
Current methods for negotiating firewalls for the Condor®
system

Bruce Beckles1, Se-Chang Son2 and John Kewley3

1University of Cambridge Computing Service, New Museums Site, Pembroke Street,
Cambridge CB2 3QH, UK

2Computer Sciences Department, University of Wisconsin, 1210 W. Dayton Street, Madison,
WI 53706-1685, USA

3CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, UK

Abstract

The Condor® system is a widely used “specialized workload management system for compute-
intensive jobs” [1] which is increasingly being used in UK academic environments to utilise the so-
called “idle time” of workstations. Due to Condor’s pattern of network communication there are a
number of issues that arise when Condor is deployed across firewall or private network boundaries.
In this paper we describe and analyse these issues, and outline the characteristics that we believe a
general solution to these issues would have. We briefly describe some currently available solutions
and workarounds, and then identify the most promising direction for future developments.

1. Introduction
The Condor® system [1] is a batch queuing
system that is particularly suited to harnessing
the so-called “idle time” on workstations and
clusters and is frequently used for “high
throughput” or “compute-intensive” jobs.
Condor is widely used in UK academic
environments, both to maximise the return on
investment (ROI) of existing computing
infrastructure and to allow researchers
inexpensive access to resources capable of
supporting high throughput computing (HTC).

Unfortunately, Condor was designed to run
in a network environment which is both
“symmetric” (i.e. one in which any machine can
initiate a connection to any other machine), and
in which there are no restrictions on types of
network traffic (e.g. firewalls blocking UDP).
In the modern computing environment such an
“open” network environment is increasingly
rare. It is thus the case that it can be quite
difficult to deploy Condor in many current
network environments due to the presence of
firewalls, private networks (i.e. networks of
machines with IP addresses in the range
specified by RFC 1918 [2]) and other
circumstances that “break the symmetry” of the
network (see [3] for a fuller discussion).

In attempting to address the issues that arise
when Condor is deployed across a firewall or
private network boundary it is important to
remember and respect the purpose of the
firewall or private network. Often this is to
provide a layer of security for the machines
behind the firewall or on the private network

and it is therefore vital that this security layer is
not compromised by attempts to deploy Condor
across that security boundary.

In this paper we describe Condor’s pattern
of network communication and explain why this
pattern of communication is so inimical to
firewalls and private networks. We then list the
requirements that would be desirable in a
general solution to these problems, and finally
we review some of the solutions / techniques
which have been developed to address or
mitigate these problems.

2. Condor’s pattern of network
communication

As the Condor system continues to evolve it is
likely that its pattern of network communication
will change. The details given in this section
are intended to cover primarily the Condor 6.6
series up to version 6.6.10, and secondarily the
Condor 6.7 series, up to version 6.7.8, which are
the current versions at the time of writing. In
addition, it should be borne in mind that the
Condor system is a complex one that allows for
many diverse patterns of deployment, and only
some of the most common patterns of
deployment are covered here – for instance, we
do not cover the scenario in which the functions
of the central manager (see Section 2.1) are split
between different machines, nor do we discuss
CondorView servers.

2.1. Machine Roles

To understand Condor’s pattern of network
communication it is necessary to understand
something of the structure of the Condor
system, and, in particular the different roles
which a machine running Condor may have.
For more details, see [4], but, in summary, the
most significant roles are as follows:
• Submit nodes: These are machines that

submit jobs to the Condor pool.
• Execute nodes: These are machines in the

Condor pool that execute users’ jobs.
• Central manager: This is the machine that

monitors all the other nodes and “matches”
jobs to execute nodes.
There must be at least one machine in each

of the above roles in order for the Condor pool
to function. There can be only one machine
actively taking the role of the central manager,
although in the later releases of the Condor 6.7
series, there may be other nominated machines
(known as idle central mangers) that may act as
the central manager should the active central
manager machine fail. In addition to the above
roles, there is another (optional) machine role
that is often found in a Condor pool, namely:
• Checkpoint server: This is a machine that

stores checkpoints of jobs submitted to the
pool, for those types of jobs that support
checkpointing. In the absence of a
checkpoint server, the submit node from
which the job was submitted will be used
instead.
Upon first encountering the Condor system,

a common misconception is that the system
works as follows: submit nodes submit jobs to
the central manager, which then sends them to
an execute node, receives the results from the
execute node, and then sends them back to the
submit node from which the job originated.
This is completely incorrect: what actually
happens is that the central manager receives a
copy of the job’s characteristics, which it
matches against execute nodes’ characteristics.
When it has made a match it then contacts the
submit and execute nodes in question, which
thereafter communicate directly with each
other; the central manager is then no longer
involved. (This is also how jobs are handled
when separate Condor pools are connected via
Condor’s flocking mechanism.)

2.2. Direction of network communication

In many firewall configurations, especially for
stateful firewalls and devices that enable
network communication across the boundary of
private networks, the direction of network

communication is extremely important.
Typically there will be one set of rules for
inbound connections (i.e. those connections
initiated by machines outside the private
network or firewall boundary) and a different
set of rules for outbound connections (i.e. those
connections initiated by machines inside the
private network or firewall boundary). In
particular, a “deny all inbound connections;
permit all outbound connections” (or close
variant) is a particularly common policy with
stateful firewalls and gateways to private
networks.

In the Condor system, most machines need
to be able to both initiate and receive
connections from most other machines that are
part of the same Condor pool, at least in the
most common configurations of the pool – this
pattern of network communication is known as
“many-to-many”. Table 1 gives details of
which machine roles initiate connections to
which other machine roles, and which network
protocols (TCP, UDP or both; see Section 2.4)
are used (note that in this table initiators and
recipients are presumed to be distinct
machines). This pattern of communication is
incompatible with many common firewall
policies, which are usually designed with a
“one-to-many” (or possibly a “few-to-many”)
pattern of network communication in mind.

Recipient:

Initiator:

CM Ckpt S E

Central
Manager (CM) N/A × TCP TCP

UDP
Checkpoint
Server (Ckpt)

TCP
UDP × × ×

Submit (S) TCP
UDP TCP × TCP

UDP

Execute (E) TCP
UDP TCP TCP ×

Table 1: Initiators and recipients of network
connections (and protocols used) in
the Condor system. Note that this
Table does not take into account the
high availability daemon (available in
Condor 6.7.6 and later).

2.3. Network port usage

In general, network port usage by an application
can be divided into two categories: static ports
and dynamic (or ephemeral) ports. Static ports
are ports that are always used by a particular
instance of an application throughout its
lifetime, and are usually known in advance
rather than ‘randomly’ chosen at run-time (e.g.

port 22 for SSH servers). Once set, an
application will always use a particular static
port for particular functions. A dynamic or
ephemeral port is one that is chosen (often
‘randomly’) from a particular port range when
the application needs to use a port. Once the
application has finished using that port, it will
close it. When it needs to use another port,
another port from the given port range will be
chosen (which may or may not be the same as
the previous port).

Condor uses both static and dynamic ports.
Normally, the central manager uses two static
ports (by default 9614 and 9618) – as of Condor
6.7.5, this can be configured to be only a single
static port (by default 9618) – which can be
changed in Condor’s configuration file. If the
high availability daemon is being used (Condor
6.7.6 and later) then an additional static port
(configured in a configuration file) is used by
the active central manager and by the idle
central manager(s). Checkpoint servers use four
static ports (5651, 5652, 5653 and 5654) and
these cannot currently be changed.

In addition, all machines use a number of
dynamic ports. The range from which these are
drawn is, by default, all valid port numbers
above 1023, but this range can be changed in
the Condor configuration file to any sub-range
of the default range. If this range is too small,
then the Condor daemons will not function
properly: the minimum acceptable size of this
range depends on the role of the machine in
question and a number of other factors (see [5]).
For example, on submit machines, the size of
this range may limit the number of jobs that a
submit machine can run simultaneously – thus
this range may need to be quite large.

One factor not mentioned in [5] that also
affects the acceptable size of this range is that
under many circumstances the Condor daemons
will be unable to reuse the dynamic ports in this
range immediately. This may mean that the size
of the range needs to be increased above the
minimum size given in [5] if Condor is to
function properly.

Generally firewall administrators are most
happy with services that only use a few static
network ports for inbound connections.
Unfortunately, this will often not be the case in
a Condor pool, and the range of dynamic ports
that are used may be very large, requiring the
firewall administrator to open a large number of
holes in their firewall.

2.4. Network protocols

For performance reasons, much communication
between machines in a Condor pool uses the

UDP network protocol, although there is
significant use of the TCP network protocol as
well. Machines will periodically send status
messages to other machines in the pool and this
normally is done over UDP. Starting in the
Condor 6.5 series, it has been possible to
configure much (but not all) of this
communication to use the TCP network
protocol instead, although doing this introduces
performance overheads and means that some of
the Condor daemons require additional memory.

This is an issue for firewalls because the
default configuration of many firewalls is to
block UDP, and security considerations mean
many firewall administrators are reluctant to
allow UDP across their firewall. In addition,
network devices and TCP/IP stacks process
UDP packets differently to TCP packets, and, as
UDP is by design unreliable and so only
infrequently used for key network
communication without an additional transport
layer, many network devices and TCP/IP stacks
do not handle UDP as well as they ought. Thus
networks and operating systems which have
been perfectly adequate for applications that
mainly or solely use TCP may prove inadequate
for applications like Condor that make extensive
use of UDP for important messages without
implementing an additional transport layer on
top of the UDP protocol.

2.5. Other issues

There are a number of other issues concerning
Condor’s pattern of network communication
and firewalls / private networks that may not be
immediately apparent from the preceding
sections, or that have not yet been mentioned.
Some of these are listed below:
• Administrative overhead: As the number of

machines on either side of the firewall or
private network boundary increases, the
administrative load on the firewall or
network administrator may rapidly become
unacceptable. In addition, the necessity of
involving the firewall or network
administrator may make expanding the
Condor pool an administratively burdensome
process.

• Personal firewalls: A personal firewall is a
firewall that runs on an individual machine
where that individual machine is the only
machine behind the firewall boundary. In an
environment where personal firewalls are
deployed (and such environments are
increasingly common) the personal firewall
on each machine will need to be adjusted if
the machine is to be part of the Condor pool
and may also need to be adjusted every time

a new machine is added to the pool. The
administrative overhead in managing this
may rapidly become extremely burdensome.

• Condor does not handle certain network
problems gracefully: Because Condor was
designed to be run in a symmetric network
environment, it does not handle many types
of network failure gracefully, simply
because the possibility of these types of
failures was never considered in its design.
For example, if the central manager can
communicate with an execute node, but a
submit node cannot, jobs from that submit
node may still be matched to that execute
node. If this happens the submit node will
become “stuck” and the smooth handling of
other jobs from that node may be affected.
Also, Condor will not realise that there is a
problem with communication between the
particular submit and execute nodes, and
may keep attempting to run jobs from that
particular submit node on the execute node
that is inaccessible to it.

• Documentation: Unfortunately the official
Condor documentation regarding Condor’s
pattern of network communication is
somewhat sparse and certainly incomplete.
In addition, there is outdated or inaccurate
documentation by other individuals or
organisations in circulation. As this area is
quite complex, there is an urgent need for
accurate comprehensive documentation of
Condor’s network behaviour.

• Bugs in Condor: Like any complex piece of
software, Condor will inevitably have bugs,
and some of these have been known to affect
its performance in the presence of firewalls.
For example, prior to Condor 6.6.8 and
Condor 6.7.3, the SO_KEEPALIVE option
on network sockets was not set under certain
circumstances, and this meant that firewalls
which terminated apparently inactive
connections after a certain period of time
might erroneously terminate Condor’s
network connections between submit and
execute nodes, with catastrophic results for
the job running on the execute node.
At the time of writing, there are still issues
involving machines that “disappear” from
the Condor pool, although the machine in
question is actually functioning fine and has
not suffered a loss of network connectivity.
There also have been problems with Condor
failing to automatically negotiate the
Windows® Firewall under Windows® XP
Service Pack 2 and Windows® Server 2003
Service Pack 1, although these are believed

to have been fixed in Condor 6.6.10 (and the
forthcoming Condor 6.7.9).

2.6. Summary

Table 2 presents a summary of the main issues
identified in this section.

Issues Identified
“Many-to-many” / bi-directional pattern of
communication
Uses large range of dynamic ports
Uses both TCP and UDP protocols
High administrative overhead for firewall
administrators
Not designed to be “personal firewall friendly”
Does not fail gracefully in the presence of
firewalls or private networks
Inadequate documentation
Unresolved bugs relating to network
communication
Table 2: Issues identified

3. Identified requirements
Our analysis of Condor’s pattern of network
communication, combined with discussions
with Condor administrators and firewall
administrators in the UK and abroad, as well as
our own experiences in attempting to resolve
some of these issues, has led us to identify the
following requirements as highly desirable and /
or essential for any solution (or partial solution)
to the problems highlighted in Section 2:
• Respect the security boundary: The security

boundary established by the firewall or
private network must be respected, and
exposure to external attack must not be
increased by the solution.

• Reduce administrative overhead: The
administrative overheads of the firewall
administrator(s) and Condor administrator(s)
must be reduced (or at worst not increased)
by the solution.

• Minimal impact on performance of network
“choke points”: The solution must have
minimal impact on the performance of
existing network “choke points” such as
firewalls and gateways to private networks.
In practice this may mean reducing Condor’s
pattern of network connection from “many-
to-many” to “few-to-many” or better (“one-
to-many”, “one-to-few”, etc).

• Enable traversal of firewall and private
network boundaries: A desirable feature in a
general solution to the issues described in
Section 2 would probably allow the traversal
of firewall and private network boundaries

for Condor traffic. However, this must be
balanced against the risks to which such
traversal might expose a site.

• Allow incremental implementation: It must
be possible for the solution to be
incrementally implemented across the
machines concerned. In particular, the
situation where only some machines are
“aware” of the solution and make active use
of it needs to be catered for.

• Scalability: The solution needs to be
scalable, as large Condor pools may contain
thousands of machines, and often separate
Condor pools are joined together across
network security boundaries, and such flocks
of Condor pools may comprise many
thousand of machines.

• Robustness: The solution should be robust in
the face of network congestion.

• Gracefulness: The solution should fail and
recover gracefully from network problems –
in particular it should handle the situation
discussed in Section 2.5 where some, but not
all, of the machines in a pool can
communicate with a particular node.

• Integration into Condor’s security
framework: If the solution is part of the
Condor system it must be fully integrated
with Condor’s security framework
(authorisation, etc).

• Logging: The solution should provide
comprehensive logging facilities.

• Documentation: The solution must be
clearly and comprehensively documented.

4. Current solutions
There are a number of current solutions or
partial solutions that attempt to address the
issues described in Section 2. In this section we
briefly describe some of them and then see
whether they meet the requirements listed in
Section 3. These solutions can be divided into
three categories: “mitigation” (mitigating the
effects of firewalls, etc), “altering the pattern of
network communication” (e.g. reducing it to
“one-to-many”) and “firewall/NAT traversal”
(traversing the security boundary).

4.1. CCLRC’s “Firewall Mirroring”
(FM)

One of the authors (John Kewley) has
developed a method of configuring the submit
and execute nodes in his Condor pool so that
jobs will not be submitted to machines which
cannot run them because communication is not
possible between the submit and execute nodes.

This is achieved by duplicating part of the
firewall’s configuration in the ClassAd of each
execute node, and then modifying the
Requirements of the Condor job so that it will
only match with execute nodes that can
communicate with its submit node. For details
of this procedure, see [6].

This method is particularly useful with
personal firewalls that are not centrally
managed. Although it does not help in
traversing firewall or private network
boundaries, it mitigates the effect of such
boundaries, since it allows the pool to continue
functioning even when firewall configurations
are not up-to-date, or the pool is partitioned by
firewalls and/or private networks. However
there is an administrative overhead associated
with this solution, which means that it is
probably unsuitable for large pools.

An example scenario for this solution would
be a small pool of machines, each with their
own personal firewalls (that are not centrally
managed), such as the Condor pool at CCLRC
[7].

4.2. Using centralised submit nodes (CS)

Another way of addressing many of the
problems described in Section 2 is to reduce the
number of submit nodes, and to place all these
nodes in the same part of the network.
Centralising submit nodes in this way reduces
the pattern of network communication from
“many-to-many” to “few-to-many” (or even
“one-to-many”). Although any firewalls still
have to be configured to allow traffic from these
submit nodes through, the small number of
submit nodes means that the administrative
overhead is considerably lowered.

In addition, the impact on the firewall’s
performance is likely to be small, and this can
probably be made even lower if the centralised
nodes have IP addresses that form a contiguous
range that can be expressed in the Classless
Inter-Domain Routing (CIDR) [8] notation.
However, centralising submit nodes in this
manner may reduce the availability of the
Condor pool as such a pool architecture may
well have a single point of failure. In addition
the reduction in the number of submit nodes
must be balanced against the size and needs of
the pool. If the number of submit nodes is too
small, then the number of jobs that can be
simultaneously run may be significantly less
than the number of execute nodes in the pool. It
may also be the case that this solution cannot
handle more than one private network.

An example scenario where such a solution
might be appropriate would be a University

“campus grid” where all the compute nodes
were centrally managed, such as the University
of Cambridge Computing Service’s Condor
deployment [9].

4.3. Remote job submission/Condor-C
(C-C)

Another way to reduce the pattern of network
communication from “many-to-many” to “few-
to-many” (or even “one-to-many”) is to make
use of Condor-C [10] or Condor’s remote job
submission feature. Condor-C is a new feature,
added in Condor 6.7.3, that allows the job
submission queue on one submit node to be
moved to another submit node and “scales
gracefully when compared with Condor’s
flocking mechanism” [10]. Condor-C maintains
only a single network connection between the
submit node which originally held the job queue
and the submit node to which the queue has
been moved. Condor’s remote job submission
feature allows a job to be submitted from a
machine to a remote submit node.

Either of these features could be used to
reduce Condor’s pattern of network
communication by careful construction of the
Condor pool. There are a number of possible
architectures, such as the following:
• Condor traffic across the firewall or private

network boundary could be restricted to a
small number of “internal” submit nodes
behind each firewall (or on the border of
each private network). Machines outside
these security boundaries would then use
Condor-C or Condor’s remote job
submission feature to submit jobs to the
designated submit nodes inside (or on the
border of) the security boundary. This
would reduce Condor’s pattern of network
communication at the security boundary to
“many-to-few” or “many-to-one”.

• A small number of (probably centralised)
“external” submit nodes that are outside any
firewall or on the border of a private network
could be allowed to send Condor traffic
across the firewall or private network
boundaries. Any other machine that wished
to submit jobs would then use Condor-C or
remote job submission to submit to these
designated machines. This would reduce the
pattern of network communication at the
security boundary to “few-to-many” or “one-
to-many”.

• Both of the above architectures could be
combined. This would mean that arbitrary
machines outside a relevant security
boundary would use Condor-C or remote job

submission to submit jobs to the designated
“external” submit nodes, which would then
use Condor-C or remote job submission to
re-submit those jobs to the “internal” submit
nodes (behind the firewall or on the border
of the private network). This would reduce
the pattern of network communication across
the security boundary to “few-to-few” or
better (“one-to-few”, etc.).
There are, however, a number of

disadvantages with such architectures. There
are scalability issues similar to those for the
architecture described in Section 4.2. Also,
Condor’s remote job submission is poorly
documented, does not scale well and there are
security implications in using it. Whilst
Condor-C does not suffer from any of the
aforementioned disadvantages of remote job
submission, it is still a very new feature that is
currently only available in a development
release of Condor.

In addition, the authors are unaware of any
sites that are currently using any of the
architectures described above or anything
similar. This is likely to change as Condor-C
matures and is accepted and used by the Condor
user community, but at present this solution is
probably best regarded as “experimental”.

A generalised scenario in which such an
architecture might be appropriate is one in
which there are a number of separate Condor
pools, each entirely behind a firewall or on a
private network.

4.4. Generic Connection Brokering
(GCB)

Currently being added to the development
release of Condor is a firewall/NAT traversal
technique known as Generic Connection
Brokering (GCB), which was developed by one
of the authors (Se-Chang Son). GCB allows the
direction of the network connection to be
independent of which machine initiated the
connection (thus allowing traffic across security
boundaries where traffic is restricted in one
direction) and also incorporates a relay
mechanism (allowing, for instance, nodes on
two disjoint private networks to communicate
with each other).

GCB is intended to be scalable and
transparent to the application making use of it
(it is implemented as a library directly beneath
the application layer). Site administrators
merely need to employ a GCB agent or broker
in the appropriate part of their network and
GCB then transparently enables communication
across the firewall or private network
boundaries (i.e. an appropriately placed GCB

agent or broker could enable the traversal of
multiple firewall and/or private network
boundaries). For technical details and a more
detailed discussion of GCB see [11] and [3].

GCB enables firewall/NAT traversal and
effectively reduces the pattern of Condor’s
network communication to “one-to-many” on
the firewall or private network boundary – the
GCB agent or broker acting as a single “choke
point”. There are however a number of issues
to be considered when deploying GCB.

As GCB is not yet integrated into Condor’s
security framework, it will allow any GCB-
enabled application to traverse the firewall or
private network boundary, and this has serious
security implications. In addition, although
designed to be scalable, there are scalability
issues with GCB (see [3] for details), the
limiting factors being the resource limits
imposed by the operating system on the GCB
process. As GCB is still not part of any Condor
release (although it is expected to be added to
the Condor 6.7 series soon), it must be regarded
as an “experimental” solution.

A scenario in which GCB might be usefully
deployed is where Condor needs to be deployed
across a firewall or private network boundary in
a manner transparent to the firewall or private
network, for instance where the firewall
administrator is unwilling or unable to open any
additional holes in the firewall for Condor.

4.5. Dynamic Port Forwarding (DPF)

Dynamic Port Forwarding is a firewall/NAT
traversal solution developed by one of the
authors (Se-Chang Son, a member of the
Condor Team). It is implemented through an
add-on to the firewall (and so only supports
certain firewalls, currently only firewalls based
on Linux netfilter [12]). The basic idea is that
when a DPF-enabled application wishes to
traverse a DPF-enabled firewall it sends a
request to the firewall and DPF then opens a
hole in the firewall for the application. When
the application has finished communicating
across the firewall, DPF closes the hole it
opened in the firewall. For further details of
DPF and a discussion of its performance see
[13] and [3].

Whilst DPF is highly scalable (see [3]), it
does not reduce the pattern of network
communication of any application that uses it,
and there are a number of issues that must be
considered before deploying it. Any DPF-
enabled application will be able to get a DPF-
enabled firewall to open holes for it, and this
has serious security implications. DPF is not

yet widely used and so should be considered an
“experimental” solution.

A scenario in which DPF might be used is
where a firewall administrator either cannot or
does not wish to undertake the administrative
burden of re-configuring their firewall for a
trusted DPF-enabled application, or where they
wish to minimise the exposure of the machines
behind their firewall through the holes opened
for a trusted DPF-enabled application.

4.6. Assesment of solutions according to
requirements

Table 3 shows whether the requirements given
in Section 3 are met by each of the five
solutions described above.

 FM CS C-C GCB DPF
Respect
security
boundary

 × ×

Reduce
administrative
overhead

×

Minimal
impact on
firewall
performance

NAT/firewall
traversal × × ×

Incremental
implementation × 1

Scalability × × × 2
Robustness × × × × ×
Gracefulness × ×
Integration into
Condor
security
framework

× × × 3 ×

Logging N/A N/A N/A
Documentation 4 × × 4 4

Table 3: Whether solutions meet requirements
Notes: 1. Incremental implementation is

possible to a certain extent by the
gradual inclusion of those Condor
pools entirely behind a security
boundary.

2. Some scalability issues, see [3].
3. Integration planned.
4. Some documentation available.

5. The Way Forward
As can be seen from Table 3, none of these
solutions are entirely satisfactory, although
depending on the scenario, some of them may
offer considerable advantages over the current

situation in which all the issues described in
Section 2 are unresolved. It is clear that much
work remains to be done in the area of security:
at present either solutions do not enable
firewall/NAT traversal or they do enable this
with potentially disastrous consequences for the
security of the site.

In addition, some of the requirements given
in Section 2, such as robustness in the face of
network congestion and failing gracefully when
firewalls or private networks are present, would
be best addressed by changes within the Condor
system itself, rather than attempting to work
around these problems with the solutions
described here.

It may be the case that, contrary to the spirit
which the Condor system attempts to embody,
the best solution in many cases is to carefully
plan the deployment of Condor pools rather
than allowing them to grow in an ad-hoc
fashion. However, since there are clearly
instances when firewall/NAT traversal of some
description is the only practical solution, further
development is needed in this area, particularly
to address the security concerns.

6. Conclusion
The Condor system is an extremely useful batch
queuing system that enables high throughput
computing. Unfortunately, it is the case that it
has not been designed to peacefully co-exist
with firewalls or to support private networks. A
number of techniques have been developed that
attempt to address some of the issues that arise
as a result of Condor’s assumption that it is
deployed across symmetric networks. None of
these are entirely satisfactory, however,
although there are particular scenarios in which
each may be worth investigating.

Careful planning of the Condor deployment,
with a clear understanding of the underlying
network security boundaries may be able to
mitigate many of these issues, but there are
some scenarios in which firewall/NAT traversal
techniques of some description will be required,
although the techniques described here all
currently have significant security limitations.

More work is required in the area of
firewall/NAT traversal techniques, but
ultimately many of these issues need to be
addressed within the Condor system itself.

Acknowledgements
The authors would like to thank Todd
Tannenbaum of the Condor Team for
information on Condor’s communication

patterns. Any errors in describing these in this
paper are, of course, our own.

References
[1] What is Condor?:
http://www.cs.wisc.edu/condor/description.html
[2] RFC 1918 (Address Allocation for Private
Internets): http://www.ietf.org/rfc/rfc1918.txt
[3] Son, Sechang, & Livny, Miron.
“Recovering Internet Symmetry in Distributed
Computing” (2003). Proceedings of the 3rd
International Symposium on Cluster Computing
and the Grid, Tokyo, Japan, May 2003:
http://www.cs.wisc.edu/condor/doc/CCGRID20
03.pdf
[4] Condor® Version 6.6.10 Manual, Section
3.1:
http://www.cs.wisc.edu/condor/manual/v6.6/3_
1Introduction.html
[5] Condor® Version 6.6.10 Manual, Section
3.10.8.2:
http://www.cs.wisc.edu/condor/manual/v6.6.10/
3_10Setting_Up.html -
SECTION004108000000000000000
[6] Kewley, John. Using Condor effectively in
the presence of Personal Firewalls (2004):
http://tardis.dl.ac.uk/Condor/docs/FW_condor.p
df
[7] Kewley, John. The use of Condor at
CCLRC Daresbury Laboratory (2004):
http://www.nesc.ac.uk/esi/events/438/CondorAc
tivities/CCLRC_experience.pdf
[8] RFC 1519 (Classless Inter-Domain Routing
(CIDR): an Address Assignment and
Aggregation Strategy):
http://www.ietf.org/rfc/rfc1519.txt
[9] Beckles, B. Building a secure Condor®
pool in an open academic environment (2005).
Proceedings of the UK e-Science All Hands
Meeting 2005, Nottingham, UK, 19-22
September 2005, forthcoming.
[10] Condor-C:
http://www.cs.wisc.edu/condor/manual/v6.7.8/5
_4Condor_C.html
[11] GCB (Generic Connection Brokering):
http://www.cs.wisc.edu/~sschang/firewall/gcb/i
ndex.htm
[12] netfilter/iptables project homepage:
http://www.netfilter.org/
[13] DPF (Dynamic Port Forwarding):
http://www.cs.wisc.edu/~sschang/firewall/dpf/in
dex.htm

http://www.cs.wisc.edu/condor/description.html
http://www.ietf.org/rfc/rfc1918.txt
http://www.cs.wisc.edu/condor/doc/CCGRID2003.pdf
http://www.cs.wisc.edu/condor/doc/CCGRID2003.pdf
http://www.cs.wisc.edu/condor/manual/v6.6/3_1Introduction.html
http://www.cs.wisc.edu/condor/manual/v6.6/3_1Introduction.html
http://tardis.dl.ac.uk/Condor/docs/FW_condor.pdf
http://tardis.dl.ac.uk/Condor/docs/FW_condor.pdf
http://www.nesc.ac.uk/esi/events/438/CondorActivities/CCLRC_experience.pdf
http://www.nesc.ac.uk/esi/events/438/CondorActivities/CCLRC_experience.pdf
http://www.ietf.org/rfc/rfc1519.txt
http://www.cs.wisc.edu/condor/manual/v6.7.8/5_4Condor_C.html
http://www.cs.wisc.edu/condor/manual/v6.7.8/5_4Condor_C.html
http://www.cs.wisc.edu/~sschang/firewall/gcb/index.htm
http://www.cs.wisc.edu/~sschang/firewall/gcb/index.htm
http://www.netfilter.org/
http://www.cs.wisc.edu/~sschang/firewall/dpf/index.htm
http://www.cs.wisc.edu/~sschang/firewall/dpf/index.htm

	Abstract
	Introduction
	Condor's pattern of network communication
	Identified requirements
	Current solutions
	The Way Forward
	Conclusion
	Acknowledgements
	References

