allocation dependattributes of the job and the
allocated resources. First, an estimate of the job’s CPUnong and I/O requirements is needed.
These requirements can then be compared with each compeite asiailable network capacity,
available memory, CPU speed, (estimated) duration ofatioes, and preemption policy. The good-
put expected for a given job can vary for each compute siteweeresource pool is heterogeneous.
The expected goodput will be zero for some sites—for examgben there is a mismatch between
the job’s executable and the processor architecture attimpute site. The expected goodput will
be low for sites with insufficient memory for the job becausexpected virtual memory thrashing.

To choose the allocation that enables the job to accompgismiost work in the least amount
of time, we want to maximizg%. The time required for job placement can be computed from
the size and location of the job’s input data and the avadlaletwork capacity to the compute site.
Likewise, the job cleanup time can be computed from estimatehe job’s output and available
network capacity. The allocation’s maximum duration magéiby queueing system policy or may
be estimated based on previous availability of the commseurce. If the allocation is preemptible,
the duration estimate must also consider the preemptidmapitity. If the job is expected to com-
plete before the end of the allocation, then the expecteatidarcan be calculated based on the job’s
expected run-time instead. A rollback factor must accoanttfe possibility that some or all of the
job’s work will be lost due to preemption or failure at the qauite site. The amount of work lost
depends on whether the job is checkpointable, and if so,rdwgiéncy of periodic checkpointing
and the probability that the job will not be able to checkpaihen preempted. Finally, the goodput
estimate must include an estimate of the job’s executioadpethe remote site, possibly calculated
from previous job history and CPU benchmarks at the sitehdfjbb’s I/0O can not be overlapped
completely with computation during its run, the estimatesthe decreased appropriately.

In practice, estimating many of these factors with suffic@ecision may be impossible. How-
ever, we can draw several conclusions from the model thajesigsimpler policies that can be
applied in practice. All jobs prefer allocations with lomgexpected duration, better network per-
formance to I/O servers, and faster processors. Howeetrdde-offs between these three factors
can differ between jobs.

¢ Jobs that are not checkpointable have a strong requiremeanfallocation with high proba-
bility of duration longer than the job’s expected run-time.

e Alternatively, jobs that can checkpoint and migrate caerette shorter allocations, particu-
larly when good network performance reduces migrationscost

e |/O-intensive jobs will place high value on the network ceipaavailable throughout the
allocation, and may be less concerned with small change® i $peed.

e In contrast, jobs with small I/O and migration requiremeni place greatest value on CPU
speed, since they can migrate to the best compute site Wighdiverhead.
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Given a basic understanding of the type of the job (ratio ofijgoting to 1/0O, checkpoint size, etc.),
users can choose simple metrics to request allocations sudssl to the needs of their jobs.

7.1.4 Migrating to Improve Goodput

The benefits of job migration and the policies under whichsjshould be migrated have been
extensively studied (see, for example, [16, 17, 27, 32, 389 briefly discuss potential applications
of the goodput framewaork to the job migration question hailee benefit of migrating to a site that
promises better performance must be compared to the expsateof migration. From the goodput
perspective, the cost is the time the job spends transfeitsrstate over the network to the new site
and the benefit is the resulting improvement in goodput.

Migration can improve goodput when the new execution sitedéaster CPU, more memory
or network capacity, or a longer expected duration. The rmopbrtant factor depends on the
requirements of the job. A CPU-bound job can improve goothyunigrating to a site with a faster
CPU. Likewise, a network 1/0O-bound job can improve goodpuibgrating to a site with better
network 1/0 performance. If the current allocation has alpgobability of rollback (for example,
because jobs are killed by the scheduler without warningwthe resource is claimed by its owner),
the job can improve expected goodput by migrating to a coegite with better service guarantees.
To determine when it is advantageous to migrate, we can c@nipa expected remaining goodput
of the current allocation with the expected goodput of apitdaénew allocation.

7.1.5 Crossing Administrative Domains

Our primary experience with these network allocation maidms has been in a single administra-
tive domain. Many of the overheads of remote execution aagerbated when crossing adminis-
trative domains, for the simple reason that network distarnccrease.

As described in Section 2.4.2, job managers in Condor stipgsample mechanism calldlbck-
ing for cross-domain job execution. When flocking, the job managlvertises resource requests
to matchmakers in multiple administrative domains and fjobs in the domain where available
resources are found. Interfaces between Globus [21] and& drave also been developed to allow
Condor jobs to harness computational grid resources usiolpu§ mechanisms and to make Con-
dor resources available to Globus jobs. Condor’s remotesysall facilities are particularly useful
for cross-domain job execution because they emulate tHe fmme environment at the remote
compute site.

We have found checkpoint domains to be very effective at igiagacheckpoint traffic for cross-
domain job execution. Jobs store their checkpoints on tleekgoint server local to the domain
where they are running. Execution domain requirements lame eifective in cross-domain exe-
cution for restricting the execution sites for a job accogdio the availability of data resources.
However, execution domain preferences are less effeatigause they are evaluated locally in each
Condor pool. Each matchmaker will find the most preferreccetien site in its domain for the
job, but the job manager must compare the results from nheiltiatchmakers to determine which
domain provides the best resource.
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To allocate or reserve network capacity across multipleiadinative domains, the job manager
must contact one or more network managers in each admiiist@omain. Mechanisms for co-
allocating resources from multiple network managers wdddiseful in this case. One approach
would be to interface Condor’s network managers with thebGdoArchitecture for Reservation and
Allocation described in Section 6.4.

7.1.6 Integration with Gang-Matching

As discussed in Section 2.4.1, we have strived to make ouk wompatible with the recently
developed gang-matching model for resource co-allocativa see two areas in which the gang-
matching model must be extended to facilitate network and €dé*allocation.

First, some support for partial allocation of resourceseiguired, since many slices of net-
work capacity are allocated in one matchmaking cycle. Thmggaatching framework as currently
formulated assumes that resources are completely conswimen matched, so shared resources
must be partitioned into individual resource offers. Hoarewt is not feasible to partition network
resources in advance. Classad replacement, where resaffees can be partially allocated au-
tomatically in the matchmaking process, is cited as futuoekwn [55] and should address this
issue.

Second, the gang-matching framework does not currentlgatigangs of dynamic size. How-
ever, requiring fixed-sized gangs makes it difficult to adli@c network capacity on intermediate
network devices for a network flow. The endpoints for netwoakacity requests may be deter-
mined at match time, according to the chosen executionsatatermediate network hops can not
be precomputed by the requester. Likewise, pre-computing’aoutes forn endpoints in the sys-
tem is not feasible—the routes should be computed at matwh Therefore, some mechanism for
dynamically sized gangs is required.

7.2 Summary

This dissertation has presented the case for allocatinvgonkeresources in batch job environments.
We presented goodputmetric that compares a job’s performance in the batch emviemnt to its
ideal performance using local, dedicated resources angestef scheduling strategies based on
this metric for different classes of batch jobs, accordinghte jobs’ network requirements. We
showed that batch jobs generate significant network loatienCtondor pool in the University of
Wisconsin-Madison Computer Sciences department and guidfile pool’s capacity. In particular,
we confirmed previous results that over 70% of workstatiqmacdy goes unused by workstation
owners and illustrated that harnessing the last 10% of idfmcity provided by short idle periods
can account for over 50% of the job placement overheads isytsiem. We introducedxecution
domains a mechanism to improve data locality in HTC environmentglogtering compute nodes
based on their access to network resources. Finally, weex an implementation of network and
CPU co-allocation in the matchmaking framework and denrated its ability to improve goodput
by avoiding the oversubscription of network resources.



58

Bibliography

[1]

H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katzomparison of mechanisms
for improving TCP performance over wireless linkEEE/ACM Transactions on Networking
5(6):756—-769, 1997.

[2] J. Basney and M. Livny. Managing network resources ind@wnin Proceedings of the Ninth

IEEE International Symposium on High Performance Disti#alComputingAugust 2000.

[3] J. Basney and M. Livny. Improving goodput by co-schedgliCPU and network capacity.

International Journal of High Performance Computing Applions 13(3), Fall 1999.

[4] J. Basney, M. Livny, and P. Mazzanti. Utilizing widelystiibuted computational resources

efficiently with execution domains. To appear in Computeydtts Communications, 2001.

[5] J. Basney, R. Raman, and M. Livny. High throughput morteoc InProceedings of the Ninth

SIAM Conference on Parallel Processing for Scientific CatingyuMarch 1999.

[6] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and Sk&ueA distributed resource man-

agement architecture that supports advance reservatimhsaallocation. Irinternational
Workshop on Quality of Servic&999.

[7] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and $k&éuesASS: A data movement and

[8]

[9]

[10]

[11]

[12]

access service for wide area computing system®rdeeedings of the 6th Workshop on 110
in Parallel and Distributed Systemslay 1999.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and Wei88. An architecture for
differentiated services. IETF RFC 2475 (Informationalgdember 1998.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jaminsol®ee reservation protocol
(RSVP) — version 1 functional specification. IETF RFC 220&f8ards Track), September
1997.

T. Brecht. An experimental evaluation of processorlgmsed scheduling for shared-memory
numa multiprocessors. IAroceedings of the IPPS 1997 Workshop on Job SchedulintgeStra
gies for Parallel Processingzolume 1291 ot ecture Notes in Computer Scienpages 139—-
165. Springer Verlag, April 1997.

D. Burger and T. Austin. The simplescalar tool set, \er.0. Computer Architecture News
25(3):13-25, June 1997.

P. Cao, E. Felten, A. Karlin, and K. Li. A study of intetgd prefetching and caching strate-
gies. InProceedings of the 1995 ACM SIGMETRICS Joint Internati@@tference on Mea-
surement and Modeling of Computer Systepagies 188-197, 1995.



59

[13] R. Carr and J. Hennessy. WSCLOCK — a simple and effeetigerithm for virtual memory
management. IProceedings of the 8th Symposium on Operating System plescivol-
ume 15 ofOperating Systems Revigldecember 1981.

[14] A.Chervenak, I. Foster, C. Kesselman, C. Salisburgl, &riTuecke. The data grid: Towards an
architecture for the distributed management and analy$sge scientific datasets. To appear
in Journal of Network and Computer Applications, 2001.

[15] F. Douglis and J. Ousterhout. Transparent processatmgr. Design alternatives and the
Sprite implementationSoftware — Practice and Experiencl(8):757—-785, August 1991.

[16] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive loatis in homogeneous distributed
systemslEEE Transactions on Software Engineeripgges 662—-675, May 1986.

[17] D. Eager, E. Lazowska, and J. Zahorjan. The limitedgreniince benefits of migrating active
processes for load sharing. ACM SIGMETRICS Conference on Measuring and Modeling of
Computer Systempages 662—675, May 1988.

[18] R. Feiertag and E. Organisk. The Multics input/outpystem. InProceedings of the 3rd
Symposium on Operating System Principfesges 35-41, 1971.

[19] D. Feitelson and M. Jette. Improved utilization ando@ssiveness with gang scheduling. In
Proceedings of the IPPS 97 Workshop on Job Schedulinge§iest for Parallel Processing
1997.

[20] D. Ferrari, A. Gupta, and G. Ventre. Distributed advaneservation of real-time connections.
Lecture Notes in Computer Sciend®18, 1995.

[21] I. Foster and C. Kesselman. Globus: A metacomputingagtfucture toolkit. International
Journal of Supercomputer Applicatiqrisl(2):115-128, 1997.

[22] 1. Foster, C. Kesselman, and S. Tuecke. The Nexus appitodntegrating multithreading and
communicationJournal of Parallel and Distributed Computing7:70-82, 1996.

[23] I. Foster, C. Kesselman, and S. Tuecke. The anatomyeoftid: Enabling scalable virtual
organizationsinternational Journal of Supercomputer Applicatip2801.

[24] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Reraato: Fast access to distant storage.
In Proceedings of the Workshop on 1/O in Parallel and DistréaiSystems (IOPADS)ages
14-25, 1997.

[25] I. Foster, V. Sander, and A. Roy. A quality of serviceharecture that combines resource
reservation and application adaptation.Piroceedings of the Eighth International Workshop
on Quiality of Servicepages 181-188, June 2000.

[26] J. Goux, J. Linderoth, and M. Yoder. Metacomputing amelraster-worker paradigm. Tech-
nical Report ANL/MCS-P792-0200, Mathematics and Comp8ience Division, Argonne
National Laboratory, 2000.



60

[27] M. Harchol-Balter and A. Downey. Exploiting procesetime distributions for dynamic load
balancing.ACM Transactions on Computer Systeds(3), August 1997.

[28] H. Hellerman and H. Smith, Jr. Throughput analysis ahsddealized input, output, and
compute overlap configurationCM Computing Survey2(2), June 1970.

[29] G. Hoo, W. Johnston, |. Foster, and A. Roy. QoS as middiew Bandwidth reservation
system design. IRroceedings of the 8th IEEE Symposium on High Performanseibuted
Computing pages 345-346, 1999.

[30] J. Howard. An overview of the Andrew file system.Rroceedings of the Winter 1988 USENIX
Conferencepages 23-26, February 1988.

[31] M. Jones. Interposition agents: Transparently irdgsipg user code at the system interface.
14th ACM Symposium on Operating Principlég (1), December 1993.

[32] P. Krueger and M. Livny. A comparison of preemptive amch+preemptive load distributing.
In 8th International Conference on Distributed Computipgges 123-130, June 1988.

[33] W. Leland and T. Ott. Load-balancing heuristics anccpss behavior. IACM SIGMETRICS
volume 14, pages 54-69, 1986.

[34] J. Linderoth, S. Kulkarni, J. Goux, and M. Yoder. An elwadp framework for master-worker
applications on the computational grid. Pmoceedings of the Ninth IEEE Symposium on High
Performance Distributed Computingages 43-50, August 2000.

[35] M. Litzkow and M. Solomon. Supporting checkpointingdaprocess migration outside the
Unix kernel. InConference Proceedings of the Usenix Winter 1992 Tech@oaference
pages 283-290, January 1992.

[36] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Ckgaint and migration of UNIX
processes in the Condor distributed processing systemhnitad Report 1346, Computer
Science Department, University of Wisconsin-Madison, iiX[#97.

[37] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor — a hunterf idle workstations. In
Proceedings of the 8th International Conference on Distiel Computing Systemgages
104-111, 1988.

[38] J. Liu. A multilevel load balancing algorithm in a digwted system. IfProceedings of the
19th ACM Annual Computer Science Conferempage 670, March 1991.

[39] J. Liu. A model for job scheduling in a distributed conigunetwork. InProceedings of the
1992 ACM/SIGAPP Symposium on Applied Computing (Vol. #¢hifological Challenges of
the 1990spages 818-824, 1992.

[40] M. Livny. The Study of Load Balancing Algorithms for Decentralizedtiibuted Processing
SystemsPhD thesis, Scientific Council of the Weizmann Instituté&Sofence, August 1983.



61

[41] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Meshafor high throughput com-
puting. SPEEDUP Journall11(1):36—40, June 1997.

[42] M. Livny and R. Raman. High-throughput resource mamnagmet. In |. Foster and C. Kessel-
man, editors,The Grid: Blueprint for a New Computing Infrastructyrehapter 13. Morgan
Kaufmann Publishers, Inc., 1998.

[43] Q. Ma, P. Steenkiste, and H. Zhang. Routing high-badtwtraffic in max-min fair share
networks. InProceedings of the ACM SIGCOMM '96 Conferenpages 206—-217, August
1996.

[44] A. Mankin, F. Baker, B. Braden, S. Bradner, M. O’Dell, Romanow, A. Weinrib, and
L. Zhang. Resource reservation protocol (RSVP) version dicgbility statement. Some
guidelines on deployment. IETF RFC 2208 (Informationagpt®mber 1997.

[45] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A fast filestgm for Unix. ACM Transactions
on Computer System?®(3):181-197, August 1984.

[46] R. Metcalfe and D. Boggs. Ethernet: Distributed packeitching for local computer net-
works. Communications of the ACM9(7):395-404, July 1976.

[47] M. Mutka. Estimating capacity for sharing in a privgtedwned workstation environment.
IEEE Transactions on Software Engineeriig(4):319-328, April 1992.

[48] M. Mutka and M. Livny. The available capacity of a prie§t owned workstation environment.
Performance Evaluatiqnl2(4):269-284, July 1991.

[49] B. Ozden, A. Goldberg, and A. Silberschatz. Scalabteraon-intrusive load-sharing in owner-
based distributed systems. Hth IEEE Symposium on Parallel and Distributed Processing
pages 690-699, December 1993.

[50] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, andelenka. Informed prefetching and
caching. InProceedings of the 15th ACM symposium on Operating systenusptes pages
79-95, 1995.

[51] J. Plank. Improving the performance of coordinatedckpeinters on networks of worksta-
tions using RAID techniques. I&d5th Symposium on Reliable Distributed Systepages
76-85, October 1996.

[52] J. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trgrerent checkpointing under UNIX.
In Usenix Winter 1995 Tech. Conpages 213-223, January 1995.

[53] J. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley. Memaexclusion: Optimizing the
performance of checkpointing systentoftware — Practice and Experienc9(2):125-142,
1999.

[54] J. Plank, J. Xu, and R. Netzer. Compressed differenéesalgorithm for fast incremental
checkpointing. Technical Report CS-95-302, Universityennessee, August 1995.



62

[55] R. Raman. Matchmaking Frameworks for Distributed Resource Managem@&hD thesis,
University of Wisconsin-Madison, 2001.

[56] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distried resource management for
high-throughput computing. IRroceedings of the 7th IEEE International Symposium on High
Performance Distributed Computinguly 1998.

[57] R.Raman, M. Livny, and M. Solomon. Matchmaking: An exible framework for distributed
resource managemeniCluster Computing: The Journal of Networks, Software Tawold
Applications 2:129-138, 1999.

[58] R. Raman, M. Livny, and M. Solomon. Resource managerttenugh multilateral match-
making. InProceedings of the Ninth IEEE International Symposium oghHPerformance
Distributed ComputingAugust 2000.

[59] A. Romanow and S. Floyd. The dynamics of TCP traffic ovEMAnetworks. InProceedings
of the SIGCOMM Conferengcpages 79-88, 1994.

[60] O. Schelén, A. Nilsson, J. Norrgard, and S. Pink. &anance of QoS agents for provisioning
network resources. IRProceedings of IFIP Seventh International Workshop on @ualf
Service June 1999.

[61] S. Shenker, C. Partridge, and R. Guerin. Specificatfayuaranteed quality of service. IETF
RFC 2212 (Standards Track), September 1997.

[62] J. Shoch and J. Hupp. Measured performance of an etHegae network. Communications
of the ACM 23(12):711-721, December 1980.

[63] L. Smarr and C. Catlett. Metacomputing@ommunications of the ACM5(6):44-52, June
1992.

[64] R. Stevens, P. Woodward, T. DeFanti, and C. CatlettrAiee i-way to the national technology
grid. Communications of the ACM0(11):31-60, November 1997.

[65] A. TanenbaumModern Operating SystemPBrentice-Hall, Inc., 1992.

[66] D. Thain, J. Basney, S. Son, and M. Livny. The Kangargaregch to data movement on the
grid. August 2001.

[67] D. Thain and M. Livny. Bypass: A tool for building splikecution systems. IRroceedings
of the Ninth IEEE Symposium on High Performance DistribuBaminputing pages 79-85,
August 2000.

[68] D. Thain and M. Livny. Multiple bypass: Interpositiorgents for distributed computing.
Journal of Cluster Computingt:39—-47, Spring 2001.



63

[69] M. Theimer, K. Lantz, and D. Cheriton. Preemptable resmexecution facilities for the V-
system. In10th ACM Symposium on Operating Systems Princiglages 2—-12, December
1985.

[70] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarahatustering: A structure for scal-
able multiprocessor operating system desigpurnal of Supercomputing:105-134, 1995.

[71] S. Vazhkudai, S. Tuecke, and |. Foster. Replica seledti the Globus Data Grid. IRro-
ceedings of the First IEEE/ACM International ConferenceGbnster Computing and the Grid
(CCGRID 2001) pages 106-113. IEEE Computer Society Press, May 2001.

[72] D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg, &itdan, T. Lyon, R. Sandberg,
and P. Weiss. Overview of the SUN network file systemPiaceedings of the Winter Usenix
Conference1985.

[73] J. Wang, S. Zhou, K. Ahmed, and W. Long. LSBATCH: A distried load sharing batch
system. Technical Report CSRI-286, Computer Systems R#séastitute, University of
Toronto, April 1993.

[74] L. C. Wolf, L. Delgrossi, R. Steinmetz, and S. Schalldssues of reserving resources in
advance Lecture Notes in Computer Sciend®18, 1995.

[75] R. Wolski. Dynamically forecasting network perforntanto support dynamic scheduling
using the network weather service.Rmoceedings of the Sixth IEEE International Symposium
on High Performance Distributed Computingugust 1997.

[76] R. Wolski, N. Spring, and J. Hayes. Predicting the CPHUilability of time-shared Unix
systems. Technical Report CS98-602, Computer Scienceribmgrat, University of California
at San Diego, October 1998.

[77] J. Wroclawski. Specification of the controlled-loadwerk element service. IETF RFC 2211
(Standards Track), September 1997.

[78] J. Wroclawski. The use of RSVP with IETF integrated s&8. IETF RFC 2210 (Standards
Track), September 1997.

[79] E. Zayas. Attacking the process migration bottlendckProceedings of the 11th ACM Sym-
posium on Operating Systems Principlpages 13—24, November 1987.

[80] S. Zhou and T. Brecht. Processor pool-based schedédintarge-scale NUMA multipro-
cessors. IProceedings of the 1991 ACM SIGMETRICS Conference on Measmt and
Modeling of Computer Systenpages 133-142, May 1991.

[81] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia: A lshdring facility for large heteroge-
neous distributed computing systenSnftware — Practice and Experien@3(2):1305-1336,
December 1993.



64

Appendix A

Network Management Library

A.1 Introduction

The network management library contains the following s#as

e Router: enumerates the network hops between two addresses

NetworkCapacity: tracks the capacity of network segments

¢ NetworkCapacityAllocator: allocates aggregate netwaacity
¢ NetworkBandwidthAllocator: allocates bandwidth (FCFS)

e NetworkShareAllocator: allocates bandwidth (max-mim-fiare)
¢ NetworkReservations: allocates future bandwidth

e NetworkUsage: tracks usage per subnet over an interval

¢ NetworkUsageAllocator: fair-share network allocatioteifiace

¢ NetworkManager: ties all the classes together for use irdGon

The NetworkAllocator classes all use the Router class. & egheduling interval, reservations
for the current window are transferred from the Reservatimecator to the BandwidthAllocator.
The BandwidthAllocator in turn tells the NetworkCapacitipgkator how much it can allocate. The
NetworkUsageAllocator controls fair-share allocation.

A.2 Allocation Algorithm

Network capacity is allocated in the NetworkManager afedl. First, the administrator sets the
following parameters:

¢ NETWORK.ROUTING_INFO: The path to the network routing table configuration (de-
scribed below).

o NETWORK CAPACITY_INFO: The path to the network capacity configuration file (de-
scribed below).
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¢ NETWORKHORIZON: What is the bandwidth allocation granularity (iee of the allo-
cation window in seconds)? This parameter should usuallgdual to the matchmaker’s
scheduling granularity set by NEGOTIATOR TERVAL.

¢ NETWORKUSAGEHORIZON: Over what horizon (in seconds) do we calculate sar
fair-share network allocations (3600 by default)?

¢ NETWORK.CAPACITY_ALLOCATION _LIMIT: What is the maximum network capacity
(in seconds) allowed in a single allocation (900 by def&ult)

o NETWORKRESERVATIONLIMIT: What percentage of expected available future band-
width may be reserved (50% by default)?

¢ NETWORKBANDWIDTH_CONTROLLOWERLIMIT: The minimum percentage of
bandwidth to be allocated to active rate controlled coriosst if any, to avoid starvation
(10% by default).

¢ MAX_GOODPUTNETWORK.CAPACITY_PERJOB: What is the maximum percentage
(between 0.0 and 1.0) of network capacity for job placemisit & qualified goodput transfer
may request (0.0 by default)? Jobs that require less neteagpkcity than this limit get a
priority boost when bandwidth is oversubscribed to stamhimg on idle CPUs. This allows
Condor to keep CPUs busy even when the network is a bottleioetkgher priority jobs.

¢ NETWORK CAPACITY_RESERVEDFOR GOODPUT: What percentage of capacity (be-
tween 0.0 and 1.0) do we reserve for qualified goodput tremgfben needed (0.0 by default)?
This controls how much of a priority boost jobs with low netlwoequirements receive when
bandwidth is oversubscribed.

Condor allocates CPUs to jobs according to CPU fair-shametralling job placements so the net-
work will not be oversubscribed. If a job placement requitapacity on a network that is already
allocated to its horizon, Condor will try to find a differenPO on which to place the job for which
network capacity is available. If no such CPU can be found,jolh must wait until capacity be-
comes available in the network horizon.

Condor makes the following guarantee to jobs waiting fomvoek capacity. If the user has
not already received his or her fair-share in the currenageshorizon”, network capacity will not
be allocated to any other users with lower CPU priority befibis allocated to this user. In other
words, so long as the user has not exceeded his or her fag-shaetwork resources, no other users
will move ahead of this user in the job queue because of Céandetwork scheduling.

There is one caveat to this guarantee, however. The admioistnay reserve some percentage
of network capacity for overall system “goodput”. Qualifigibs may use this reserved capacity
for their placements, potentially moving ahead of the wgituser, if those jobs will use CPUs
that would otherwise have remained idle. The impact of thelse is limited by the percentage of
capacity reserved. Reserved goodput capacity not useddmpgbjobs is returned to the general-
purpose pool, so the actual increase in waiting time wikofbe less.
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A.3 Routing

The format of the NETWORKROUTING_INFO file is:

| P- ADDR SUBNET- MASK
--> NEXT- HOP | P- ADDR SUBNET- MASK

where IP-ADDR, SUBNET-MASK, and NEXT-HOP are all given iretistandard numbers-and-
dots notation. The first line defines a network resource amd-th>" lines that follow define hops
from that network resource to other network resources. gren route, the source network is the
network resource for which:

sour ce-i p-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK, and likewise the destinati@iwork is the network resource for
which:

destination-ip-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK. For the hop definitions, the NIEHOP field specifies the IP-
ADDR of the network resource that is the next hop for destmaeaddresses for which:

destination-ip-addr & SUBNET- MASK == | P- ADDR & SUBNET- MASK

with the largest SUBNET-MASK. The routing algorithm staatsthe source network and follows
the next-hop configuration until it reaches the destinatietwork. The current implementation
requires that:

| P- ADDR == | P- ADDR & SUBNET- MASK

(i.e., the masked-out IP-ADDR fields must be 0). Since thdimgualgorithm searches all re-
sources/hops for the largest matching SUBNET-MASK, theond which the resources and hops
are specified is not important.

The simplest configuration is:

0.0.0.0 0.0.0.0

This configuration defines a single network segment conmgaill endpoints. The SUBNET-
MASK of 0.0.0.0 will match any IP address. Any bandwidth lisndefined for the 0.0.0.0 network
will be applied to all transfers between endpoints. Bandhvianits can also be set for specific
endpoint addresses using this configuration.

The example in Figure 35 describes a network with 2 subnetmected to each other and to
the internet. The “internet” is defined with a SUBNET-MASK@0.0.0, so it will match any IP
address. However, addresses on either of the two subnétsowgctly match the subnets with the
larger 255.255.255.0 mask.

Depending on how you intend to use it, the routing table caweg detailed or may describe
a very idealized representation of your network. The ragutiable is used to allocate capacity
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0.0.0.0 0.0.0.0 #
--> 128.105.101. 0 128. 105.101. 0 255.255.255.0 #
--> 128.105.102. 0 128. 105. 102. 0 255. 255. 255. 0 #
128. 105. 101. 0 255. 255. 255. 0 #
--> 128. 105. 102. 0 128. 105.102. 0 255. 255.255.0 # --> 102
-->0.0.0.0 0.0.0.0 0.0.0.0 #
128. 105. 102. 0 255. 255. 255. 0 #
--> 128.105.101.0 128. 105.101. 0 255.255.255.0 #
-->0.0.0.00.0.0.0 0.0.0.0 #

Figure 35: Example Routing Table

128.105.101.3 --> 128.105.101.0 --> 128. 105.101.5
128.105.101.3 --> 128.105.101.0 --> 128.105.102.0
--> 128.105.102.5
128.105.101.3 --> 128.105.101.0 --> 0.0.0.0
--> 216. 115. 108. 245

Figure 36: Example Routes from Figure 35

on shared network resources, so it must include a definitorlf resources defined in the NET-
WORK_CAPACITY_INFO file. There is no need to include endpoints in the tabdsydver. The
route always starts with the source address and ends witthetftenation address of the flow. For
example, the table in Figure 35 will yield the routes showFRigure 36.

If the router connecting the 2 subnets and the internet idtieheck, we can explicitly include

it in the routing table so we can allocate its capacity for 8dat traverse it as in Figure 37. We
just chose one of the router’s interfaces to identify it.c8imve do not expect the router itself to be
an endpoint, we just needed to choose an address and maskotiidtnot match actual endpoints
in our system. The internet has next-hop definitions for Isotbnets through the router, the router
has next-hop definitions to the subnets and the internetihensubnets have one next-hop defined
to the router (i.e., all routes to endpoints that are not erstibnets must traverse the router). This
modified routing table will yield the routes shown in Figui& 3

These routes will usually be different from what we would &®en traceroute because our
routes include network segments in addition to routers adg@&ints so we can allocate capacity on
all network resources. Our routing table defines a “virtudtwork, abstracting away details we are
not interested in and using virtual addresses for netw@s&wees that in reality have no assigned
IP address (network segments, Ethernet bridges) or hawgptauP addresses (routers).
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0.0.0.0 0.0.0.0

--> 128.105.101.2 128.105.101. 0 255. 255. 255. 0
--> 128.105. 101. 2 128. 105. 102. 0 255. 255. 255. 0
128. 105. 101. 2 255. 255. 255. 255 router
--> 128.105. 101. 0 128. 105.101. 0 255. 255.255.0 # --> 102

# internet
#
#
#
#
--> 128.105.102.0 128.105.102.0 255.255.255.0 # --> 102
#
#
#
#
#

--> router
--> router

-->0.0.0.00.0.0.0 0.0.0.0 --> inet
128. 105. 101. 0 255. 255. 255.
-->128.105.101.2 0.0.0.0
128. 105. 102. 0 255. 255. 255.
-->128.105.101.2 0.0.0.0

0.0.0 --> router

102

0.0.0 --> router

Figure 37: Another Example Routing Table

128.105.101.3 --> 128.105.101.0 --> 128. 105.101.5

128.105.101.3 --> 128.105.101.0 --> 128.105.101. 2
--> 128.105.102.0 --> 128.105.102.5

128.105.101.3 --> 128.105.101.0 --> 128.105.101.2
-->0.0.0.0 --> 216. 115. 108. 245

Figure 38: Example Routes from Figure 37

A.4 Network Capacity

The format of the NETWORKCAPACITY_INFO file is:
| P- ADDR CAPACI TY

where |IP-ADDR indicates an endpoint IP address or a netwedource from the NET-
WORK_ROUTING_INFO file in the standard numbers-and-dots notation and GAPX is a
floating-point number indicating the network capacity (ibp4) of the resource. For example:

128.105.101.0 40.0
128.105.65.3 5.0

defines a 40 Mbps limit on the 128.105.101.0 subnet and a 5 Ntjigor the host 128.105.65.3.



