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Abstract— Scientific applications often perform complex 
computational analyses that consume and produce large data 
sets. We are concerned with data placement policies that 
distribute data in ways that are advantageous for application 
execution, for example, by placing data sets so that they may be 
staged into or out of computations efficiently or by replicating 
them for improved performance and reliability. In particular, we 
propose to study the relationship between data placement 
services and workflow management systems. In this paper, we 
explore the interactions between two services used in large-scale 
science today. We evaluate the benefits of prestaging data using 
the Data Replication Service versus using the native data stage-in 
mechanisms of the Pegasus workflow management system. We 
use the astronomy application, Montage, for our experiments 
and modify it to study the effect of input data size on the benefits 
of data prestaging. As the size of input data sets increases, 
prestaging using a data placement service can significantly 
improve the performance of the overall analysis. 

I. INTRODUCTION 
For data-intensive scientific applications running in a 

distributed environment, the placement of data onto storage 
systems can have a significant impact on the performance of 
scientific computations and on the reliability and availability 
of data sets. These scientific applications may produce and 
process terabytes or petabytes of data stored in millions of 
files or objects, and they may run complex computational 
workflows consisting of millions of interdependent tasks, 
including jobs that stage data in and out of storage systems 
adjacent to computational resources. A variety of data 
placement algorithms could be used, depending on the goals 
of the scientific collaboration, or Virtual Organization (VO) 
[17]. For example, a placement algorithm might have the goal 
of placing data as close as possible to the computational nodes 
that will execute a scientific analysis, or it might try to store 
replicas of every data item on multiple storage systems to 
avoid data loss if any storage system or disk fails. These goals 
might be considered policies of the VO, and a policy-driven 
data placement service is responsible for replicating and 
distributing data items in conformance with these policies or 
preferences.  

In our previous work we examined issues of reliable data 
placement [20] where the focus was on utilizing multiple data 
transfer protocols to deliver data to their destination. We also 
examined the issues of data management in the context of an 
individual workflow [14], focusing on the interplay of the data 
management and computation management components 
within a single analysis. 

In this paper, we are concerned with data placement 
policies that distribute data in a way that is advantageous for 
application or workflow execution, for example, by placing 
data sets near high-performance computing resources so that 
they can be staged into computations efficiently; by moving 
data off computational resources quickly when computation is 
complete; and by replicating data sets for performance and 
reliability. Effective data placement policies of this type might 
benefit from knowledge about available resources and their 
current performance and capacity. Placement services could 
also make use of hints or information about applications and 
their access patterns, for example, whether a set of files is 
likely to be accessed together and therefore should be 
replicated together on storage systems.  

We propose to study the relationship between data 
placement services and workflow management systems. In 
particular, our goal is to separate to the extent possible the 
activities of data placement and workflow execution, so that 
placement of data items can be largely asynchronous with 
respect to workflow execution, meaning that data placement 
operations are performed as data sets become available and 
according to the policies of the Virtual Organization, 
independently of the actions of the workflow management 
system. This is in contrast to many current workflow systems, 
which are responsible for explicitly staging data onto 
computational nodes before execution can begin. While some 
explicit data staging may still be required by workflow 
engines, intelligent data placement on appropriate nodes has 
the potential to significantly reduce the need for on-demand 
data placement and to improve workflow execution times.  

Based on their knowledge of applications and of expected 
data access patterns, workflow management systems can 
provide hints to data placement services regarding the 



placement of data, including information about the size of data 
sets required for a workflow execution and collections of data 
items that are likely to be accessed together. A data placement 
service can also get hints from the workflow system or from 
information systems about the availability of computational 
and storage resources. In addition, the Virtual Organization 
can provide hints to the placement service on preferred 
resources or on other policies that might affect the placement 
of data. Together, these hints will provide important clues 
regarding where computations are likely to run and where data 
sets should be stored so that they can be easily accessed 
during workflow execution.  

In this paper, we use a simple prototype system that 
integrates the workflow management functionality of the 
Pegasus system [15, 16] with a data movement service called 
the Data Replication Service [10]. Using these existing 
services for data and workflow management in distributed 
computing environments, our goal is to demonstrate that 
asynchronous placement of data has the potential to 
significantly improve the performance of scientific workflows.  

The paper is organized as follows. First, we describe two 
existing data placement services for large scientific 
collaborations and discuss how they might benefit from 
cooperation between placement services and workflow 
systems. Second, we describe data placement alternatives for 
scientific environments in more detail. Third, we describe two 
existing systems used in large-scale science: Pegasus and the 
Data Replication Service. We discuss the interplay of 
functionality that allows these two systems to cooperate to 
improve overall workflow performance. Next, we present 
performance results for a Montage application, which 
generates science-grade mosaics of the sky. These results 
compare the performance of a workflow that uses 
asynchronous data placement with one that does on-demand 
data placement. They demonstrate that such data placement 
can significantly improve the performance of workflows with 
large input data sets. We conclude with related work and a 
discussion of our future plans for work on the integration of 
data placement and workflow management.  

II. DATA PLACEMENT FOR LARGE SCIENTIFIC APPLICATIONS 
Large scientific collaborations have developed complex 

systems for management of data distribution and replication. 
Existing data placement systems include the Physics 
Experiment Data Export (PheDEx) [6, 32] system for high-
energy physics and the Lightweight Data Replicator (LDR) 
[24] for gravitational-wave physics. In both collaborations, the 
Virtual Organization has developed policies to distribute and 
replicate data sets widely so that they will be available to 
scientists at their individual institutions or near where 
computations are likely to run and so that the system will 
provide a high degree of availability.  

In parallel with these data placement services, 
computational workflows have emerged as an important 
paradigm for large-scale computing. Many sciences are 
turning to workflow management systems to provide a 
framework for coupling community codes and applications 

into large-scale analysis. Until now, data placement and 
computation placement services have been developed largely 
independently. However, we argue that these functionalities 
should not be developed in isolation. Rather, we believe that 
the next step beyond data distribution and replication is to 
study the relationship between data placement and workflow 
management. Our techniques could add value to existing 
placement services such as PheDEx and LDR by providing 
additional hints on where data sets should be placed to be used 
effectively by workflow engines. 

For the remainder of this section, we describe the 
functionality of the PheDEx and LDR systems.   

The high energy physics scientific community includes 
several experiments that will make use of terabytes of data 
collected from the Large Hadron Collider (LHC) [13] at 
CERN. The data sets generated by these experiments will be 
distributed to many sites where scientists need access to the 
raw and processed data products. The high energy physics 
community has a hierarchical or tiered model for data 
distribution [6]. At the Tier 0 level at CERN, the data will be 
collected, pre-processed and archived. From there, data 
products will be replicated and disseminated to multiple sites. 
Tier 1 sites are typically large national computing centers that 
will have significant storage resources and will store and 
archive large subsets of the data produced at the Tier 0 site. At 
the next level, Tier 2 sites will have less storage available and 
will store a smaller subset of the data. At lower levels of the 
Tier system, smaller subsets of data are stored and made 
accessible to scientists at their individual institutions.  

The PheDEx system manages data distribution for the 
Compact Muon Solenoid (CMS) high energy physics 
experiment [13]. The goal of the system is to automate data 
distribution processes as much as possible. Data operations 
that must be performed include staging data from tape storage 
(for example, at the Tier 0 site) into disk buffers; wide area 
data transfers (to Tier 1 or Tier 2 sites); validation of these 
transfers; and migration from the destination disk buffer into 
archival storage at those sites. The PheDEx system design 
involves a collection of agents or daemons running at each site, 
where each agent performs a unique task. For example, there 
are agents that stage data from tape to disk and agents that 
perform data transfers. The agents communicate through a 
central database running on a multi-server Oracle database 
platform. The PheDEx data distribution system supports three 
use cases for CMS. First, it supports the initial “push-based” 
hierarchical distribution from the Tier 0 site at CERN to the 
Tier 1 sites. It also supports subscription-based transfer of data, 
where sites or scientists subscribe to data sets of interest, and 
those data sets are sent to the requesting sites as they are 
produced. Finally, PheDEx supports on-demand access to data 
by individual sites or scientists.  

The Lightweight Data Replicator (LDR) system [24] 
distributes data for the Laser Interferometer Gravitational 
Wave Observatory (LIGO) project [4, 23]. LIGO produces 
large amounts of data and distributes or places it at LIGO sites 
based on metadata queries by scientists at those sites. 
Currently, the collaboration stores more than 120 million files 



across ten locations. Experimental data sets are initially 
produced at two LIGO instrument sites and archived at 
CalTech; they are then replicated at other LIGO sites to 
provide scientists with local access to data. LIGO researchers 
developed the LDR system to manage the data distribution 
process. LDR is built on top of standard Grid data services 
such as the Globus Replica Location Service [9, 11] and the 
GridFTP data transport protocol [5]. LDR provides a rich set 
of data management functionality, including replicating 
necessary files to a LIGO site. Each LDR site initiates local 
data transfers using a pull model. A scheduling daemon 
queries the site’s local metadata catalog to request sets of files 
with specified metadata attributes. These sets of files are 
called collections, and each collection has a priority level that 
determines the order in which files from different collections 
will be transferred to the local site. For each file in a 
collection, the scheduling daemon checks whether the desired 
file already exists on the local storage system. If not, the 
daemon adds that file’s logical name to a priority-based 
scheduling queue. Each LDR site also runs a transfer daemon 
that initiates data transfers of files on the scheduling queue in 
priority order. The transfer daemon queries replica catalogs to 
find locations in the Grid where the desired file exists and 
randomly chooses among the available locations. Then the 
transfer daemon initiates data transfer operations from the 
remote site to the local site using the GridFTP data transport 
protocol. 

While the PheDEx and LDR systems provide sophisticated 
data placement and replication for their communities, these 
systems could benefit from greater interplay with 
computational schedulers such as workflow management 
systems. Hints from workflow systems could potentially 
influence the placement of data and significantly improve the 
performance of computational analyses.  

III. CLASSES OF DATA PLACEMENT SERVICES 
In this section, we present a broad view of how data 

placement services could be utilized by scientific applications. 
There are three broad categories of placement algorithms: 
those that seek to stage data efficiently into computations; 
those concerned with staging data out of computational 
resources; and algorithms designed to provide data reliability 
and durability.  

The first class of data placement algorithms is concerned 
with staging data into computation analyses efficiently. In a 
large workflow composed of thousands of interdependent 
tasks, each task that is allocated for execution on a 
computational node requires that its input files be available to 
that node before computation can begin. Specific 
characteristics of data access during workflow execution also 
need to be taken into account by the data placement service. 
For example, data items tend to be accessed as related 
collections rather than individually, and a placement service 
would ideally place items in a collection together on a storage 
system to facilitate execution. In addition, data access patterns 
tend to be bursty, with many data placement operations taking 
place during the stage in (or stage out) phase of execution. In 

this paper, we focus primarily on placement services that 
move data sets asynchronously onto storage systems 
accessible to computational nodes, ideally before workflow 
execution begins so that workflow tasks do not need to wait 
for data transfer operations to complete. This type of data 
placement is illustrated in Fig. 1. Other placement algorithms 
try to schedule jobs on or near nodes where data sets already 
exist, as discussed in Section VII.A. 
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Fig. 1: Workflow planner sends data staging requests to a data placement 
service, which initiates data transfer operations from storage elements in the 
distributed environment to the storage system associated with compute nodes 
on which the workflow tasks will execute.  

In practice, staging data out of computational resources 
efficiently may also be a significant challenge for scientific 
applications. When these applications run large analyses on 
distributed resources (e.g., on the Open Science Grid [2], 
which provides a number of diverse distributed resources to 
scientific collaborations), the individual nodes that run 
computational jobs may have limited storage capacity. When 
a job completes, the output of the job may need to be staged 
off the computational node onto another storage system before 
a new job can run at that node. Thus, a data placement service 
that is responsible for moving data efficiently off 
computational nodes can have a large impact on the 
performance of scientific workflows.  

A third set of data placement algorithms is concerned with 
the maintenance of data to provide high availability or 
durability, i.e., protection from data failures. These placement 
algorithms replicate data to maintain additional copies to 
protect against temporary or permanent failures of storage 
systems. For example, a placement service of this type might 
create a new replica of a data item whenever the number of 
accessible replicas falls below a certain threshold. These 
replication algorithms might be reactive to failures or might 
proactively create replicas. Several of these algorithms are 
described in Section VII.C. 

IV. THE PEGASUS WORKFLOW MANAGEMENT SYSTEM 
Pegasus, which stands for Planning for Execution in Grids 

[15, 16], is a framework that maps complex scientific 
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rkflows onto distributed resources such as the TeraGrid [3], 
the Open Science Grid, and others.  Pegasus relies on the 
Condor DAGMan [18] workflow engine to launch workflow 
tasks and maintain the dependencies between them.   Pegasus 
enables scientists to construct workflows in abstract terms 
without worrying about the details of the underlying 
cyberinfrastructure or the particulars of the low-level 
specifications required by the cyberinfrastructure middleware 
(Globus[19] and Condor [25]). As part of the mapping, 
Pegasus automatically manages data generated during 
workflow execution by staging them out to user-specified 
locations, by registering them in data catalogs, and by 
capturing their provenance information. 

Sometimes workflows, as structured by scientists, are not 
tuned for performance. Additionally, give

 workflow generation, the eventual execution resources are 
not known, it is impossible to optimize the runtime of the 
overall workflow.  Since Pegasus dynamically discovers the 
available resources and their characteristics, and queries for 
the location of the data (potentially replicated in the 
environment), it improves the performance of applications 
through: data reuse to avoid duplicate computations and to 
provide reliability, workflow restructuring to improve 
resource allocation, and automated task and data transfer 
scheduling to improve overall workflow runtime. Pegasus also 
provides reliability through dynamic workflow remapping 
when failures during execution are detected.  

Currently, Pegasus schedules all the data movements in 
conjunction with computations. However, as t

acement services are being deployed within the large-scale 
collaborations, workflow management systems such as 
Pegasus need to be able to interface and efficiently interact 
with the new capabilities.  

V. THE DATA 

chr no  pl
Service (DRS) [10]. The function of th

plicate a specified set of files onto a storage system and 
register the new files in appropriate replica catalogs. DRS 
builds on lower-level Grid data services, including the Globus 
Reliable File Transfer (RFT) service, which provides reliable 
multi-file transfer requests, and the Replica Location Service 
(RLS), a distributed registry for replicated data items. The 
operations of the DRS include discovery, identifying where 
desired data files exist on the Grid by querying the RLS; 
transfer, copying the desired data files to the local storage 
system efficiently using the RFT service; and registration, 
adding location mappings to the RLS so that other sites may 
discover newly created replicas. Throughout DRS replication 
operations, the service maintains state about each file, 
including which operations on the file have succeeded or 
failed. Fig. 2 illustrates the basic operation of the Data 
Replication Service.  

 

 
Fig. 2 Operation of the Data Replication Service 

When a client request for a data replication operation 
arrives (1), the Data Replication Service first queries a Replica 
Location Service Index node to determine the location(s) of 
the requested files in the Grid. The RLS Index returns a 
pointer to an RLS local catalog at site 2, and the DRS next 
queries that catalog (3) to determine the physical location of 
the desired file(s). Next, the DRS issues a file transfer request 
to the RFT Service (4), which initiates a third-party transfer 
operation (5) between GridFTP servers at the source and 
destination sites. After the file transfer operation is complete 
(6), the DRS registers the new replica in its local RLS catalog 
(7). 

VI. WORKFLOW PERFORMANCE USING ASYNCHRONOUS DATA 
PLACEMENT 

We combined the functionality of the Data Replication 
Service (DRS) for data placement with that of the Pegasus 
system for workflow management. The goal is to demonstrate 
that data-intensive workflows may execute faster with such 
asynchronous data placement than with on-demand staging of 
data by the workflow management system.  

Our data placement is performed based on an explicit 
knowledge of which files will be used during the workflow 
execution. We issue requests to DRS to move these files to a 
storage system associated with the cluster where workflow 
execution will take place. This data movement takes place 
asynchronously with respect to the execution of the workflow.  

When the Pegasus workflow management system is 
launched, it detects the existence of these data sets by 
querying a replica catalog. If the data items are available on 
the storage system associated with the computational cluster 
where the workflow will run, then Pegasus accesses the data 
sets via symbolic links to that storage system. Thus, Pegasus 
avoids explicitly staging the data onto computational 
resources at run time.   



A. The Montage Workflow 
For these experiments, we used the workflow for the 

Montage astronomy application. Montage [1, 7] is an 
application that constructs custom science-grade astronomical 
image mosaics on demand. Montage is used as a key 
component of eleven projects and surveys worldwide to 
generate science and browse products for dissemination to the 
astronomy community. Fig. 3 shows the structure of a small 
Montage workflow. The figure only shows the graph of the 
resource-independent abstract workflow. The executable 
workflow will contain data transfer and data registration nodes 
in addition to those shown in the figure. 

The levels of the workflow represent the depth of a node in 
a workflow determined through a breadth-first traversal of the 
directed graph. At each level of the workflow, a different set 
of executables that performs specific image processing 
functions is invoked. The inputs to the workflow include the 
input images in standard FITS format (a file format used 
throughout the astronomy community), and a “template 
header file” that specifies the mosaic to be constructed.  The 
workflow can be thought of as having three parts, including 
reprojection of each input image to the coordinate space of the 
output mosaic, background rectification of the reprojected 
images, and coaddition to form the final output mosaic.  
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Fig. 3: A small Montage workflow. 

To experiment with data-intensive workflows, we varied 
the sizes of the Montage input data set. In addition to default 
input file sizes in the range of Kbytes, we staged in an 
additional input file for each job in the first level of the 
Montage workflow. We set the size of these additional files to 
2 Megabytes and to 20 Megabytes in two different 
experiments. We expected that the performance results would 
show greater benefits for more data-intensive workflow 
executions.  

B. Performance Comparison 
The workflows for our experiments ran on a cluster with up 

to 50 available compute nodes, where each node is a dual 
Pentium III 1GHz processor with 1GByte of RAM running 
the Debian Sarge 3.1 operating system. The data sets are 

staged onto a storage system associated with the cluster from a 
GridFTP server on the local area network.   

In our experiments, we compared the time it takes to 
asynchronously prestage data versus letting the Pegasus 
workflow management system stage the data explicitly as part 
of the workflow execution. The graphs below show the time 
to stage data using the Data Replication Service; the running 
time of the workflow when the data are already prestaged by 
DRS, requiring no additional data movement by Pegasus; and 
the running of the workflow when Pegasus manages the data 
staging explicitly. In order to facilitate comparisons, we also 
show the sum of the DRS data staging time and the Pegasus 
execution time for prestaged data, which would correspond to 
sequential invocation of these two services.  

In our experiments, we modified the data granularity of the 
Montage workflow from the default size. Our hypothesis was 
that asynchronous data placement would be more 
advantageous for workflows that were data-intensive. To test 
this hypothesis, we experimented with three input sizes for the 
files required by the Montage workflow. Table 1 shows the 
total number of files used as input to each workflow execution, 
where additional files are used to simulate more data-intensive 
workflows.  

Table 1 shows the total number of files used as input to 
each workflow execution, where additional files are used to 
simulate more data-intensive workflows.  

Table 2 shows the total input size for each degree of the 
Montage workflow that we ran. Although we increase the 
input data size for the workflow, the computational run time 
of the workflow remains the same as for the default input size, 
because the additional input files are ignored for the purposes 
of computation.  

TABLE 1 

NUMBER OF INPUT FILES 

Number of input files for workflow execution Degree 
Square of 
Montage 

Mosaic 
Default input 

size 

With 
additional 
2MB files 

With 
additional 

20MB files 
1 50 95 95 
2 166 318 318 
4 648 1258 1258 

 

TABLE 2 

 TOTAL INPUT SIZE FOR WORKFLOWS 

Total input size for workflow execution Degree 
Square of 
Montage 

Mosaic Default 

With 
additional 
2MB files 

With 
additional 

20MB files 
1 91 MBytes 182 MBytes 993 MBytes 
2 307 MBytes 612 Mbytes 3.31 GBytes 
4 1.2 GBytes 2.4 GBytes 13.2 GBytes 

 
Fig. 4 through Fig. 6 show the performance of the Montage 

workflow with three input sizes for mosaic degrees of 1, 2 and 



4. The line in each graph labeled “DRS” shows the time for 
the Data Replication Service to do asynchronous placement of 
the input files onto the storage system associated with the 
cluster. The line in each graph labeled “Pegasus with 
Prestaged Data” shows the execution time for the workflow 
under Pegasus using the data sets that have been prestaged by 
DRS. The line labeled “DRS + Pegasus” shows the sum of 
these times for data staging and execution with pre-staged 
data, as a measure of the worst-case performance if these two 
operations occur sequentially. Finally, the line labeled 
“Pegasus with Data Staging” shows the performance of the 
Montage workflow when the Pegasus system stages the data 
as part of the workflow execution. Pegasus stages data 
through explicit data transfer tasks in the workflow. These 
tasks are placed by DAGMan (Pegasus’ workflow engine) in 
the local Condor queue and eventually released for execution. 
Thus, these data movement tasks incur the overheads of the 
Condor queuing and scheduling system. As the number of 
data transfer jobs increases, these overheads also increase, and 
the execution time of workflows using Pegasus to perform 
data staging may exceed the execution time for the 
combination of DRS data staging and Pegasus execution with 
prestaged data, as can be seen most notably in Fig. 6. 
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Fig. 4 Shows the execution times for a Montage workflow with the default 
input size for mosaic degrees of 1, 2 and 4. Different lines show the time for 
prestaging data with DRS; the execution time for the workflow if data sets 
have been prestaged; the combined execution time for DRS staging and 
Pegasus execution; and finally the execution time for a Montage workflow in 
which Pegasus explicitly stages in data at run time.  

Fig. 4 shows the performance for the default input size for 
the Montage workflow. The graph shows that there is a small 
advantage for prestaging data for this workflow, where a total 
of about 1.2 GBytes are prestaged by DRS. Workflow 
execution time is reduced approximately 8% for the combined 
DRS staging plus Pegasus execution, compared to the case 
where Pegasus explicitly stages data.  

Fig. 5 also shows a small advantage for prestaging data for 
the Montage workflow. Here, we increase the total input data 
size by transferring an additional 2 MByte file into every job 
at the first level of the Montage workflow. With a mosaic 
degree of 4, the total input data size is about 2.4 Gbytes, 
approximately double the size for the experiment in Fig. 4.  

As expected, for the most data intensive of the workloads 
we measured, the advantages of prestaging data using the Data 
Replication Service are significant, as shown in Fig. 6. For 

this experiment, we transferred an additional 20 MByte file 
into every job at the first level of the Montage workflow. With 
a total input data size of 13.2 GBytes for a mosaic of 4 degree 
square, the combination of prestaging data with DRS followed 
by workflow execution using Pegasus improves execution 
time approximately 21.4% over the performance of Pegasus 
performing explicit data staging as part of workflow execution. 
When data sets for this workflow are completely prestaged by 
DRS before workflow execution begins, the workflow 
execution time is reduced by over 46%.  
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Fig. 5 Shows execution times for a Montage workflow with larger input sizes, 
where additional 2 MByte files are staged in for each job at the first level of 
the workflow.  
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Fig. 6 Shows execution times for a Montage workflow with an additional 20 
MByte file staged in for each job run as part of the workflow. For this more 
data intensive workflow, it is more advantageous to perform asynchronous 
data placement using DRS.  

As described above, additional overheads are incurred 
when Pegasus performs data staging tasks explicitly as part of 
its workflow execution. These overheads increase with the 
number of input files being transferred.  Additionally, data-
centric services such as DRS can potentially tune the 
parameters of data transfers to be optimal for particular sets of 
data, particular sizes of data and network conditions. This type 
of tuning would be hard to achieve in general-purpose 
workflow management systems.  

The above performance numbers demonstrate the potential 
advantages of combining data placement services with 
workflow management systems for data-intensive scientific 
applications. While these performance studies only address 
the problem of efficiently prestaging input files for a 



computation, we also plan to study the problems of staging 
data out of computational nodes as well as the relationship 
between data placement for computational efficiency and for 
availability/reliability.  

VII. RELATED WORK 
There has been extensive work on data placement and 

replication for a variety of distributed file systems and 
distributed storage systems. Here we focus particularly on 
work related to policy-driven data placement in large, wide-
area distributed systems.  

A. Data and Computational Scheduling in Grids 
Several groups have addressed issues related to the 

scheduling of data and computations in Grid environments. 
We have already discussed the PheDEx and LDR systems, 
which focus primarily on data distribution for high energy and 
gravitational wave physics applications.  

In [29-31] the authors conducted extensive simulation 
studies that examined the relationship between asynchronous 
data placement and replication and job scheduling. They 
examined a variety of combinations of job scheduling and 
data scheduling. The data scheduling policies keep track of the 
data set usage and replicate popular datasets. The authors 
concluded that scheduling jobs where data sets are present is 
the best algorithm and that actively replicating popular data 
sets also significantly improves execution time.  

One difference between this work and our proposed 
approach is that the authors assume that the jobs being 
scheduled are independent of one another. We propose to 
study the interplay between more complex analyses composed 
of many interdependent jobs. Thus, we consider costs 
associated with managing the entire workflow, for example, 
moving intermediate data products to where the computations 
will take place and co-allocating possibly many data products 
so that the workflow can progress efficiently. Additionally, 
the approach they propose is reactive in the sense that it 
examines the past popularity of data to make replication 
decisions, whereas our approach is proactive and examines 
current workflow needs to make data placement decisions. 

B. Workflow Scheduling in the Context of Data Management 
Directed Acyclic Graphs (DAGs) are a convenient model to 

represent workflows, and the extensive literature on DAG 
scheduling is of relevance to the problem of workflow 
scheduling [22]. Scheduling scientific workflows in 
distributed environments has been recently studied in [8, 26, 
33, 35-37].  In the majority of these works, the aim is to 
minimize the workflow execution time, with the assumption 
that data scheduling is included as part of the computational 
scheduling decisions.  

C. Data Placement and Replication for Durability 
Data placement services may also enforce policies that 

attempt to maintain a certain level of redundancy in the 
system to provide highly available or durable access to data. 
For example, a system where data sets are valuable and 
expensive to regenerate may want to maintain several copies 

of each data item on different storage systems in the 
distributed environment. The UK Quantum Chromodynamics 
Grid (QCDGrid) project [27, 28] is a virtual organization that 
maintains several redundant copies of data items for reliability. 
Medical applications that preserve patient records could also 
benefit from placement services that maintain multiple copies 
of data items. Such placement services monitor the current 
state of the distributed system, and if the number of replicas of 
a data item falls below the threshold specified by V.O. policy, 
the placement service initiates creation of additional replicas 
on available storage nodes.  

In the Oceanstore global distributed storage system [21], 
several algorithms have been studied for replication of data to 
maintain high levels of durability. These include a reactive 
replication algorithm called Carbonite [12] that models 
replica repair and failure rates in a system as the birth and 
death rates in a continuous time Markov model. To provide 
durability, the replication rate must match or exceed the 
average rate of failures. Carbonite creates a new replica when 
a failure is detected that decreases the number of replicas 
below a specified minimum.  

The Oceanstore group has also proposed a proactive 
replication algorithm called Tempo [34] that creates replicas 
periodically at a fixed low rate. Tempo creates redundant 
copies of data items as quickly as possible using available 
maintenance bandwidth and disk capacity. Tempo provides 
durability for data sets comparable to that from the reactive 
Carbonite algorithm using a less variable amount of 
bandwidth, thus helping to keep maintenance costs predictable.  

The work presented in this paper does not directly address 
data placement policies for durability, but we plan to include 
this functionality in the future.  

VIII. SUMMARY AND FUTURE WORK 
We are interested in understanding the relationship between 

existing data placement services and workflow management 
systems used today in data-intensive scientific applications. In 
particular, we believe that by separating to the extent possible 
the activities of data placement and workflow execution, we 
can significantly improve the performance of scientific 
workflows. We presented experimental results for the 
execution of several astronomy workflows. For each Montage 
workflow, we compared the execution time using a workflow 
management system that explicitly stages data into the 
workflow at runtime with the execution time for a system that 
uses a data placement service to prestage data sets onto 
storage resources. Using the Data Replication Service for data 
placement and the Pegasus workflow management system to 
execute these workflows, we demonstrated that this separation 
of data placement and workflow execution has the potential to 
significantly improve the performance of workflows that have 
large input data sizes.  

This work represents a first step towards understanding the 
interplay between community-wide data placement services 
and community workflow management systems. In addition to 
the work presented here that focuses on staging data into 
workflows efficiently, we also plan to study placement 



services that move data sets produced by workflow execution 
off computational nodes in a timely and reliable way. This 
efficient staging out of data will allow workflows to execute 
efficiently on nodes that have limited storage. Finally, we are 
interested in placement services that replicate data for 
performance and reliability reasons and their relationship to 
workflow management systems. 
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