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Chapter 1

High Throughput
Computing Resource
Management

Historically, users of computing facilities have been mainly concerned with the
response time of applications while system administrators have been concerned
with throughput. As a paradigm, users judged the power of a system by the
time taken to perform a fixed amount of work. Given this fixed amount of
computing to perform, the question most users asked was: How long will T have
to wait to get the results of this computation? Administrators, who were charged
with the responsibility of managing scarce and expensive computing resources,
were judged by the utilization and throughput of the facility. While the average
response time and the throughput of a facility are related, they represent two very
different viewpoints of the performance of a computing environment. In recent
years, however, we have experienced a change in these traditional viewpoints.
The dramatic decrease in the cost-performance ratio of computing resources
has effectively substituted “response time” for “utilization” as a primary con-
cern of administrators. At the same time, a growing community of users are
now concerned about the throughput of their applications. As more scientists,
engineers, and decision makers use computers to generate behavioral data on
complex phenomena, it is not uncommon to find users who ask the question:
How much behavioral data can I generate by the time my report is due? This
question represents a paradigm shift. In contrast to other users, these users
measure the power of the system by the amount of work performed by the sys-
tem in a fixed amount of time. For these throughput oriented users, the fixed
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time period is measured in the relatively coarse units of days or weeks, whereas
the amount of work is seemingly unbounded — one can never have too much
data when studying a biological system, testing the design of a new hardware
component, or evaluating the risk of an investment.

The computing needs of these throughput oriented users are satisfied by High
Throughput Computing (HTC) environments that can generate large amounts
of behavioral data. These users are less concerned about the instantaneous per-
formance of the environment (typically measured in Floating Point Operations
per Second (FLOPS)) rather than the amount of computing they can harness
over a month or a year. They measure the performance of a computing envi-
ronment in units of scenarios per day, wind patterns per week, instructions sets
per month, or crystal configurations per year. Given their unbounded need for
computing resources, the HTC user community is closely watching activity in
the computational grids area, and anxiously awaiting the moment when they
can tap into the vast computational power of these grids.

In this chapter we present important lessons learned, promising directions
and future challenges in the design and implementation of scalable and robust
HTC environments. We present these issues as a result of our decade-long inter-
action with groups of high throughput computing users that include scientists
and engineers who employ diverse computation techniques from a wide range of
disciplines. These users have been using HTC resources to study a wide spec-
trum of phenomena including among others diesel engines, neural networks, high
energy physics events, computer hardware and software, the structure of crys-
tals, and optimization techniques [25]. Most of them have been customers of the
Condor [24] environment that we have developed. While this chapter is based
on our experience with Condor, our objective is by no means to present Condor
or to evaluate its capabilities. Since one can view a Condor pool as a private
computational grid of desk-top workstations that are managed for HTC use, it
is our hope that builders of computational grids who would like to provide HTC
services (e.g high throughput distributed supercomputing (Chapter ??) will find
our experience and frameworks useful.

We believe that the experience from these interactions in terms of lessons
learned and promising future directions are applicable to all types of computa-
tional grids, regardless of whether they are private, virtual, organizational, or
public grids. Furthermore, we expect that the size, scope, heterogeneity, and
dynamics of computational grids will only strengthen the validity of these con-
clusions. The confidence in these beliefs stems from working with a wide range
of customers with real-life computing needs, from maintaining and supporting
Condor for more than a decade and from managing a large HTC production
environment at the University of Wisconsin-Madison. (We currently manage a
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Condor Flock [6] at the University of Wisconsin that consists of more than 500
desk-top UNIX workstations and serves users throughout the campus.)

The most important lesson our HTC experience has taught us is that in
order to deliver and sustain high throughput over long time intervals, a comput-
ing environment must build its resource management services on an integrated
collection of robust, scalable and portable mechanisms. Robustness minimizes
down time whereas scalability and portability increases the size of the resource
pool the environment can draw upon to serve its customers. As will be argued
in the next section, a typical environment is physically distributed, its resource
pool is heterogeneous and is owned by several entities, the availability of re-
sources can change at any time, and new types of resources are continuously
added to the pool as older technology is removed. Fragile mechanisms that de-
pend on the unique characteristics of specific computing platforms are likely to
have a negative rather than a positive impact on the long term throughput of
the environment.

Four groups of users are served by the mechanisms provided by a HTC
environment: resource owners, customers, system administrators and application
writers. The needs and expectations of each of these groups and the role they
play in the success of a HTC environment will be discussed in section 1.2. In the
same way that an electric power grid is not just a collection of generators, lines,
outlets, and trading policies, but a community that consists of power providers,
customers, share holders and maintenance crews, a HTC computational grid is
a community with its own culture and a unique set of rules. In section 1.3 we
present and discuss a promising suite of matchmaking mechanisms that can bring
providers of computational services and consumers of such services together, thus
integrating the HTC community.

In the most general case, either party, the provider or the customer, can have
the right to break an allocation at any time. A mechanism capable of preserving
any partially completed work is thus needed. In section 1.4 we discuss a user
level checkpointing mechanism by which a snapshot of an executing program can
be stored away. The snapshot can be later used to restart the program from that
state. A brief overview of commercial and public domain batch systems is made
in section 1.5.

1.1 Salient Characteristics of HTC Environments

Given the seemingly infinite appetite for computing power of its customers, a
HTC environment is continuously on the lookout for additional resources. HTC
environments have the mentality of scavengers. The services of a provider of
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computing power are always accepted regardless of the resource’s characteristics,
degree of availability, or duration of service. As a result, the pools of resources
HTC environments draw upon to serve their customers are large, dynamic and
heterogeneous collections of hardware, middleware, and software.

As a result of the recent decrease in the cost/performance ratio of commod-
ity hardware and the proliferation of software vendors, resources that meet the
needs of HTC applications are plentiful and have several different characteristics,
configurations and flavors. A large majority of these resources reside today on
desk-tops, owned by interactive users, and are frequently upgraded, replaced or
relocated.

The change in the cost/performance ratio of hardware not only improved
the power of our desk-top machines but also rendered the concept of multi-user
time-sharing obsolete. While in the early days of computing the idea of allocating
a computer to a single person was not sensible, it has become common practice
in recent years. In most organizations, each machine is usually allocated to one
individual in the organization to support his/her daily duties. A small fraction
of these machines will be grouped into small farms and allocated to groups who
are considered to be heavy users of computing by management. We believe
that the trend to distribute the ownership of resources within organizations will
continue giving full control over powerful computing resources to individuals and
small groups. As a result of this trend, while the absolute computing power of
organizations has improved dramatically, only a small fraction of this computing
power is accessible to HTC users due to the ever increasing fragmentation of
computing resources. In order for a HTC environment to productively scavenge
these distributively owned resources, the boundaries marked by owners around
their computing resources must be crossed.

However, crossing ownership boundaries for HTC requires that the rights
and needs of individual resource owners be honored. Resource owners are gen-
erally unwilling to donate their machines for HTC use at the cost of degraded
performance or availability. The restrictions placed by owners on resource us-
age for HTC can be complex and dynamic, involving parameters such as recent
“idleness” of the resource and characteristics of the customer. These restrictions
constrain when and which customers can be allocated to the resource.

The constraints attached by owners to their resources prevent the HTC
environment from planning future allocations. All the resource manager knows
is the current state of the resources. It therefore has to treat them as sources of
computing power that should be exploited opportunistically. Available resources
can be reclaimed at any time and resources occupied by their owners can become
available without any advance notice. The resource pool is also continuously
evolving as the mean time between hardware and software upgrades of desk-top
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machines is steadily decreasing. Owners are likely to replace their hardware
as faster CPUs and larger memories become affordable, and will install new
versions of operating systems or switch to a new ones all together soon after
announcement.

In addition to ownership boundaries, HTC environments must cross admin-
istrative domains as well. The main obstacle to inter-domain execution is access
to the environment from which the application was submitted, such as input and
output files. The HTC computing environment has to provide means by which
an application executing in a foreign domain can access its input and output files
that are stored at its home domain. The ability to cross administrative domains
not only contributes to the processing capabilities of the environment, but also
broadens the “customer circle” of the environment. It makes it very easy to
connect the computer of a potential customer to the environment. In a way, the
HTC environment appears to the user as a huge increase in the processing power
of her personal computer since almost everything looks the same except for the
throughput. As in the case of an electric grid where one does not know who
generated the power that cooks one’s meal, a user of a HTC environment does
not know who executed the program that transformed the parameters stored in
the input file to the time-series that has “miraculously” appeared in the output
file.

The applications that perform these transformations usually follow the master-
worker computing paradigm, where a list of tasks is executed by a group of
workers under the supervision of a master. The realization of the master and
the workers and their interaction may take different forms. The workers may be
independent jobs submitted by a shell script that acts as the master and may
collect their outputs and summarize them, or they can be implemented as a col-
lection of PVM processes which receive their work orders in the form of messages
from a master process that expects to receive the results back in messages [18].
Regardless of the granularity of the work-units and the extent to which the mas-
ter regulates the workers, the overall picture is the same — a heap of work is
handed over to a master who is responsible for distributing its elements among
a group of workers.

Since workers in one tier can act as masters to workers in a lower tier,
hierarchies of master-workers can be easily formed. These hierarchies may span
more than one HTC environment. For example, a group of researchers from the
University of Amsterdam has been running its HTC application in six Condor
pools located in three different countries and spanning two continents. Over the
last three years they have used more than one hundred and fifty CPU years to
search for global potential energy minima of a N-particle system consisting of
Lennard-Jones particles on a spherical surface [26].
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At any given time, hundreds of workers of the above application could have
been found scattered over the different pools. Some of these workers consumed
more than 100 days of CPU over a life time of 4-5 months. In many cases these
workers were left unattended as members of the group were away from their desks
attending meetings, or on vacation. The group expected the HTC environment
not to lose any of these workers before or during their execution phase. Any
such loss may have had a significant impact on their throughput. Like most
other HTC users we have worked with, they counted on the robustness of the
mechanisms used by the environment to successfully take their workers from
submission to completion, and were much less concerned about the efficiency of
the mechanisms or the policies that control them.

While losing workers prematurely is clearly what HTC customers worry
about most, they obviously have some basic expectations regarding wasted re-
sources or fairness in resource allocation. Given the rapid changes in hardware
and operating systems, the biggest potential source of throughput inefficiency
is exclusion of resources due to the inability of the mechanisms of a HTC envi-
ronment to operate on new computers. There is nothing more frustrating for a
HTC customer than new resources that are likely to be the biggest and fastest
being excluded from the HTC environment due to porting difficulties.

Simplicity clearly holds the key to the robustness and portability of HTC
mechanisms. As will be discussed in the next section, these mechanisms serve
not only the customers, but also owners of resources, administrators of the envi-
ronment, and programmers who write HTC applications. Since computational
grids are likely to be large, physically distributed, distributively owned, dynamic
and evolving just like HTC environments, we believe that the same principles
hold for the mechanisms that will support these grids. While users with tight
time constraints or very demanding quality of service needs will expect compu-
tational grids to employ sophisticated resource allocation policies, most of them
and the entire community of HTC users will expect robust services that run
anywhere.

1.2 Resource Management Layers of a HTC En-
vironment

The cornerstone of a HTC environment is the Resource Management System
(RMS) that manages its pool of distributively owned resources. The RMS pro-
vides Resource Management (RM) services to its user community, which consists
of four groups of people: owners, system administrators, application writers and
customers. The ordering in this list is significant, because we believe that owners
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are the most important group of people in a distributively owned environment.
Without resources which have been “donated” by owners for HTC, the RMS
ceases to exist. The distinguishing aspect of distributed ownership is that this
donation is not unconditional — the RMS must ensure that owners have un-
hindered access to their resources, that there is no perceived degradation in the
availability or performance of the resource during personal use, and that the
resource access policy specified by the owner is honored. Next, system admin-
istrators must feel confident that the RMS is robust and can run continuously
without frequent intervention. If the RMS fails to win the trust of system admin-
istrators, its installation and use at a site is not possible. Even in the presence
of a robust and reliable system, inflexible and obscure application programmers’
interfaces (APT’s) to the services provided by the RMS nullify the generality and
power of the RMS since the available features cannot be effectively harnessed for
productive computation. Thus, it is important to address the requirements of
application writers during the design and implementation of RMS’s. Customers
are in many ways the easiest group to please because they are the ultimate ben-
eficiaries of the RMS. However, if the system is not flexible enough to adapt to
the requirements of the customer, it will fail to effectively address their concerns
and fall into disuse.

Thus, it can be seen that the requirements of an effective RMS are quite
demanding, and building a successful RMS is a complex task. It is important to
note here that in addition to the performance related requirements of the users
community, they also have security concerns that must be addressed by the
HTC environment. In a computational grid, the RMS will relay on the services
of other components of grid (e.g. network services Chapter ?7? and security,
accounting and assurance services Chapter ??) to satisfy all the needs of its
users. The success of an RMS can only be assessed when it runs continuously
and reliably in “production mode,” with owners and customers who are satisfied
by the delivered quality of service and reliability, and with system administrators
and application writers who can rely on the robustness and flexibility of the
system. These requirements suggest that the system must be built using a layered
approach with close interaction, monitoring and control of resources at bottom
level, and abstractions and interfaces for application developers and customers
at the topmost level.

An important point to note is that each layer is defined by its responsibility
and the protocols with which it interacts with other layers. Actual implemen-
tations of components in layers may vary greatly across the RMS. Thus, for ex-
ample, it is possible to have different implementations and paradigms of access
control at the owner level for different resources, as long as each implementa-
tion is compliant to the behavioral specification of owner layer components. The



10 High Throughput Computing Resource Management
_____________________________________________________________________________________________________________|

same argument extends to all layers of the RMS. These layers therefore define
the architecture of the system, the granularity of inter-operability, and domains
of fault containment.

The principal layers of a RMS are illustrated in figure 1.1 and enumerated
below:

icati Application P
Application %p K Application Layer
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Figure 1.1: Layers of a Resource Management System

1. Local Resource Management Layer. The first layer of the RMS is not re-
ally part of the system but rather is logically part of the resource. It is a
software layer (e.g operating system, batch system or even another com-
putational grid) that provides basic RM services for processes executing
in the domain of that resource. Since we are principally interested in the
higher order problem of managing distributed resources rather than local
RM, we do not discuss this layer further. Nevertheless, it is a fundamental
and important component of a robust HTC because unreliable hardware
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and local services can seriously affect the sustained operation of a HTC
system.

2. Owner Layer. The owner layer of the RMS represents the interests of the
resource owner. A fundamental purpose of the owner layer is to provide
access control mechanisms to the resource, which interacts with and en-
forces the owner’s policy. It is important to note that these policies are
beyond those otherwise imposed by the RMS itself, and imply the neces-
sity of constraints which determine when and to whom the resource may be
allocated for HTC. Within the constraints of the owner’s policy, the owner
layer also informs the system layer of the characteristics and availability of
the resource.

3. System Layer. The system layer may be thought of as the global resource
allocation layer. Its principal function is matchmaking, i.e., matching re-
source offers and requests so that the constraints of both are satisfied. This
matchmaking occurs in the context of high level policies which implement
inter-customer scheduling policy. Although this policy is not directly rele-
vant to the architecture of the RMS, the policy may dictate when and with
whom matchmaking may take place. For example, these policies may en-
force fair-share [12], stable marriage [8], or economic-based [13] matching
policies.

4. Customer Layer. The customer layer is the layer which represents the
customer’s interests in the RMS. This layer provides the abstraction of a
“user” as a queue of resource requests. The primary goals of this layer
are to maintain this queue in a persistent and fault tolerant manner and
to interact with the system layer by injecting resource requests for match-
making, claiming matched resources for the requests and handing these
resources off to the application RM layer. The injection of requests takes
place in the context of an inter-request resource management policy which
may dictate, for example, which requests have priority over others or which
requests are dependent on others so that certain requests are satisfied be-
fore others. Another important function of this layer is to provide an
interface to the HTC environment for both human users, and importantly,
also applications.

5. Application RM Layer. Once a resource has been claimed by the cus-
tomer layer, it is passed on to the application resource management layer
which implements per-application RM services. The application RM is
responsible for communicating with the resource’s access control module
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to establish the run-time environment for the application. Importantly, it
also provides run-time services for querying, utilizing and requesting more
resources. This functionality is extremely useful as it provides a frame-
work for the development of applications which are adaptive and can grow
and exploit resources as and when these resources become available. This
functionality is afforded by close interaction of the application RM layer
with both the application itself and the customer layer through well de-
fined interfaces. New requests for resources made by applications appear
in the queue of the customer layer, which then proceeds to negotiate for a
resource in the usual way. An additional responsibility of application RM
is the implementation of inter-task resource management which determines
which resource will be used in fulfilling which task’s request.

6. Application Layer. The application layer represents instances (or tasks)
of the customer’s application. These tasks accomplish pieces of the end-
result of the customer’s computation by utilizing resources handed to the
application’s resource manager. Run-time RM services required by the
application are forwarded to the application RM layer, which may service
these requests directly, or indirectly by acting as an intermediary to the
customer layer.

The effectiveness of an HTC environment depends on how well the four dif-
ferent groups that constitute its user’s community are interwoven. What brings
them together are the services provided by the six layers of the RMS. All the
layers have to operate in harmony in order to establish an atmosphere of collab-
oration among the members of the community. Such an atmosphere, which can
not be built unless there is goodwill and mutual respect, holds the key to the
success of an HTC environment. Like in any community, matchmaking plays a
pivotal role in the nature of the relationships developed between owners, system
administrators, application writers, and customers in a HTC environment. We
therefore start our discussion of HTC resource management mechanisms with a
presentation of a matchmaking suite in the next section.

1.3 Matchmaking and Claiming

In this section, we present the basic requirements of a robust and effective match-
making suite (or framework). A primary concern of distributed resource man-
agement in large computational grids is the scalability, flexibility and robustness
of the matchmaking mechanism. We introduce classified advertisements (clas-
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sads), an approach for representing and matching requests and offers for services
in a distributed matchmaking framework.

The paradigm of entities advertising their attributes and requirements to a
matchmaker is a promising one. This scheme has several advantages:

1. The details of formulating and managing requirements and constraints is
the responsibility of the advertisers themselves. This facilitates an end-
to-end approach for resource management. The specific entities matched
themselves control the claiming, usage and control of resources and services
without subsequent intervention of the matchmaker, whose responsibility
ends after identifying the match. This enhances the generality and scala-
bility of the system.

2. The paradigm does not imply an architecture for the matchmaker. The
implementation of the abstract matchmaking service can be parallelized
and distributed for better reliability, availability and performance.

3. The paradigm is extremely flexible as it is not tied down to any specific
type of resource. Indeed, the matchmaker may be used for more abstract
services than finding resources, such as finding other matchmakers.

Thus classads are more of a negotiation based approach to resource management,
where the advertising entities (and not the matchmaker) assume full responsi-
bility for advertising, claiming and managing resources and services. We discuss
this mechanism in further detail below.

1.3.1 Advertising Offers and Requests

The fundamental problem of an HTC system is resource management. As such,
its purpose is to bring resources and customers together to enable productive
computation. To perform this matchmaking, the system must first have a
method of representing resources and customers. The flexibility and expressive-
ness of the representation is extremely important as it directly affects the func-
tionality of the resource management system. For example, in a general system
of resources, not all resources of interest are compute nodes. Other possibilities
include software licenses and network links. A representation that assumes that
every resource is a single compute node would be unable to effectively represent
other entities such as storage media, network links and multi-processor parallel
machines. Thus, a representation must avoid any assumptions about the nature
and characteristics of resources. This requirement would allow a HTC environ-
ment to represent several heterogeneous resources. This flexibility along with
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the implied dynamic implementation would facilitate inclusion and exclusion of
resources from the pool at run time.

The distributed ownership of resources implies that owners of resources must
be able to restrict the usage of their resources. The mechanism which implements
these access policies must be flexible enough to account for both the technical
concerns and sociological idiosyncrasies of owners’ policies. For example, the
owner of a workstation may demand an access policy which states that the
resource is available for HTC only if the keyboard has been idle for over fifteen
minutes and the background load average is less than 0.3; customer requests
made by the owner have higher priority than those made by members of the
owner’s research group, which in turn have a higher priority than other requests.
Finally, no requests made by members of a competing research group are to
be serviced, and customers requiring less than 100 MB of virtual memory are
preferred. These restrictions may be thought of as the conditions under which
the owner grants the resource to a resource request, or the requirements of the
resource offer, which must be honored by the matchmaker.

Similar restrictions may be placed by requests on offers too. Malleable par-
allel applications and large jobs with task dependencies can significantly affect
the requirements of applications during a run. These applications place both
qualitative and quantitative constraints on required resources as the task set in
question grows and shrinks with time. For example, a customer to the system
may state a requirement of at least five machines, and at most fifty. Of these,
four machines with over 64 MB of memory are required, and the rest should have
at least 32 MB of memory and a MIPS rating of over 80. Furthermore, since the
application was compiled for a particular architecture it requires compute nodes
which are of the same architecture.

Thus, with respect to matchmaking, a symmetry exists in the structure of
offers and requests: both need to express their attributes and requirements.
This allows us to formulate the basic unit of the matchmaking mechanism as
the encapsulation of the attributes and requirements of an entity that requires
matchmaking services. The similarity between this mechanism and the classi-
fied advertisements one finds in newspapers prompted us to define this unit of
encapsulation as a classified advertisement or classad.

Before discussing classads in further detail, one must note that despite the
similarity of our formulation to newspaper classads, important differences exist.

e Requests vs. offers. A key feature of newspaper classads is that it is triv-
ial to determine if an ad represents a request or an offer either purely by
the contents or by the context of the ad. Although this differentiation
is often useful when implementing non-trivial matching policies (e.g., fair
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matching), our mechanism does not require it. In matching two classads,
identifying and distinguishing the entity offering the service is not generally
necessary because, as we shall shortly see, the matching process is opera-
tional and does not intrinsically depend on any implied semantic content
of the ads. However, in the interest of clarity of discussion, we continue to
make this distinction.

e Advertisers vs. matchmakers. Unlike newspaper classads, our framework
clearly differentiates between advertisers and matchmakers. This allows
one to designate specialized matchmakers which match offers and requests
using criteria such as priority, fairness and preferences. Optionally, these
designated matchmakers may be treated as trusted authorities that can
grant capabilities or tickets to the matched entities.

1.3.2 Desired features of Matchmaking Mechanisms

The assumed model of the HTC environment is that it is an open environment.
By this we mean that services and customers of different types (including com-
pletely new ones) can be added in or removed at run time. There is no inherent
necessity for a central authority that determines which entities may advertise,
and what they should advertise for. The following constraints are immediately
imposed:

e Portability. Since the specific entities involved in matchmaking cannot be
assumed to be of a fixed type or architecture, the mechanism must be
portable and architecture-independent.

o Self describing. The advertised services in the environment may vary from
compute nodes to software licenses to storage space to network bandwidth.
Each resource requires a different description, but the matchmaker must
be able to function correctly in a manner that is independent of the specific
descriptions.

e Well-defined and robust semantics. Due to the inherent uncertainties in
large heterogeneous open environments, the mechanism must have well-
defined and robust semantics to handle situations such as when character-
istics required by an entity are not correctly represented in the candidate
match ad, or if such information is completely absent.

e Decoupled protocols. For maximum robustness and scalability, the mecha-
nism must carefully distinguish and decouple the protocols for advertising,
matchmaking and claiming. Decoupling the advertising and matchmaking
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protocols allows the matchmaker the freedom of matching asynchronously
with respect to advertising clients. Decoupling the claiming and match-
making protocols relaxes the required degree of information consistency in
disseminated advertisements.

The classad mechanism has been designed to address all of the above issues.

1.3.3 The ClassAd Mechanism

A classad based matchmaking framework consists of five logically independent
components: (1) the evaluation mechanisms, (2) the claiming protocol, (3) the
advertising protocol, (4) the matchmaking protocol and (5) the matchmaking
algorithm. Of these components, the evaluation mecahnisms are absolute, i.e.,
they are standard and remain fixed across all matchmaking frameworks. In con-
trast, a given matchmaker defines its own matchmaking algorithm, advertising
protocol and matchmaking protocol, and advertising entities employ a claiming
protocol to connect with each other. Thus, the definitions of these components
are relative to a given framework.
The matchmaker of a framework defines:

e its advertising protocol which describes both the expected contents of ads
and the means by which it obtains these ads,

e its matchmaking protocol through which it communicates the outcome of
the matchmaking process to the entities involved, and

e the matchmaking algorithm which semantically relates the the contents of
classads to the matchmaking process.

The claiming protocol is executed by the entities matched by the matchmaker
to connect to each other and perform productive computation. The protocol
may also involve a verification phase by the entities involved when the match is
validated with respect to their current state, which may have changed since the
advertisement from which the match was made.

The distinction between absolute and relative components is noteworthy,
because a classad is defined as an attribute list that has been constructed in
conformance to a given matchmaker’s advertising protocol. Thus an attribute list
may be a classad with respect to matchmaker A, but just an arbitrary attribute
list to another matchmaker B which defines its relative components differently.
Although this distinction is useful for the purposes of design and discussion, one
must note that:
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e The evaluation mechanisms, which define the semantics of expression eval-
uation, do not depend on this distinction. The repercussions of non-
conformance to an advertising protocol is defined by the matchmaker’s
matchmaking protocol and is completely independent of the absolute com-
ponents, which have well-defined behavior regardless. Specifically, the cor-
rectness and performance of a matchmaker is not compromised by an entity
which advertises “non-conforming classads” (which are construed to be ar-
bitrary attribute lists).

e In the interest of simplicity, the different aspects of matchmaking are ex-
plained with respect to a single matchmaker. Thus, in this discussion,
“classad” and “attribute list” are used interchangeably.

The Evaluation Mechanisms

An entity that requires matchmaking services expresses its characteristics and
requirements as a set of attributes called an attribute list. Each attribute is a
binding of an identifier with an expression. The expressions are structurally sim-
ilar to arithmetic expression constructs in common programming languages, and
are composed of constants, attribute references (which can refer to attributes
in candidate match ads), calls to primitive inbuilt functions and other subex-
pressions combined with operators and parentheses. Figure 1.1 illustrates two
example attribute lists.

The key feature of attribute lists that makes it an attractive mechanism for
open environments is the semantics of expression evaluation, which are defined
so that the uncertainties of an open environment can be handled in a graceful
manner. Specifically, the evaluation of an expression is well-defined even if re-
quired expressions are not available, or do not yield values of expected types.
In these cases, the evaluation results in the distinguished UNDEFINED and ERROR
values respectively, which can be explicitly tested for.

The evaluation of expressions is usually (but not required to be) carried out
by the matchmaker when testing two classads for mutual constraint satisfac-
tion. This test is usually performed by evaluating expressions from well known
attributes (specified by the advertisement protocol) from the two ads and en-
suring that they evaluate to TRUE. The matchmaker evaluates these expressions
from the classad in an “environment” which contains the two classads being
tested. The two classads involved in the match are expected to conform to the
advertising protocol, and the number, contents and scope names of the other
classads (which contain default attributes and other match related information)
are fixed by the matchmaking algorithm. This entire set of classads serves as an
environment from which attributes can be looked up. Expressions in classads
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Example 1

Type = “Machine”

OpSys = “OSF/1”

Arch = “Alpha”

Memory = 32

Disk = 782

Kbdldle = 17

LoadAvg = 0.1

ReplyTo = ” <chestnut.cs.wisc.edu:5964>"

Requirement = (self.LoadAvg < 0.3) && (self.KbdIdle > 15) && (other.Owner != “foo”)
Example 2

Owner = “bar”

Group = “condor team”

Executable = “a.out”

ImageSize = 10

State = “Idle”

RemoteCPU =0

ReplyTo = ”<perdita.cs.wisc.edu:3748>”

Requirement = (Type == “Machine”) && (OpSys == “OSF/1”) && (Arch == “Alpha”)

Table 1.1: Examples of classads. The expressions in these classads may be
arbitrarily complex. Attribute references of the form self.X and other.X force
lookup of attribute X in the same ad and the candidate match ad respectively. If
the references do not have these prefixes, natural default lookup rules are used.

can refer to any attribute in the environment, including attributes from other
classads. This lookup in other ads may be performed explicitly by prefixing at-
tribute references by scope resolution prefizes such as “self,” “other” and “env”
in the example, which explicitly name classads from where the attributes will
be looked up. The semantics of attributes references without scope resolution is
also defined. Interested readers are referred to [20] which details the structure
and evaluation semantics of classad expressions.

1.3.4 Matchmaking

The model of matchmaking in the classad framework is that entities that re-
quire matchmaking services post classads to a matchmaker which matches the
ads and notifies the advertisers concerned in the event of a successful match.
The framework may contain several matchmakers, each of which may be distin-
guished by one or more features such as the domain in which it matches (e.g.,
automobile, furniture), the matching algorithm used, the semantics of a match
and its communication protocol.

Notably absent in the responsibilities of a matchmaker is any notion of al-
location. This intentional omission is due to the following reasons:

1. In highly dynamic environments, the status of advertising entities may
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have changed since their last advertisement. The matchmaker may there-
fore make some invalid matches with regard to the current state of the
advertising entities. Entities that receive notification of a match must ac-
tivate a claiming protocol which both validates the match with regard to
their current state and establishes a relationship between the matched en-
tities if the match is deemed valid. This protocol, which involves only the
two matched entities and not the matchmaker, is required irrespective of
whether one considers the match as an “allocation.”

In such dynamic environments a match is a substantially weaker operation
than an allocation. This operation may be strengthened by having the
matchmaker generate a capability as a part of the match. In this case, the
match may be considered as “permission” rather than a “hint,” but the
operation still remains considerably weaker than allocation.

2. The details of allocation can greatly vary depending on the type of the
entity being allocated. These details are best left out of the matchmaker,
which may be involved in matching (a possibly unknown) number of types
of heterogeneous entities.

3. Allocation is by nature an asymmetric operation where one entity is al-
located to another. Matchmaking is more symmetric, which allows more
general interactions. Any desired asymmetry can be introduced by the
claiming protocol in the context of the matched entities, and should not
be imposed by the matchmaker itself.

1.3.5 Claiming

Claiming is the process by which the two parties agree to use the services of each
other: the provider which serves the request, and the consumer which requests
that it be served. Claiming has two important roles to play in the matching of
offers and requests:

1. Since the matchmaker does not constrain or verify the contents of adver-
tisements, it is possible for an entity to incorrectly represent itself or its
characteristics and origin to obtain a match. Verifying the correctness of
advertisements is an issue that requires further investigation. A promising
approach is that of “licensing and assurance,” which is discussed in chap-
ter 7. Regardless, the claiming protocol is an extremely useful interaction
in this regard because it can be designed to include a challenge-response
protocol for mutual authentication.
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2. In addition to authentication, both entities use the claiming protocol to

verify that their respective constraints are indeed satisfied with respect to
their current states. Thus, the claiming protocol forms the first phase of
implementing the constraints imposed by entities involved in the match. If
these constraints are not satisfied, the match is rejected, and the entities
restart the advertise-match-claim cycle.

Example. We now furnish an example which illustrates matchmaking and

claiming in a simple classad based framework. The example is necessarily infor-
mal about the specification of the relative components.

o Advertising protocol. Every classad sent to the matchmaker must include

an attribute named Requirement which represents the constraints of the
advertiser. The classad must also contain an attribute named ReplyTo
which is a communication endpoint at which it can be contacted. (Com-
munication protocols regarding sending the classad to the matchmaker are
omitted.)

o Matchmaking algorithm. Two classads A and B are said to match if A’s

Requirement evaluates to TRUE and B’s Requirement evaluates to TRUE in
the environment constructed by the matchmaker.

o Matchmaking protocol. In the event of a match, the matchmaker will con-

tact the two matched entities at their ReplyTo addresses, and pass the
ReplyTo attribute of the other entity involved in the match. Additionally
exactly one of the two entities is passed a tag, which denotes it to be the
active entity. The other entity is said to be the passive entity.

e Claiming protocol. In the event of a match, the active entity contacts

the passive entity (i.e., its match) at the ReplyTo address sent by the
matchmaker. The passive entity makes sure the network connection comes
from the ReplyTo address specified by the matchmaker. The connection is
then made, and the matched entities jointly perform their computation.

In the context of the above relative components, one can see that the examples
of attribute lists in figure 1.1 are classads in this matchmaking framework, and
may be potentially matched by the matchmaker.

It is important to note that the matchmaking algorithm does not contain any

references to specific resources or services, or what it takes to match them — all
this information is contained in the classads themselves which are created by the
entities requiring matchmaking services. The algorithm also makes no distinction
between the offer and the request for the service. If any of the ads sent to the
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matchmaker do not have a Requirement expression, the match would fail because
the evaluation of the “Requirement” attribute would result to UNDEFINED and
not TRUE.

In the most general and flexible case, either party, the provider or the re-
quester, has the right to break an allocation at any time. The provider may
have to give the resource back to the owner, or may have an offer from a more
important or profitable customer, while the consumer may have obtained access
to a cheaper or more powerful resource. In many of these cases, it would be very
unfortunate if the work accomplished so far is lost. It is therefore in the interest
of both sides to have access to checkpointing mechanism that can save the cur-
rent state of the computation so that another provider can resume execution at
a later stage. While the traditional view of checkpointing is that it is a means to
improve the reliability of a computing environment, for a HTC environment it
is a basic resource management tool with a mean inter-usage time that is much
smaller than the mean inter-failure time of the hardware or the software. In
the next section we discuss the different aspects of the checkpointing problem
and provide an overview of a checkpointing mechanism we developed for UNIX
systems.

1.4 Checkpointing

A checkpoint of an executing program is a snapshot of its state which can be used
to restart the program from that state at a later time. Computing systems have
traditionally employed checkpointing to provide reliability: when a compute node
fails, the program running on that node can be restarted from its most recent
checkpoint, either on that same node once it is restored or potentially on another
available node. Checkpointing also enables preemptive-resume scheduling. All
parties involved in an allocation can break the allocation at any time without
losing the work already accomplished by simply checkpointing the application.
Thus, a long running application can make progress even when allocations last
for relatively short periods of time. Due to the opportunistic nature of resources
in a distributively owned environment, any attempt to deliver HTC has to rely
on a checkpointing mechanism.

Checkpointing services provide an interface both to the application and the
surrounding environment. At the least, an application should be able to request
that its state be checkpointed at any time during its run and be able to re-
quest that no checkpoints be performed during specified critical sections. The
POSIX P1003.10 draft standard on checkpoint and restart additionally provides
an interface for an application to specify pre- and post-checkpoint processing.
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Researchers have also developed user-directed checkpointing services [16], which
rely on user hints about memory usage to significantly increase the performance
of checkpointing. In addition to the application interface, a checkpointing service
provides an external interface to schedulers and users to trigger an application
checkpoint due to external events (preemption, system shutdown, etc.). Often
this is done by sending a signal to the application (in the case of user-level check-
pointing) or by making a system call (in the case of kernel-level checkpointing).

Checkpointing can be an expensive and time-consuming operation, since the
(potentially large) checkpoint must be written (possibly over the network) to
disk. Checkpoints of parallel applications can be particularly huge, since the
state of a parallel program includes the state of the interconnection network in
addition to the state of each process. Also, performing a checkpoint requires that
the process’s address space be read, which can involve swapping virtual memory
pages in from disk. In an opportunistic environment, it is imperative that a
preempted process vacate the machine quickly, so if the scheduler can not write
a checkpoint quickly, the work accomplished since the last checkpoint will be
lost at preemption time. In a system where checkpoints are written periodically
and very fast preemption is required, preemption sans checkpointing may be
desirable. User-directed checkpointing is one method for writing potentially fast
checkpoints. Another method is to deploy specialized checkpoint file storage
servers throughout the computational grid and direct checkpoints to the nearest
or least loaded server at preemption time [19]. A third method is to migrate the
process immediately to another machine by writing the checkpoint to a network
stream and reading it directly off the network on the new machine. In this
method, the checkpoint does not need to be written to disk. This requires, of
course, that a new machine be available at checkpoint time.

The decision of where to send a checkpoint can have a significant impact
on performance and reliability, and can impact other scheduling decisions. Mi-
gration requires that a new compute node be allocated for the task at the time
of preemption. Disk space must be available for checkpoints not being used for
immediate migration. Network bandwidth will affect the speed with which a
checkpoint can be written. A checkpointing mechanism should, therefore, pro-
vide an interface to allow a scheduler to direct checkpoints to the appropriate
network endpoint or disk.

Since most workstation operating systems do not provide kernel-level check-
pointing services, an HTC environment must often rely on user-level checkpoint-
ing. In our experience developing and maintaining a user-level checkpointing
library [15], we have found portability to be a significant challenge. For ex-
ample, after porting our library to a new version of a popular Unix operating
system, we had reports from a user that his simulation was exiting prematurely
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after restarting from checkpoint. After much investigation, we discovered that we
needed to reset a flag to tell the operating system to save floating point registers
on context switches. Small differences like this between operating systems and
operating system versions add up to make maintaining a portable, robust user-
level checkpointing mechanism a significant challenge to the HTC environment
developer. Silicon Graphics has included kernel-level checkpointing services in a
recent version of the Irix operating system [21]. We hope this is the start of a
trend among operating system vendors.

NAME | NAME ! !
¥ | |
START | START IZE1 ' SIZE2 !
OF | ADDR | ADDR S | 1
SEGS BYTES | BYTES
SIZE | SIZE | |
PROT | PROT | |
| | | |
\ \ \ |
CHIg;{T SEGMENT HEADERS CHECKPOINT DATA

Figure 1.2: Structure of a checkpoint file

Process checkpointing is implemented in our user-level checkpoint library as
a signal handler. When a process linked with this library receives a checkpoint
signal, the provided signal handler writes the state of the process out to a file or
a network socket. To determine where to write the checkpoint, the signal handler
either uses a file location provided on the command line or sends a message to a
controlling process asking for a file location or a network address to connect to.
The checkpoint includes the contents of the process’s stack and data segments, all
shared library code and data mapped into the process’s address space, all CPU
state including register values, the state of all open files, and any signal handlers
and pending signals. On restart, the process reads the checkpoint from the file or
network socket, restoring the stack, shared library and data segments, file state,
signal handlers, and pending signals. Again, the location from which to read the
checkpoint is either determined by a command line option or the response to a
query of a controlling process. The checkpoint signal handler then restores the
CPU state and returns to the user code, which continues from where it left off
when the checkpoint signal arrived. A program can request that a checkpoint be
performed by sending itself the checkpoint signal and can disable checkpointing
in critical sections by blocking the checkpointing signal.

Other details in implementing a practical checkpointing mechanism, such as
handling dynamic libraries and checkpointing state that is not accessible directly
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from user-level (such as the open file table), have also been overcome with indirect
solutions. The interested user is referred to [15].

Since our checkpointing support is implemented in a static library, applica-
tions which use it must be linked with this library. This unfortunately means
that applications for which source or object files are not available can not make
use of our checkpointing support. Some Unix variants include a method for in-
jecting a dynamic library into an executable at startup time. This method could
potentially be used to provide a shared library implementation of checkpointing
support which could be injected into unmodified programs at startup time.

Checkpointing processes which use network communication requires that the
state of the network be checkpointed and restored. Our checkpointing library
has been enhanced to support applications which use PVM or MPI [3]. To
checkpoint the state of the network, this library synchronizes communicating
processes by flushing all communication channels prior to checkpoint. At restart
time, the library restores the communication channels. Programs which com-
municate with processes that can not be checkpointed also pose an interesting
problem. Programs which communicate with X servers or license managers fall
into this category. We have developed a solution which places a switchboard
process between the two endpoints. Instead of connecting directly, these pro-
cesses connect through the switchboard. When the program is checkpointed, it
notifies the switchboard and closes its connection. The switchboard, however,
keeps the connection to the other endpoint open and buffers any communication
from this endpoint until the checkpointed program is restarted and the connec-
tion is restored. Protocol specific knowledge is required in the switchboard if the
non-checkpointable endpoint expects prompt replies.

1.5 An overview of Batch Systems

Since the days of the first mainframes, batch systems have played a crucial role
in providing computing resources to HTC applications. Equipped with queuing
mechanisms, scheduling policies, priority schemes, and resource classifications,
these systems have been running batch jobs on dedicated resources. In recent
years the mechanisms employed by batch systems have been extended to deal
with large multi-processor computers and clusters of workstations. Their policies
were also adapted to meet the needs of workloads that consists of a mix of
sequential and parallel applications.

The resources controlled by a batch system are typically owned by one orga-
nization and managed by a single administrative domain. System administrators
have full control over all resources and are in charge of the scheduling policies.
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Jobs are placed in queues classified according to their resource requirements
and the customer who submitted them. Each queue is assigned computing re-
sources to process the class of jobs it serves. Designed and built to operate as
a production tool, batch systems are known for their robustness and reliability.
These qualities will be extremely valuable assets to any computational grid that
provides HTC services and wants to exploit the resources managed by such a
system.

It is beyond the scope of this chapter to provide an in depth discussion
and evaluation of the currently available commercial and public-domain batch
systems. An excellent review of batch systems can be found in the Cluster
Computing Review by M. Baker et al. [2]. The results of a very detailed and
systematic evaluation of six job management systems (JMSs) was recently pub-
lished in the latest NASA Job Management System (Batch/Queuing Software)
evaluation report [11]. Three of the systems evaluated (CODINE [7], DQS [23]
and LSF [17]) emphasize heterogeneous environments, whereas the other three
systems (LL [10], NQE [5], and PBS [9]) focus their efforts mainly on super-
computers.

A recent trend of “do-it-yourself” has been adopted by administrators of
large production systems who design and implement their own batch schedulers
(e.g. EASY from ANL [14], and the Maui Scheduler from MHPCC [4]) and
make them available to the community. These schedulers reflect the unique
needs and resource allocation philosophy of their implementors and utilize the
APT’s of an underling batch system that provides the scheduler with queuing
and process management mechanisms. The Nimrod system [1] is an example of
another recent trend to build “tailored” batch schedulers designed to support
customers who are engaged in large multi-job computing efforts in a specific
domain.

1.6 Challenges

There are several challenges on the way to large scale HTC computational grids.
Indeed, every chapter in this book identifies and examines technologies that
must be revisited or created to achieve this goal. In the interest of brevity, we
identify issues that immediately challenge the very large scale deployment of the
technology of high throughput computing.

1. Understanding the sociology of a very large and diverse community of
providers and consumers of computing resources. Unlike electrical grids, in
a HTC computational grid, every consumer can also be a provider and ev-
ery provider can also be a consumer of services. In electrical grids, a small
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number of providers serves a much larger community of consumers. If every
consumer in an electrical grid had her own generator and some consumers
were always looking for more power, electrical grids would have looked and
behaved much more like HTC environments. The National Technology
Grid [22] of the NCSA alliance will provide us with a laboratory to study
such a community.

. Semantic free matchmaking services. In the interest of flexibility and ex-

pressiveness, semantic free matchmaking services for providers and cus-
tomers of complex services with constraints must be developed. These
constraints define who they are willing to serve or by whom they are will-
ing to be served by, respectively. These mechanisms are required to not
only be expressive but also efficient, as matchmakers would have to check
extremely large numbers of candidate matches in a grid of even moderate
size.

. Tools to develop and maintain robust and portable resource management

mechanisms for large, dynamic and distributed environments. Current ap-
proaches to developing such complex resource management frameworks
usually involve a new implementation of large fractions of the framework
for each instance of a marginally different RMS. An established frame-
work with tools and API’s would allow the construction of inter-operable
components. This would greatly enhance both the functionality and de-
velopment time of complex RMS’s. Many of these concerns are addressed
in chapter ?7? in some detail.

. Universally available checkpoint services for sequential and parallel appli-

cations. This goal is perhaps one of the most difficult ones to achieve for
purely practical considerations. Differences in vendor implementations of
operating systems, varied architectures and inadequate user-level support
for checkpointing makes providing ubiquitous checkpointing services a dif-
ficult goal to achieve. However, as described in section 1.4, recent activity
in the field makes this goal more tenable. The availability of a ubiquitous
checkpointing mechanism would greatly increase the percentage of avail-
able cycles productively harnessed by applications.

. Understanding the economics (relationship between supply and demand) of

a HTC computational grid. While basic priority schemes for guaranteeing
fairness in the allocation of resources are well understood, mechanisms
and policies for equitable dispersion of services across large computational
grids are not. A major aspect in the development of such policies involves
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understanding supply and demand for services in the grid. Clearly, this is
a topic that warrants further investigation.

6. Data staging — moving data to and from the computation site. When the
problem of providing vast amounts of CPU power to applications becomes
better understood, the next hurdle that must be crossed will be that of
providing sufficiently sophisticated RM services to individual throughput
oriented applications. A major aspect of this problem is that of integrated
staging, transport and storage media management mechanisms and policies
for high throughput.

1.7 Summary

The need for high computing power over sustained intervals has increased in
the scientific and engineering community. In contrast to other users who are
concerned with response time and use interactive computing services, these users
are primarily concerned with the throughput of their applications over relatively
long periods of time.

In this chapter we argue that resources of computational grids can be pro-
ductively scavenged to service these applications. By doing so, both the HTC
community and the HPC community will benefit as HTC applications will mi-
grate to opportunistically managed commodity resources, freeing the high-end
resources to HPC applications. In the general case, resources of the grid are dis-
tributively owned, which presents several technical difficulties if these resources
are to be scavenged for productive computation. The most important aspect
of using distributively owned resources is that the RMS must honor the poli-
cies of resource owners at all times. Other requirements for satisfying system
administrators, application authors and customers must also be addressed.

The varied requirements of such an RMS requires careful decomposition
of the system into manageable modules whose responsibilities and interactions
are well defined. To this end we present a flexible, scalable and robust six
layered architecture for distributed resource management systems, and discuss
the specific responsibilities and interactions of each layer in the system.

A primary interaction in the system is between that of customers and re-
sources who are brought together by a matchmaking service. The flexibility
and robustness of the matchmaking service is extremely important as it directly
impacts the usability and quality of service provided by the HTC system. We
present the classad matchmaking framework as a promising matchmaking mech-
anism to be used in computational grids.
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For maximum flexibility, the matchmaking service must have the ability to
preempt and rematch resources which were matched previously. To guarantee
that applications make progress in the face of such dynamic policies, it is im-
portant to have an application checkpointing mechanism. Such a mechanism is
also important when an owner’s access control policy revokes the resource for
personal use, or other more preferred requests.

We claim that these mechanisms, although originally developed in the con-
text of a cluster of workstations, are also applicable to computational grids. In
addition to the required flexibility of services in these grids, a very important
concern is that the system be robust enough to run in “production mode” con-
tinuously even in the face of component failures. A layered architecture with
dynamic matchmaking frameworks can be used to address both concerns, and
with the help of the other services provided in the grid, provide reliable and so-
phisticated high throughput computing resource management services in these
grids.
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