
CODO: Firewall Traversal by Cooperative On-Demand Opening*

Sechang Son,1 Bill Allcock,2 and Miron Livny1

1Computer Science Department, University of Wisconsin
2Mathematics and Computer Science Division, Argonne National Laboratory

sschang@cs.wisc.edu, allcock@mcs.anl.gov, miron@cs.wisc.edu

Abstract

Firewalls and network address translators (NATs)
cause significant connectivity problems along with
benefits such as network protection and easy address
planning. Connectivity problems make nodes separated
by a firewall/NAT unable to communicate with each
other. Due to the bidirectional and multi-
organizational nature of grids, they are particularly
susceptible to connectivity problems. These problems
make collaboration difficult or impossible and cause
resources to be wasted. This paper presents a system,
called CODO, which provides applications end-to-end
connectivity over firewalls/NATs in a secure way.
CODO allows applications authorized through strong
security mechanisms to traverse firewalls/NATs, while
blocking unauthorized applications. This paper also
formalizes the firewall/NAT traversal problem and
clarifies how a traversal system fits in the overall
security policy enforcement by a firewall/NAT.

1. Introduction

A network address translator (NAT) [1] provides
easy address planning as well as a solution to the IPv4
address shortage problem. Firewalls play a vital role in
protecting networks and are ready to play an even more
important role as the security headquarters of
integrated security systems, which generally include
anti-virus checking, intrusion detection, logging, and
content investigation [5]. Today, many firewalls/NATs
are deployed in the Internet. However, these devices
come at a price, notably non-universal connectivity.
Two endpoints separated by one or more
firewalls/NATs1 cannot talk to each other in general.

* This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy,
under Contract W-31-109-ENG-38.

The Internet has also become asymmetric because most
firewalls allow outbound (to the world) but block
inbound (from the world) communications.
Asymmetry is a special case of non-universal
connectivity. However, it deserves attention because
most client-server applications can get around it by
placing servers in publicly accessible places.

The grid [2] may be one of the areas most damaged
by the connectivity problem because it is generally
bidirectional in communication, multi-organizational,
huge in scale, and geographically distributed. In grids,
the connectivity problem generally results in the waste
of resources because researchers may not harness
resources separated from their networks by firewalls.
Computing jobs cannot be staged from the world into a
firewalled network, and vice versa [3] [4]; data
placement cannot be completed because data cannot
move into or out of a firewalled network.

Middleware approaches are very attractive for
dealing with the connectivity problem. They are easy
to deploy because neither the Internet nor operating
systems need be changed, and many applications can
benefit from them.

This paper presents a middleware firewall traversal
system called CODO (Cooperative On-Demand
Opening). CODO dynamically configures a firewall so
that authorized applications can communicate through
it. In CODO, both firewalls and applications benefit
through their cooperation. CODO-enabled firewalls
can protect networks better because pinholes are made
only for authorized applications, are narrow and exist
only when required. Unauthorized applications cannot
get through the firewalls. Also, better understanding of
firewall parameters by authorized applications enables
them to communicate without frustration. Unlike
previous approaches, CODO supports the most
restrictive settings in that both inbound and outbound
communications are controlled. Since CODO provides

1 Throughout, we use firewall to collectively refer firewall
and NAT. The term NAT is used to specifically denote NAT.

the Berkeley socket API, applications can easily
become CODO-enabled. With interposition
mechanisms such as [6] and [7], applications can
benefit from CODO even without re-linking.

This paper also discusses how a firewall traversal
system can fit in the overall security enforcement of a
network. We introduce firewall traversal mechanisms
as components that complement firewall functions.

In §2, we discuss a packet flow model within a
firewall and define the firewall traversal problem
within that model. The architecture and connection
procedure of CODO are presented in §3 and §4,
respectively. §5 discusses the fault tolerance issue and
§6 explains the implementation. §7 and §8 present
performance data and related research, respectively.

2. Problem Definition

The firewall traversal problem has been around for
many years, though it is vaguely defined, raising many
questions such as "if a firewall is opened for an
application, does it blindly pass packets to/from the
application?" and "how does a traversal mechanism fit
in the security policy the firewall tries to enforce?" To
avoid confusion, we define the problem as follows.

Firewalls block malicious or unwanted traffic while
allowing benign and desired traffic. What is malicious
or unwanted (or equivalently benign and desired) is
defined by firewall rules. To traverse a firewall, a
packet must pass the tests defined by the firewall rules.
If a packet fails a test, then it is rejected. Otherwise, it
continues to traverse the chain of tests until it fails a
test or passes all the tests.

Figure 1 shows a packet flow model in a firewall.
When a packet enters a firewall, it undergoes one or
more tests that we collectively call the application-
neutral test. The test is specified with application-
independent properties such as IP address, source

routing flag, and ICMP message type. This test drops
packets that are considered dangerous no matter what
application sends or receives them. For example,
overly fragmented packets are considered dangerous
and may be dropped at this stage. If a packet passes
this test, it may be allowed or sent to the owner test.
The owner test allows traffic for authorized
applications but blocks it for unauthorized or
dangerous applications. For example, many firewalls
allow SSH but block telnet and rlogin traffic. If a
packet belongs to an authorized application, it may be
allowed or sent to auxiliary tests that are specifically
designed for individual applications. If an application
is known to be vulnerable, say to a buffer overflow
attack, an administrator may have an owner test to
block the application. However, a better approach may
be to allow the application traffic only if it does not
contain an attack signature. The auxiliary tests can be
used to block only malicious packets while allowing
benign ones.

Depending on firewall implementations and
configurations, packets may flow differently from the
model: tests may be applied in a different order;
multiple tests from different stages may be combined;
some tests are not available in a firewall and may be
performed by a third party product such as an IDS
(Intrusion Detection System) [8]. However, we believe
that this model is general and accurate enough for our
discussion.

The connectivity problem may be defined as a
situation where a benign application cannot traverse a
firewall. We believe that the problem occurs mostly
because benign applications fail the owner test (false
negative), as firewalls are overzealous in blocking
malicious applications. The owner test is also very
important to network security because errors in this test
may result in (1) malicious or undesirable applications
passing firewalls (false positive) or (2) incorrect
auxiliary tests being applied to packets, resulting in
false negatives and false positives. For these reasons,
this paper (and firewall traversal problems in general)
focuses on the owner test. Our goal is to satisfy the
following requirement:

Authorized applications' traffic must pass the owner
test and unauthorized traffic must fail.

Note that the above condition is crucial to not only
an application s correct operation (grid perspective) but
also network security (security perspective). Also note
that we do not aim to reinvent firewalls to achieve our
goal. Instead, we propose a scheme that dynamically
configures existing firewalls to help them with the
owner test.

Application Neutral
Test

Owner
Test

Auxiliary
Test

in allowed

more test

more test

passed

passed

passed

for app-1

Auxiliary
Test

Auxiliary
Test

for app-i for app-n

Application Neutral
Test

Owner
Test

Auxiliary
Test

in allowed

more test

more test

passed

passed

passed

for app-1

Auxiliary
Test

Auxiliary
Test

for app-i for app-n

Figure 1: Packet flow model

We have challenges to achieving our goal. To
perform the owner test, a firewall must know what
application has sent or will receive the packet under
scrutiny. However, packets generally do not convey the
information about their source/destination applications.
Almost every firewall uses port number to bind packets
to an owner application. For example, packets with
port 80 are considered be Web traffic. However, a port
number is at most a hint to an application s identity
because it is a shared resource used by any application
with the appropriate privileges. It is extremely difficult
to bind packets to owner applications without help
from applications themselves. The second challenge is
that applications are not aware of state changes in
stateful firewalls they need to traverse. For instance, if
a TCP connection is inactive for a while, it may
become stale because a firewall flushes its state
without any notification to the application. False
negative errors occur in this case. Therefore,
applications need notification from firewalls.

3. Architecture

To handle challenges and achieve our goal, CODO
uses extensive cooperation between firewalls and
applications. In CODO, connections into or out of a
network are enabled through the cooperation of stateful
firewalls, firewall agents (FAs), and client libraries
(CLs) linked with the application. Figure 2 shows a
typical CODO topology.

With CODO, a firewall can start with a
configuration that allows no application to traverse. It
also need not allow outbound communications.
However, it may still have other rules for application-
neutral or auxiliary tests. The FA running on the
firewall machine dynamically adds and deletes rules
for owner tests. During the initialization, it adds a few
firewall rules to allow CODO commands to be
delivered to it. The FA has a list of applications that
can traverse the firewall. Since the list must be part of
the firewall policy, we may think of the FA as a part of

the firewall or an entity that enforces a part of the
policy delegated from the firewall.

Through a secure TCP connection established using
a certificate given to an application, the CL interacts
with the FA on behalf of the application. It informs the
FA of application activities such as binding a socket to
an address, closing a socket, and trying to connect to a
server. Using this information, the FA adds and deletes
firewall rules for the application. The FA also informs
the CL of necessary information such as how often a
connection state will be flushed by the firewall. The
CL uses this information to help the application
communicate over the firewall. The application uses
CODO services by calling CODO socket functions that
the CL provides.

CODO has several desirable characteristics:

Quality owner test. Through the exchange of
information about firewalls and applications, the FA
and the CL have up-to-date and sufficient knowledge
to avoid owner test errors. Since the FA knows what
(IP, port) pairs an authorized application is using at
any given moment, it knows the exact binding
between an (IP, port) and the application using the
endpoint address. Therefore, CODO can avoid
owner test errors caused by the errors in binding
from (IP, port) pairs to owner applications. Also, the
CL s knowledge about the firewall enables it to
refresh or recreate firewall s state appropriately. This
helps avoid false negative owner tests caused when
the firewall flushes states for connections inactive
for a while.

Narrow and short opening. The FA adds firewall
rules with no wildcard. In other words, rules are
specified with a specific (protocol, source IP, source
port, destination IP, destination port). This means
that (1) a rule is added to the firewall only when
there is an authorized pair of client and server and
(2) only the intended client and server can traverse
the firewall using the rule. In addition, to limit the
duration of firewall rules as much as possible, the
FA deletes the rules it adds as soon as the stateful
firewall creates the necessary states (i.e. stateful
rules) to allow subsequent packets to traverse.
Therefore, with CODO, firewall openings are as
narrow and short as possible.

Flexible control. CODO uses X.509 certificates to
authenticate and authorize applications. This means
that CODO is very flexible and can enforce various
security policies. For example, CODO can
differentiate versions or implementations of an
application. If a vendor s implementation of an

FA

Server app

CL

Client app

Data
transfer

CODO
commands

CODO
function

Firewall
control

CODO
function

CL
FA

Server app

CL

Client app

Data
transfer

CODO
commands

CODO
function

Firewall
control

CODO
function

CL

Figure 2: CODO topology

Client app

Client CL Client
FA

Server app

Server CLServer
FA

Client app

Client CL

Client app

Client CL Client
FA

Client
FA

Server app

Server CLServer
FA

Server
FA

Figure 3: Firewall-to-firewall connection.
Both networks allow neither inbound nor outbound
communications. The client and server FA add firewall
rules for outbound and inbound communications,
respectively.

application turns out to be vulnerable to a dangerous
attack, then it can be given a different certificate
from other implementations and disallowed from
communicating with the world.

Inbound & outbound control. CODO controls
outbound communications as well as inbound. With
CODO, only authorized clients and servers can
communicate with the world.

Easy deployment. CL interface is almost the same
as the Berkeley socket API. In fact, CODO functions
have the same arguments as their Berkeley socket
counterparts. This allows for easy integration of
applications with CODO.

4. Connection procedure

With CODO, applications call CODO functions.
The call sequence is the same as with a Berkeley
socket. For instance, a server creates a TCP socket,
binds it to an address, makes it passive, and accepts
connections from clients. A client creates a TCP socket,
optionally binds it to an address, and connects it to a
server. The server and client exchange data through the
established connection. This section explains how
CODO connections are established over firewalls as
responses to CODO calls from applications.

4.1 Server binding
To be able to accept connections from the outside

world, a server socket behind a firewall must be locally
bound, registered to the FA of its network, and
officially bound.

Local binding is nothing new. Just as with regular
binding, a socket is bound to an address. Through the
local binding, an (IP, port) pair, called the local address,
is assigned to the socket.

To arrange connections to a server socket, the FA
of the server network must have enough information
about the server socket. The FA needs this information
to avoid owner test errors as explained in §3. The
information is collected via registration. After a server
socket is bound to a local address, the server s CL
sends a registration request with the local address and
the type of the socket. After authentication and
authorization and the official binding (explained
shortly), the FA records the information sent by the CL
and other information that it collects from the official
binding process.

NAT translates private addresses into public ones,
and vice versa, as packets pass through it. Because of
this translation, we may think of a socket inside a
private network as having two addresses, a private (IP,

port), called the local address in this paper, and a
public (IP, port) that the NAT of the private network
assigns for address translation. We may view the
public (IP, port) as the address that the socket leases
from the NAT box. Since the Berkeley socket API
allows only one address per socket, a NAT traversal
system with the same API must choose one address to
make visible to the application and hide the other
inside the system. We define the address that is known
to the application as the official address of a socket.
Similar to previous systems [10] [11], CODO uses the
address a socket leases from a NAT box as its official
address. Note that this is a natural decision because the
leased address is globally unique.

Official binding is the process of assigning the
official address to a server socket. When an FA
receives a registration request with a private local
address, it finds a public address and rents the address
to the server socket. This leased address becomes the
official address of the socket and will be used to add
NAT binding rules. Of course, if the local address is
public, then it becomes the official address without
address leasing. As a successful response to the
registration request, the FA sends the official address
to the CL of the server application.

When an application calls getsockname asking
for the address to which a CODO socket is bound, the
CL returns with the official address instead of the local
(real) address. Thus, the local address of a CODO
socket is hidden inside the system.

4.2 Connection arrangement
This section explains how a TCP connection is

made for the most complex client-server configuration.
In this configuration, both the client and server
networks allow neither inbound nor outbound
connections (figure 3). Simpler configurations follow a
similar process with the omission or modification of
some steps. For example, if the client network allows

outbound connections, then we do not need steps to
add rules to allow outbound connections. UDP
connections will be explained in §4.3.

We assume that the server FA has the information
about the server socket through the binding process
described in §4.1. We also assume that the client
knows the official address of the server socket. For
example, Condor [4] components such as the job
scheduler and machine manager advertise their
addresses to a central manager that collects and
maintains information about jobs and machines. To
connect to a Condor component, its address is retrieved
from a central manager. In this case, the official
address of a component will be stored in and retrieved
from the central manager because only official
addresses are known to applications.

A connection from a client socket at address C1 to
a server socket whose official address is S1 and local
address S2 is established through the following steps:

(1) The client CL makes a TCP connection to the
client FA and asks for a connection to S1.

(2) The client FA reserves an address C2 for an NAT
binding, if C1 is a private (IP, port). The client FA
makes a TCP connection to the server FA and asks
for a connection from C2 (or C1 if it is public) to
S1.

(3) The server FA adds a firewall rule to allow the
inbound connection from C2 (or C1) to S1. If S1

S2, i.e. S2 is a private (IP, port), then a NAT
binding rule [C2 (or C1) S1, C2 (or C1) S2] is
added instead. By a NAT binding rule [W X,
Y Z], packets with source address W and
destination address X are translated into packets
with source address Y and destination address Z.
The timeout value after which states in the server
firewall are flushed is returned to the client FA.

(4) The client FA adds a firewall rule to allow the
outbound connection from C1 to S1. If C2 was
reserved, then a NAT binding rule [C1 S1,
C2 S1] is added instead. The minimum of the
timeout value of the client firewall and the value
returned from the server FA is returned to the
client CL. The client CL uses this value to
periodically send heartbeats to refresh states in the
firewalls.

(5) The client CL makes a connection to S1. At this
point, necessary states are created at both firewalls
and subsequent packets between the client and
server can traverse those firewalls without the
rules added in (3) and (4).

(6) The client and server FAs delete the firewall or
NAT binding rules they added, respectively. How
FAs detect that necessary states have been created
at firewalls will be discussed in §6.

How the client CL knows that it should contact the
client FA (step 1) and how the client FA knows that it
must contact the server FA (step 2) need explanation.
In the current implementation of CODO, each node has
a manually configured table. Given an IP, the table
tells if the node can directly connect to the IP. It also
tells what FA must be contacted if a direct connection
is impossible. This approach is not scalable and a
better solution is under investigation. However, the
table should not be very big because multiple IPs can
be aggregated with a mask. If all IPs within a network
can be aggregated with a mask as is true for most
private networks, only a single entry is needed for the
network. Furthermore, when we add a new network,
we only need to change the tables at public nodes
(including FAs). Nodes behind a firewall only need
know about local nodes. For all the other nodes, they
just need ask their local FA for connection
arrangement.

Connection establishment within a private network
also needs help from CODO. A client in the same
private network as a server cannot make a direct
connection with the server s official address. In this
case, the client CL asks the server FA2 for the server s
local address and then makes a direct connection to it.
No NAT bindings are made for intra-network
connections.

4.3 UDP connections
Although there is no connection setup in UDP

communications, we can loosely define a UDP session
as a set of UDP messages that are allowed or rejected
as a whole by stateful firewalls. More precisely, it is a
series of UDP messages from a client to a server such
that each message passes a firewall before a predefined
timeout from the previous one.

In order to support UDP sessions over firewalls, a
CL maintains a mapping table. Each entry (X, Y) in the
table maps the official address X of a peer to the peer s
address Y, meaning that UDP messages addressed to X
by the application must be sent to Y. When the
application calls sendto with the receiver s address X,
the CL searches the mapping table for the address. If
the entry (X, Y) is found, then it refreshes the timeout
value of the entry and sends the packet to Y. Otherwise,

2 The server FA is also the client FA in this case because the
client and the server are in the same network.

a procedure similar to the TCP cases explained in §4.2
is performed. If the procedure succeeds, then the
sender s CL creates a new entry with the address that
the receiver s FA has returned and then sends the UDP
message using the entry. Entries not referred to for a
while are deleted.

5. Fault tolerance

Successful connection depends on the reliability of
FAs. Nevertheless, applications should continue to
work with a limited ability in the event of FA failure.
During FA downtime, CLs operate as if the FAs did
not exist. For example, if a server CL cannot contact its
FA the server FA at binding time, it downgrades the
socket to a regular Berkeley socket, which bypasses all
CODO mechanisms. In this case, the server can accept
connections only from clients that do not need help
from the server FA. If a client CL cannot contact a
server FA, it attempts a direct connection to the server.

If an FA recovers from its failure, servers affected
by the failure should upgrade their sockets to support
CODO mechanisms3. To achieve this goal, we design
FAs to maintain soft state so that they can recover by
receiving socket information from server CLs.
Therefore, the CL periodically tries to contact the
failed FA. If successful, it upgrades sockets by doing
whatever it would have done if the FA had not failed,
and the FA recovers its state during this upgrade
process.

If a firewall fails before step (6) in the connection
process, unnecessary rule may still exist in the firewall
when it recovers. The firewall must delete these
unnecessary rules to maintain a high level of security.
If a firewall supports timeouts on rules, then garbage
collection would be able to clean up the unnecessary
rules. Unfortunately, the firewalls we targeted do not
support timeouts. Instead of garbage collection, each
FA records a snapshot of rules it created in a persistent
file. During startup, it deletes all the rules recorded in
that file. This blind flush will certainly delete necessary
rules as well. However, the necessary rules are
recreated as a part of the (soft) state recovery explained
above.

6. Implementation

3 The upgrade process should not change the official
address of a socket. Therefore, sockets with private (IP,
port) may not be upgraded. A private official address is
assigned to a socket behind a NAT box when its FA is
down at binding time.

The CL is implemented as a C/C++ library and as a
layer between the application and the kernel, as
depicted in Figure 4. Applications use CODO socket
calls to create a CODO socket, bind it to an address,
connect to a server, accept a connection from a client,
and so forth. The CL provides some file system calls so
that applications may duplicate socket descriptors,
make a socket non-blocking, and multiplex multiple
file descriptors, including CODO sockets. The CL also
has a few functions for process control, such as
CODO_fork and CODO_execve. These are mainly for
inheriting open sockets to child processes. All CODO
calls have the same APIs as their regular counterparts.

The FA is implemented as a daemon running on the
firewall machine. It uses the Linux Netfilter [9] API to
add, delete, and list rules. Although CODO currently
supports only firewalls based on Netfilter, it interacts
with firewalls through an abstraction layer that defines
necessary firewall functions to dynamically control it.
Therefore, any firewall with those functions can be
easily supported.

In §3 and §4.2, we claimed that the FA deletes
firewall rules it added when they become unnecessary
after the stateful firewall creates enough state
information to allow subsequent packets to traverse.
Here, we explain how the FA interacts with the stateful
firewall. To detect that the rule becomes unnecessary,
CODO uses Netfilter s user space packet-processing
mechanism. Netfilter allows user processes to specify
various conditions and to handle packets satisfying
those conditions. To allow a connection from a client
to a server, the FA adds a Netfilter rule that allows
initial packets4 (first SYN packets, for example) from
the client to the server. In addition, it also adds other
rules to catch non-initial packets that are sent from the

4 The initial packet may be sent multiple times because
of retry mechanism of reliable protocols such as TCP.

Application

Kernel

CL

socket
calls

FS
calls

Process
control

CODO calls

regular
socket,
FS calls

other
system
calls

Application

Kernel

CL

socket
calls

FS
calls

Process
control

CODO calls

regular
socket,
FS calls

other
system
calls

Figure 4: CL implementation

client to the server, or vice versa, that would otherwise
be allowed by the firewall. Note that those non-initial
packets will be denied by the firewall and not caught
by the FA until the necessary state has been created at
the firewall because the first rule only allows initial
packets. When such a packet is caught, FA deletes the
rule that allows initial packets and those that catch non-
initial packets.

7. Performance measurement

To measure the performance, we set up two private
networks. Each network has two private nodes behind
a Linux NAT box (headnode) with two network
interfaces. Nodes within each private network are
connected via 100Mbps Ethernet. The two networks
are connected via a department network (100Mbps).
Neither inbound nor outbound connections are allowed
through the NATs. Every machine has two 2.4 GHz
CPUs with 512K cache and 2G RAM with about 1.7G
free space.

Using a test suite that we wrote, we measured
connection setup and data transfer times. In our test
suite, a client makes a connection to a server and then
sends 100 messages of 10K bytes long back-to-back.
The server echoes back to the client. When every
message is echoed, the client tears down the
connection. We inserted random delay between
connections. Actual delay was determined using a
Poisson process with a mean () of 3 seconds.

Table 1: TCP connection and transfer. Numbers are
microseconds. Those in parenthesis are standard
deviation.

Inter Intra

Conn Data Conn Data

CODO

27320
(1330)

279945

(6921)

4958
(142)

141853
(5370)

Reg.
543
(77)

278187

(7022)

221
(58)

141494
(5366)

Table 1 shows the average time to make a
connection and the average (total) time that 100
messages are echoed. In order to indicate the overhead
of CODO, the table also has numbers for regular
sockets with NATs manually configured to allow
traffic between two networks. For private-private
measurements (Inter column), we used a client in one
network and a server in the other. For intra-network
communication (Intra column), we used a client and a
server both in the same private network. We used
X.509 (RSA) public key for authentication and session
keys establishment. SHA-1 and 3DES were used for

integrity and encryption of CODO commands,
respectively.

The tables show that CODO overhead is large for
connection setup, increasing the latency of
communications. Considering the security mechanisms
used and the number of interactions between client and
CODO agents, the overhead is not surprising. As
explained in §6, CODO uses Netfilter s user space
packet-processing to detect when necessary states are
created. Our profile showed that CODO consumes 10 ~
15msec per connection for processing packets at the
user level. If firewalls were to support one-time rules
that are automatically deleted after allowing a certain
number of connections, we would be able to
dramatically reduce CODO connection time. Once a
connection is made, minimal overhead is observed for
data communication. Figure 5 and 6 show the scatter
plot of inter-network and intra-network data transfer,

Figure 6: Intra-network data transfer

Figure 5: Inter-network data transfer

Figure 7: Concurrent connections. The X-axis
shows the number of concurrent connections issued by
each client. The Y-axis shows the total time to set up
multiple connections.

respectively, for the first 2,000 experiments. X-axis
represents experiments and y-axis shows the data
transfer time for each experiment. For some reason,
times were measured around 2 (figure 6) or 3 (figure 5)
popular values forming bands. Those figures show that
the overhead of CODO data transfer is very small and
clearly within the range of network and measurement
fluctuation. Intra-network data transfer occurs directly
between the client and the server without any
involvement of NAT or CODO FA. Therefore, figure 6
shows a slight overhead of CL. Figure 5 shows the
overhead at headnodes (of the client and server
networks) plus CL overhead.

To see how well CODO scales, we also tested
concurrent connection setup. Figure 7 shows the time
to establish multiple connections in parallel. In this test,
two clients running on each host in a private network
issued concurrent connections (i.e. non-blocking
connections) to a single server running in another
private network. Each client issued up to 100 non-
blocking connections simultaneously. Each client
issued one connection to measure the time of single
connection setup, and then issued two connections in
non-blocking fashion to measure the time to setup two
connections, and so on. Two clients started almost at
the same time. Figure 7 shows the total connection
time for each concurrency level observed by each
client. For example, it took about 2.4 seconds for
client-1 to finish 79 connections. At that moment,
client-2 was issuing about 70 parallel connections.

Therefore, we should read the figure as 79 parallel
connections established within 2.4 seconds while a
total of 150 parallel connections are being made to the
server. Packet loss was observed when the total
concurrency level was about 150 or higher, resulting in
delay in connection setup. In the test, client-1 finished
when client-2 had 88 concurrent connections.
Therefore, the figure shows that 100 parallel
connections without competing clients were
established within 1.8 seconds, which is about 63 times
(instead of 100 times or more) slower than a single
connection setup. The result shows that the connection
overhead is amortized as we have multiple connections
occurring simultaneously. CODO achieves this speed
up by interleaving multiple connection establishments.

8. Related research

Many firewall traversal systems have been
proposed or developed. Unlike CODO, previous
research mainly focused on how to enable applications
to traverse firewalls, with no or little attention to the
security of the network. No previous system allows
strong control on both inbound and outbound
communications.

GCB [10], STUN [11], and TURN [12] use the fact
that most firewalls allow outbound connections. Since
these systems do not interact with firewalls, they are
relatively easy to deploy. However, these systems
exploit the common configuration of firewalls to a
degree that most network administrators may not
intend. For this reason, they are sometimes considered
to deceive firewalls and be harmful to network security.
Similar to CODO, DPF [10], RSIP (Realm Specific IP)
[20] [21], UPnP (Universal Plug-and-Play) [18], some
personal firewalls, and port knocking [19] dynamically
controls firewalls for applications. DPF, RSIP, and
UPnP open a firewall whenever there is a server behind
the firewall so that any client can reach the server
through the firewall. Therefore, these systems open
firewalls wider and longer than CODO. Personal
firewalls can reliably and securely control traffic based
on sender/receiver applications so that only authorized
applications can communicate with others. However,
they can only be used for the host protection but not for
the network protection. In port knocking, users can
open a firewall through a sequence of unsuccessful
connection attempts. It may not work for applications
using many dynamic ports because it may need too
many unsuccessful connections to code arbitrary port
numbers that a firewall must open. Port knocking also
has a scalability problem because predefined ports
must be reserved for each user or application. SOCKS

[14] enables communications through a firewall by a
proxy relaying connections. Like CODO, it uses a
strong security mechanism and therefore can enforce
various security policy using certificates. However,
unlike CODO and other systems, it uses the local
address (§4.1) as the official address and is not able to
support private networks because multiple server
sockets in different private networks may have the
same official address. Overlay networks [22] can be
used to traverse firewalls. However, they are rather
area or application specific and are not adequate for
general purpose use. CODO can be used to facilitate
communications between overlay nodes (i.e. overlay
routers and end nodes). VPNs also provide a secure
mechanism to traverse firewalls. However, these are
mainly for extending corporate networks across
insecure public networks. In VPN, therefore, traffic is
controlled based upon sending/receiving networks or
hosts instead of applications.

More fundamental approaches to solve connectivity
problems have also been proposed. TRIAD [15] and
IPNL (a NAT-extended Internet architecture) [16]
propose a new layer between TCP/UDP and IP. They
provide elegant solutions to NAT traversal, but they
cannot be used for firewall traversal.

To solve various problems of ALG (Application
Level Gateway), the IETF MIDCOM group defines a
decoupled architecture [13]. The main idea of the
architecture is to move the functionality of ALG that is
currently embedded in firewalls to a separate entity
called MIDCOM agent. Since the application
awareness is moved out of the firewall, firewalls need
not be changed when a new application is added to the
support list. Since it starts from ALG, MIDCOM still
shares with ALG approaches in how application s
communication activities are understood. Like ALGs,
MIDCOM agents try to understand application s
communication activities by looking at packet
payloads and alter them if necessary. This contrasts
with CODO s approach in which the library linked
with the application explicitly reports to the firewall
agent. MIDCOM approach provides applications
transparency. However, each application requires a
specialized agent that may understand its
communication semantics. Furthermore, not every
application can be understood by looking at packets
passing a firewall.

IPv6 [17] is beginning to be widely deployed. It
provides enough address space and enables easy
network management. Thus, it solves most problems
that NATs try to solve. However, it is still questionable
whether IPv6 can replace NATs completely.

Furthermore, firewalls will certainly exist after the full
deployment of IPv6.

9. Conclusion

This paper defined the firewall traversal problem
within a framework of network security and discussed
a firewall traversal mechanism as (1) a way to enable
applications to traverse firewalls and (2) a component
that helps an important firewall function owner test.
Within this context, this paper introduced a firewall
traversal system, called CODO. CODO enables benign
and authorized applications to communicate over
firewalls and helps firewalls to block malicious or
unwanted applications. Therefore, security managers as
well as application developers, end users, and service
providers may benefit from CODO. This is contrary to
the general thought that firewall traversals are harmful
to network security.

10. Acknowledgements

We thank Matthew Farrellee for technical and
grammatical review of the paper.

References
[1] K. Egevang, P. Francis, The IP Network Address
Translator (NAT), IETF RFC1631 May 1994.

[2] I. Foster, C Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations, Intl.
Journal of Supercomputing Applications 2001.

[3] Globus web site, http://www.globus.org

[4] Condor web site, http://www.cs.wisc.edu/condor

[5] Checkpoint web site, http://www.checkpoint.com

[6] Douglas Thain and Miron Livny, "Multiple Bypass:
Interposition Agents for Distributed Computing", The
Journal of Cluster Computing, Volume 4, 2001, pp 39-47.

[7] Douglas Thain and Miron Livny, "Parrot: Transparent
User-Level Middleware for Data-Intensive Computing",
Workshop on Adaptive Grid Middleware, New Orleans,
Louisiana, September 2003.

[8] V. Paxson, Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23/24), Dec.
1999.

[9] Netfilter web site, http://www.netfilter.org

[10] S. Son, M. Livny, Recovering Internet Symmetry in
Distributed Computing. Proceedings of the 3rd
International Symposium on Cluster Computing and the Grid,
Tokyo, Japan, May 2003.

http://www.globus.org
http://www.cs.wisc.edu/condor
http://www.checkpoint.com
http://www.netfilter.org

[11] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy,
STUN

Simple Traversal of User Data Gram (UDP)

Through Network Address Translators (NATs), IETF RFC
3489, March 2003.

[12] J. Rosenberg, R. Mahy, C. Huitema, Traversal Using
Relay NAT (TURN), Internet-Draft, July 2004.

[13] P. Srisuresh et al., Middlebox Communication
Architecture and Framework, IETF RFC 3303, Aug. 2002.

[14] M. Leech, M.Ganis, Y. Lee, R. Kuris, D. Koblas, L.
Jones, SOCKS Protocol Version 5, IETF RFC 1928,
March 1996.

[15] D. R. Cheriton, M. Gritter, TRIAD: A New Next
Generation Internet Architecture, March 2000. http://www-
dsg.stanford.edu/triad/triad.ps.gz.

[16] P. Francis, R. Gummadi, IPNL: A NAT-Extended
Internet Architecture, SIGCOMM 01, Aug. 27, 2001.

[17] S. Deering, R. Hinden, Internet Protocol, Version 6
(IPv6) Specification, IETF RFC 2460, Dec. 1988.

[18] UPnP website, http://www.upnp.org

[19] Port Knocking website, http://www.portknocking.org

[20] M. S. Borella, G. E. Montenegro, RSIP: Address
Sharing with End-to-End Security , Special Workshop on
Intelligence at the Network Edge, San Francisco, 2000.

[21] M. Borella, J. Lo, D. Grabelsky, G. Montenegro,
Realm Specific IP: Framework , IETF RFC 3102, July 2000.

[22] D. Anderson, et el. Resilient Overlay Networks, 18th

ACM Symposium on Operating Systems Principles (SOSP),
Banff, Canada, Oct. 2001.

dsg.stanford.edu/triad/triad.ps.gz
http://www.upnp.org
http://www.portknocking.org

