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ABSTRACT

Numerous load distributing algorithms have been proposed
over the past several years, with widely varying characteristics.
While some of these algorithms rely solely on non-preemptive pro-
cess placement, others make use of preemptive process migration.
Because the state of a process becomes considerably more complex
after it begins execution, the mechanism necessary for migration is
correspondingly more complex than that for placement, and may
incur significantly greater resource overhead. In light of this com-
plexity, as well as the consequent implementation expense, we con-
sider whether the addition of a migration facility to a distributed
scheduler already capable of placement can significantly improve
performance. We examine performance over a broad range of work-
load characteristics and file system structures. We find that, while
placement alone is capable of large improvement in performance, the
addition of migration can achieve considerable additional improve-
ment.

1. Introduction

In recent years, several studies, including [Livny82, Eager86],
have shown load distributing to be an essential component of
scheduling for distributed systems. While the local scheduling com-
ponent of a distributed scheduler determines how the local resources
at a single node are allocated among the resident processes, load dis-
tributing distributes the system workload among the nodes through
process transfer. Process transfers can be performed either non-
preemptively, through process placement, or preemptively, through
process migration. Placement entails selecting a suitable node as the
execution site for a process and initiating the process at that node.
Later, if another node should become a better execution site, migra-
tion entails transferring the process to that node, where it continues
executing.

Migration is more costly than placement, since the process
state, which must accompany it to its new node, becomes much more
complex after execution begins. First, implementing and maintain-
ing the mechanism necessary to encapsulate, transfer and resume
execution from this complex state is expensive. In addition, having
implemented this mechanism, it is not obvious what performance
improvement might result, since its resource overhead is likely to be
much greater than that for placement [Powel83, Theim85]. In light
of this two-pronged expense, we address the question: Is migration
worthwhile, or can most or all of the performance improvement
potentially available through load distributing be achieved using
placement only?

For many computer systems, the best candidate for local
scheduling is a preemptive discipline, such as Round-
Robin [Klein76], that quickly provides an initial burst of service to
newly-arrived processes. Such disciplines have long been used to
provide service acceptable to the users of general-purpose single-
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processor systems, and have been shown to be necessary (o provide
equivalent performance for distributed systems [Krueg87]. We
assume the use of such a local scheduling discipline in this study.
Under such local scheduling, process transfers that are negotiated by
a receiving node (referred to as  receiver-initiated
transfers [Eager86a]) are always migrations, since it is unlikely that a
receiver-node would open negotiation with a potential sender at the
moment that a new process arrived at the sender. Transfers that are
sender-initiated however, may be either placements or migrations,
depending on which process the sender chooses to transfer. While
receiver-initiated migration has more obvious potential for perfor-
mance improvement, sender-initiated migration may also improve
performance. A load distributing algorithm that is free to choose any
process to transfer, rather than being restricted to a newly-arrived
process, may choose some other process that can be identified as
likely to result in a larger improvement in performance. Though
sender-initiated migration holds promise for future study, this paper
focuses on receiver-initiated migration.

Ignoring, for a moment, the overhead incurred by load distri-
buting, we can predict the conditions under which the addition of
receiver-initiated migration will be most useful. Sender-initiated
placement can improve performance whenever a process arrives at a
busy node, which can potentially occur even when only a single pro-
cess resides in the system. In contrast, the addition of receiver-
initiated migration can improve performance only when a process
completes at a time when the system contains more processes than
nodes, so that the initial placement of processes resulted in some
nodes servicing more than one process. For an M/M/m system com-
posed of 10 nodes that is 65% utilized, the probability of this latter
occurrence is only 0.1 [Laven83]. This probability rises to 0.45 if
the utilization increases 10 85%, but falls to 0.03 if the number of
nodes increases to 20. From this simple analysis, the addition of
receiver-initiated migration can be predicted to be useful only at high
system loads or for systems containing few nodes. However, this
result does not address the complications that arise in practical distri-
buted systems, in which load distributing overhead is significant.
This paper investigates the effect of this overhead on the ability of
migration to improve performance.

Numerous load distributing algorithms have been proposed
over the past several years, with widely varying characteristics.
However, Eager, Lazowska and Zahorjan [Eager86] have noted that
most load distributing algorithms can be categorized as following
one of two archetypical strategies. While load sharing (LS) algo-
rithms simply attempt to conserve the ability of the system to per-
form work by assuring that no node is idle while processes wait for
service, load balancing (LB) algorithmg go a step further by striving
to equalize the workload among nodes. Though the LB strategy has

* LB can be considered a generalization of the Join-the-Shortest-
Queue (JSQ) strategy, which has been studied by [Chow77,Ni81, Wang85].
‘While JSQ is limited to placement, LB may have a migration component.



been shown to have the potential to provide better performance than
LS when the overhead of load distributing is ignored [Krueg87],
there are at least two reasons why an LS algorithm may prove advan-
tageous for practical systems. First, when overhead is not ignored,
an LS algorithm may provide better performance by avoiding pro-
cess transfers that are not cost-effective, since they do not provide
enough improvement in performance to justify their
overhead (Krueg87a]. Second, particularly for distributed systems
composed of workstations, ownership rights of individual nodes or
groups of nodes may preclude LB [Nicho87,Litzk88]. To expose
dependencies between improvement in performance and the particu-
lar strategy chosen, we consider both the LB and LS strategies.

Since the central issue of scheduling is performance, we must
identify suitable performance indices with which to evaluate preemp-
tive and non-preemptive load distributing. The goal of a scheduling
policy is to allocate resources in such a way that the performance
expectations of the users are most nearly met. User performance
expectations generally center on the quality of service provided to
the processes they initiate, for which both response time and
response ratio are accepted measures. Response time is the total
amount of time a process resides in the system, while response ratio
is the response time per unit of service, which is the reciprocal of the
rate at which the process receives service. The use of response ratio,
similar to such human institutions as grocery store checkout lines for
‘10 items or less,’ carries the assumption that a process requesting
more resource use should expect to wait longer. Particularly for sys-
tems in which processes are associated with ‘owners’, such as mul-
tiuser timeshared systems, response ratio may more accurately reflect
the user’s perception of performance than response time. Altema-
tively, the use of response time may be more appropriate for systems
in which all process have the same owner, such as real-time systems.

While the average quality of service provided is clearly an
important performance index, how fairly service is allocated is also a
common concem. For example, two users simultaneously initiating
equivalent processes expect to receive about the same quality of ser-
vice. While faimess is certainly a complex issue, a good first-order
measure is the level of variation in quality of service provided to
processes having the same priority. The most commonly used meas-
ures of variation, due to their pleasant mathematical properties, are
the standard deviation and the coefficient of variation. The perfor-
mance indices examined in this paper are the means and standard
deviations of response time (RT and ogy, respectively) and response
ratio (RR and ogg).

In the following pages, we show that while placement can
indeed achieve much of the performance improvement available
through load distributing, considerable additional improvement can
be gained through migration. Under many conditions, this additional
improvement would be obvious to the users of the system. We con-
clude that, while not as essential as placement, a migration facility is
often a worthwhile investment.

We begin by describing the distributed system model assumed
for this study. Using this model, we present data from simulation
experiments representing a broad range of workload conditions and
file system structures, identifying those systems and workloads in
which a migration facility is most advantageous, together with the
performance indices that are most improved. Finally, we summarize
our results and draw detailed conclusions.

2. Distributed System Model

The model used in this study is an extension of the m*(M/M/1)
family of distributed system models proposed by
Livny [Livny82, Livny83], augmented to allow Processor Sharing
(the theoretical limit of Round-Robin as the time quantum goes to
zero [Klein67]) to be specified as the local scheduling discipline and
to allow hyperexponentially, as well as exponentially, distributed
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task service demands. Hyperexponential distributions are important
to consider, as those task service demand distributions that have been
observed [Rosin65, Trive82, Zhou86] are poorly approximated by
exponential distributions. The resulting m*(M/H/1) system consists
of m functionally identical nodes, fully connected by a communica-
tion device. Tasks arrive independently at each node and join the
local queue. After arriving, a load distributing algorithm allows pro-
cess transfers. The distribution of interarrival times is exponential,
so the external task arrival process of the system consists of m
independent Poisson processes.

For this study, we assume a communication device with a sin-
gle queue using the First-Come-First-Served queuing discipline.
Since the communication device is not a bottleneck in our experi-
ments, this simple model is sufficient. Processes are assumed to exe-
cute independently, with no intercommunication. Furthermore, we
assume that nodes have equal processing bandwidths and that the
service demands of processes arriving at different nodes are identi-
cally distributed. However, the rates at which processes initially
arrive (as opposed to arriving as the result of transfer), however, may
be different at different nodes. We refer to such a workload as hav-
ing heterogeneous initiation rates. Such workloads may be common
for some types of distributed systems, particularly those composed of
workstations [Mutka87]. Since we are interested in scheduling for
general-purpose computer systems, we assume the scheduler has no
deterministic a priori information about process service demands. In
addition, we assume that processes do not leave the system before
completing service.

The task service demand distribution assumed is derived from
data collected by Leland and Ott [Lelan86] from, over 9.5 million
processes executed by a VAX-11/780 under UNIX . Using weighted
least squares regression analysis, we have found that the 3-phase
hyperexponential distribution having the following probability den-
sity function:

f&x)y = 9™ 31) + 192628 /2.8) + .018(e~>"F" / 27)

is a very good fit for the published data. The mean service demand,
X, deriving from this density is 1.27 seconds, while the coefficient of
variation, Cy, is 5.3. We feel that this distribution is more useful for
our purposes than that found by Leland and Ott (1 - F(x) = rx™)
because, due to our choice of performance indices, we are interested
in an accurate model for the largest number of processes (hence our
use of least squares regression), rather than for the processes accu-
mulating the greatest portion of CPU time. Thus, in addition to pro-
viding a usable density function, our model is a significantly better
fit for all but the 0.2% of processes having the longest service
demands. We generalize the above density function to form a family
of functions sharing Cy, but varying in X :

Fx) = (79/ 243 X)e = 24X @n

+ (192/22X)e™ 2% 4 (018/212 X)e X

3. Simulation Study

In this section, we compare the improvement in performance
resulting from sender-initiated placement with the additional
improvement that results from augmenting placement with receiver-
initiated migration. We study performance through simulation, since
no analytic models are available that allow hyperexponentially distri-
buted process service demands, heterogeneous process initiation
rates, or the number of nodes participating in the system to be con-
sidered. These simulations are based on the assumption that negotia-
tion and transfer require use of CPU resources at the sending and

* VAX is a trademark of Digital Equipment Corporation and UNIX is
a trademark of AT&T Bell Laboratories.



receiving nodes, as well as use of the communication device. All
simulation results presented have less than 10% error at the 90%
confidence level.

3.1. Description of the Load Distributing Algorithm

In designing a load distributing algorithm, consideration must
be given to its resource overhead. For example, since the resources
used for load distributing, CPU and communication device
bandwidth, are shared with user processes as well as other instances
of the distributed scheduler, load distributing may increase queue
delays experienced by user processes and decrease the responsive-
ness of load distributing. To best improve performance, it may be
necessary to back off from the load balancing or load sharing stra-
tegy, performing only those transfers that most effectively improve
performance. As a second example, the performance penalty caused
by the overhead of negotiating with every node in the system to find
the best transfer partner may be prohibitive, particularly when the
likelihood of finding a partner is small. To maximize performance, a
load distributing algorithm may be forced to limit negotiation to a
subset of nodes. Additionally, because process transfers require time
to complete, the length of the CPU queue at a node is not a sufficient
measure of its load. Since transfers are not instantaneous, the queue
length does not change as soon as a transfer is negotiated. However,
a node should not overcommit. A load metric that avoids this prob-
lem augments the node’s queue length with its
reservations [Livny83], the change in queue length expected 10 be
induced by processes that are in transit. Another consequence of the
time required for negotiation and transfer is that a node that becomes
idle is unable to immediately acquire new processes to execute even
though processes wait for service at other nodes, resulting in a loss of
available processing power in the system. To avoid this loss, antici-
patory transfers to nodes that are not idle, but are expected to soon
become idle, are necessary. As a final example, when resource over-
head is not negligible, sophisticated criteria for selecting a process to
migrate become advantageous. In our experiments, the process
selected to migrate belongs to the set of processes that have been
transferred least often among those residing at the sending node, and
has executed for at least F * sender CPU time required for transfer,
where F is a parameter of the algorithm and the CPU time required
for a transfer is calculated from the size of the process and the CPU
overhead per transfer message at the sender. The first of these cri-
teria assures that an unusually small process is not repeatedly
migrated, disproportionally degrading its service, and thus degrading
the standard deviations of response time and response ratio (Ggg and
Ogr). The second criterion avoids transferring very short processes,
the overhead of which would severely degrade their response ratios.
In addition, since the expected residual service demand of a process
increases as it accumulates processing time, given that service
demands are hyperexponentially distributed, this criterion avoids
transferring those processes having the shortest expected residual
service demands, which have the most transient effects on the load of
the sender. Among the processes meeting these two criteria, the pro-
cess selected to transfer has the smallest migration size, which may
not exceed the parameter MaxMigSize, including the size of its exe-
cutable image as well as any data that must accompany it.

To evaluate the performance impacts of placement and migra-
tion, we use variations of the PollGen algorithm [Krueg87a], which
range from pursuing the LS strategy to the LB strategy, and from
sender-initiated to symmetrically-initiated. In its strictest form,
PollGen is symmetrically-initiated: A node initiates negotiation with
probability SendProb on becoming overloaded, or with probability
RecvProb on becoming underloaded. A node determines that it is
overloaded or underloaded according to the relationship of its load to
two static thresholds: A node becomes overloaded when the initia-
tion of a process causes the load to be greater than one, and becomes
underloaded whenever the completion of a process causes the node
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to become idle. Similarly, identification of a suitable transfer partner
depends on two static thresholds: First, for all transfers, a suitable
partner differs in load from the node initiating negotiation by at least
two. Second, applying only to those transfers that are sender-
initiated, the load of a suitable receiver is <T. This parameter con-
trols the strategy pursued by PollGen. An algorithm following an LS
strategy without anticipatory transfers has T =0, while an algorithm
implementing the LB strategy has T =eo. In this section, we con-
sider the following five PollGen variants, ranging in strategy from no

load distributing (NoLD), through sender-initiated, to
symmetrically-initiated load balancing (SymLB):
SendProb | RecvProb | T
NoLD 0 0 0
SenderLS 1 0 0
SenderLB 1 0 00
SymLS 1 1 0
SymLB 1 1 o

How negotiation proceeds depends on whether it is sender or
receiver-initiated. A potential receiver, being idle, chooses the first
suitable transfer partner, so that it is not idle any longer than neces-
sary. A potential sender, however, searches for the best partner: an
idle node. To negotiate, a potential receiver polls a randomly chosen
set of size PollLimit nodes until a suitable partner is found. If no
suitable partner is found, the node remains idle. A potential sender
polls a random set of size PollLimit nodes until an idle node is
found. If no idle node is found, each suitable partner that has been
found in this set is polled again, beginning with the node having the
JTowest load when last polled, until a partner that remains suitable is
found. If no suitable partner is found, the node remains overloaded.

3.2. Simulation Assumptions

Based on observations of user processes executed on research
computers at our department, we assume that the physical migration
sizes of processes are independent of all other process characteristics
and are exponentially distributed. Transfer messages are assumed to
be divided into packets, with the CPU service demands required to
process these packets, as well as those containing negotiation mes-
sages, preempting all other processing. This assumption implies that
processes may not begin to receive service immediately on initiating.
In [Krueg87b], it is shown that for such scheduling, the mean and
standard deviation of wait ratio, and thus response ratio, are infinite
when measured over the entire population of processes. To avoid
this problem, processes having the shortest 1% of service demands
are trimmed from the sample when measuring these performance
indices. Default parameters of the simulation are:

Number of nodes (m) 20

System load (p) _ 0.85

Mean process CPU service demand (X) 1.27 seconds
Mean process migration size 100K bytes
CPU service demand for transfer packets .004 seconds
Maximum packet size 4K bytes
CPU service demand for negotiation messages 002 seconds
Negotiation message size 32 bytes
Process initiation rates Homogeneous
Communication device bandwidth 10 Mbits/sec.
PollLimit 5

F 0.1
MaxMigSize 100K bytes

For these default parameters, the mean CPU overhead of migrating a
process of average size is 0.2 seconds, divided evenly between the
sending and receiving nodes. To stress that this overhead is not as
important in absolute terms as it is relative to the service demand of



a process, a key parameter in our presentation is relative migration
overhead, which is the mean CPU overhead normalized by mean ser-
vice demand, X. This parameter, which is 0.16 for the above
defaults, can be varied by varying either X, the mean migration size,
or the CPU overhead for transfer packets.

Assuming, for simplicity, that the input and output of a process
reside on disk, the way migration and placement are modeled
depends on the file system structure of the distributed system. If
nodes have no local secondary storage, but rely on a shared disk
server, placement can be accomplished simply by sending a message
to another node specifying the program, input and output files. For
such a system, migration carries much greater overhead than place-
ment, since the process state considerably increases the size and
complexity of the data that must be transferred. At the opposite end
of the spectrum, if each node has local disk storage and no files are
replicated, placement entails transferring the program and its input to
the new node, and transferring the output back to the originating
node when the program completes. Migration, for such a system, is
not greatly more expensive than placement, since the process state
does not greatly increase the size or complexity of the transfer.
Between these endpoints lie systems having local secondary storage
but some replication of files, and systems having ‘minimal’ local
disks used only for swapping. We model process transfers for this
spectrum of distributed systems as occurring in two logical parts. A
message having constant size for all transfers (128 bytes) is followed
by a message having a size corresponding to the migration size of the
process being transferred. This size includes its executable image,
its state description, and any input or output. For placement, the size
of the second message is smaller than the migration size by a factor
PlaceFactor. A small PlaceFactor models a system having no local
disk storage, while PlaceFactor approaches 1 when nodes have local
disks and no files are replicated.

3.3. Results

To compare the improvement in performance resulting from
placement with that of migration, we compare the percent reductions
in each of the performance indices that result from placement:

placement improvement = 100 {1 — (Sender | NoLD )]

with the additional reductions that result from augmenting place-
ment with receiver-initiated migration:

additional migration improvement = 100 [1 - Sym / Sender)]

To begin, we examine the interplay between the distributed file
system structure and the ability of PollGen to improve performance.
Figures 3.1 and 3.2, which plot percent improvement against Pla-
ceFactor, show that in spite of the large improvement resulting from
placement alone, the addition of migration can provide performance
that is significantly better. This improvement is most obvious for the
standard deviation of response time (Ogpy), which is generally
degraded, rather than improved, when placement is used alone. The
additional improvement from migration couteracts this degradation,
allowing SymLS to achieve lower Gpr than NoLD across the range
of file system structures, while SymLB improves ogy for PlaceFac-
tor <0.7. Even when migration is greatly more expensive than
placement, at low values of PlaceFactor, it can significantly improve
performance.

Not surprisingly, while an increase in PlaceFactor reduces the
ability of placement to improve performance, it generally increases
the ability of migration to additionally improve performance. Place-
ment becomes less able to improve performance as it becomes
increasingly expensive. In contrast, migration becomes better able to
additionally improve performance as its overhead relative to place-
ment decreases. We can conclude that load distributing algorithms
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relying solely on placement are best applied to distributed systems
modeled by a small PlaceFactor, while migration is most valuable
for systems modeled by a larger PlaceFactor.

While placement improvement from load balancing is often
larger than that from load sharing, we observe the opposite for
migration, where improvement is greater for LS than for LB. A
related trend, decreasing PlaceFactor is more advantageous for Sen-
derLB than SenderLS, and less harmful to SymLB than SymLS.
Both these phenomena have the same cause: the LB strategy is more
reliant on sender-initiated transfer, while LS is more reliant on
receiver-initiated migration. Intuitively, since the sender-initiated
component of an LB algorithm is less restricted in its search for a
suitable destination node, placement carries a heavier load distribut-
ing burden for LB than for LS. Conversely, receiver-initiated migra-
tions are more necessary to LS. This reliance of LB algorithms on
placement and LS on migration can be quantified by calculating and
comparing the rates of sender-initiated and receiver-initiated
transfers for these two strategies. Derivations of these rates under
assumptions of negligible load distributing overhead and exponen-
dally distributed service demands [Krueg87a] show that, holding
other parameters constant, the lower bound for each rate occurs when
process initiation rates are homogeneous, while the upper bound is
reached in the single-source case, when all processes initiate at a sin-
gle node. Figure 3.3, which plots the transfer rates against system
load, shows that the rate of sender-initiated transfers is higher for
LB, while the receiver-initiated transfer rate is lower for LB, particu-
larly when process initiation rates are heterogeneous. If migration is
a great deal more costly than placement, LB may carry less overhead
than LS, even though it has a higher overall transfer rate.

An important feature of figures 3.1 and 3.2 is that, for both
placement and migration, improvement in mean response time (RT)
is greater than that in mean response ratio (RR). Intuitively, since a
given reduction in response time reduces the response ratio of a
long-running process less than that of a short process, this difference
in improvement implies that response time improvements have been
more heavily ‘allocated’ to long processes than to short processes.
Alternatively, since a given response ratio improvement reduces the
response time of a long process more than that of a short process, this
difference implies that the response ratio improvements have also
been more heavily allocated to long processes. The reason for this
bias is that the processes that are potentially most helped by a
transfer (the transferred process and the processes left behind at the
sender) must execute for some period before they ‘recover’ from the
delay imposed by the overhead of the transfer. The amount that the
response time or response ratio of a process is reduced as the result
of a transfer increases with increasing residual service demand.
Since the expected residual service demand of a long process is
longer than that of a short process (regardless of the service demand
distribution), a transfer that incurs a given level of overhead can
improve the performance of a long process more than that of a short
process. This mechanism is more clearly illustrated by figures 3.4
and 3.5, which present results of experiments in which mean process
service demand (X ) is varied. The resulting data are plotted in terms
of relative migration overhead (section 3.2), with longer X
corresponding to smaller relative overhead. Similar results are
shown if, instead of varying X, mean migration size or CPU over-
head per packet are varied. Figure 3.4 shows that, for placement,
this bias in favor of long-running processes decreases with relative
overhead, disappearing when overhead becomes negligible.
Correspondingly, figure 3.1 shows that this bias decreases with Pla-
ceFactor, nearly disappearing when load distributing overhead is
solely from negotiation. However, figure 3.5 shows that the
migration-induced bias follows a different trend, being significant
even when overhead is negligible. The reason for this difference is
that a bias in favor of long-running processes is inherent to migra-
tion, rather than arising solely as the result of overhead. Even when
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overhead is negligible, all processes that are immediately helped by a
transfer have executed for some period of time before the transfer, so
the mean service demand of these processes is greater than the
overall mean. Thus, migration is more heavily biased toward long-
running processes than placement.

Figure 3.5 shows that migration can provide significant
improvement in performance over a broad range of relative over-
head. The largest migration improvement is exhibited by SymLS at
high levels of overhead. This improvement is more ‘important’ than
the negligible improvement from SymLB, because LS is the strategy
of choice under such conditions. Similar to the results
of [Krueg87a], both load sharing algorithms provide better perfor-
mance than either load balancing algorithm at high overhead, when
the additional transfers performed by LB beyond those of LS are too
costly to be worthwhile. Thus, at high overhead, an LS algorithm
would likely be chosen regardless of whether a migration facility
was included. For sufficiently high relative overhead, performance is
degraded, rather than improved, when placement is used by itself.
However, the large migration improvement achieved by SymLS
counteracts this degradation, significantly broadening the range of
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overheads for which performance is better than without load distri-
buting. For example, SenderLS provides lower RT than NoLD only
when relative overhead < 0.5, but SymLS extends this range to 0.8.
Similarly, SenderLS improves og; only when relative overhead
< 0.04, though SymLS extends this range to 0.4. This extension of
the useful range of load distributing makes a migration facility par-
ticularly attractive for systems expected to perform well under a
broad range of workloads, resulting in widely varying relative over-
head.

The large increase in migration improvement resulting from
SymLS at high levels of relative overhead, as well as the rapid
decrease resulting from SymLB, can be better understood by exa-
mining figure 3.6, which plots migration improvement against sys-
tem load. The trends at high system load are similar to those at high
levels of overhead, because high overhead has the effect of increas-
ing the actual system load. The increasing migration improvement
from SymLS mirrors the results of Eager, Lazowska and
Zahorjan [Eager86a], who showed that, while the effectiveness of
sender-initiated LS drops off at high loads, receiver-initiated LS
becomes increasingly effective with increasing system load. On the
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other hand, the dropoff in migration improvement from SymLB at
high system loads occurs because its placement component allows
less variation in load among nodes than that of SymLS. As a result,
these migrations are not sufficiently advantageous to be worth the
significantly increased CPU contention resulting from their overhead
at high system loads. Similar to the case at high levels of relative
overhead, the large improvement from SymLS at high system load is
more important than the negligible improvement for SymLB. LS
algorithms typically outperform LB at sufficiently high system load,
where the additional transfers performed by LB increase CPU con-
tention too much to be worthwhile. Following this trend, our simula-
tions show LS to be the strategy of choice under such workloads.
For sufficiently high system load, placement degrades performance
when used alone. However, the large migration improvement result-
ing from SymLS counteracts this degradation. While Senderl.S pro-
vides lower Ggy than NoLD only when p < 0.7, SymLS extends this
range beyond 0.95. Thus, receiver-initiated migration is particularly
useful for systems that, at times, operate at high levels of utilization.
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Still another environment in which receiver-initiated migration
provides significant improvement in performance is one in which
process initiation rates are heterogeneous. As predicted
by [Krueg87], the level of heterogeneity has little effect on the per-
formance of the LB algorithms, though the LS algorithms are
strongly affected. For all workloads having sufficiently high levels
of heterogeneity, our simulations show that the LB algorithms out-
perform the LS algorithms, and are thus preferable. However, partic-
ularly for distributed systems composed of workstations, ownership
rights of individual nodes or groups of nodes may preclude LB, and
LS may be necessary. Figure 3.7 plots migration improvement
resulting from SymLS against the level of heterogeneity in process
initiation rates. The level of heterogeneity is manipulated by varying
the portion of the system nodes that are arrival nodes. As might be
found in a workstation environment, the entire system workload is
assumed to initiate at this subset of nodes, with an equal rate at each
node, while no processes initiate at the remaining nodes. These
results show that when process initiation rates are heterogeneous, the
users of a distributed system would perceive a large improvement in
performance as a result of a receiver-initiated migration facility.

4. Summary and Conclusions

In this paper, we have considered whether the addition of a pro-
cess migration facility to a distributed scheduler already capable of
process placement is a worthwhile investment. This question is par-
ticularly important to distributed operating system developers,
because implementation of a migration facility is likely to be much
more expensive than a placement mechanism. One must question
whether this investment can provide significant gains in perfor-
mance. Since, perhaps, the most obvious use for migration is to
allow receiver-initiated process transfers, this paper has focused on
the performance gains available through such use.

We have found that, while placement alone is capable of large
improvement in performance, the addition of receiver-initiated
migration, in many cases, achieves considerable additional improve-
ment. This improvement is particularly important, because it
broadens the range of workload conditions under which load distri-
buting improves, rather than degrades, performance. The magnitude
of this improvement depends on the workload characteristics of the
system, as well as on the overhead of migration relative to place-
ment, which is influenced by the file system structure. The key
characteristic of a distributed system that can profit from the addition



of a migration facility is a high level of utilization. Although most
systems are not specifically designed to operate at high utilization
over the long term, many are exposed to such workloads for short
periods of time. While these periods are short with respect to the
lifetime of the system, they may be long enough to significantly
affect the performance perceived by the users and should, therefore,
not be ignored.

In addition to periods of high utilization, several other system
characteristics increase the ability of migration to achieve perfor-
mance gains:

e Process initiation rates are heterogeneous.

e The file system stores much locally at a node, with little
replication at other nodes.

o The overhead of migrating a process tends to be high rela-
tive to its service demand.

Again, even for those systems in which these characteristics are
intermittent, they may persist long enough to have a strong impact
on user performance. It is important, then, to understand the effects
of such conditions and to develop distributed scheduling algorithms
that perform well, even under ‘abnormal’ circumstances which may
otherwise threaten the stability of the system.

We have shown that receiver-initiated migration has an
inherent bias toward reducing the wait times of long-running
processes. As a consequence, receiver-initiated migration is more
capable of improving RT than RR, and improves Ggy more than
Ogg » though large improvements in these latter indices may also be
achieved. Also, we have shown that migration improves the perfor-
mance of load sharing algorithms more than that of load balancing
algorithms, though again, significant performance may also be
achieved for load balancing.

In summary, throughout the range of file system structures con-
sidered, a wide range of workload conditions exist under which the
additional improvement provided by receiver-initiated migration
would be obvious to the users of the system. While not as essential
to load distributing as placement, a migration facility is potentially a
worthwhile investment.
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