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Abstract 

Firewalls and network address translators (NATs) 
cause significant connectivity problems along with 
benefits such as network protection and easy address 
planning. Connectivity problems make nodes separated 
by a firewall/NAT unable to communicate with each 
other. Due to the bidirectional and multi-
organizational nature of grids, they are particularly 
susceptible to connectivity problems. These problems 
make collaboration difficult or impossible and cause 
resources to be wasted. This paper presents a system, 
called CODO, which provides applications end-to-end 
connectivity over firewalls/NATs in a secure way. 
CODO allows applications authorized through strong 
security mechanisms to traverse firewalls/NATs, while 
blocking unauthorized applications. This paper also 
formalizes the firewall/NAT traversal problem and 
clarifies how a traversal system fits in the overall 
security policy enforcement by a firewall/NAT.   

1. Introduction 

A network address translator (NAT) [1] provides 
easy address planning as well as a solution to the IPv4 
address shortage problem. Firewalls play a vital role in 
protecting networks and are ready to play an even more 
important role as the security headquarters of 
integrated security systems, which generally include 
anti-virus checking, intrusion detection, logging, and 
content investigation [5]. Today, many firewalls/NATs 
are deployed in the Internet. However, these devices 
come at a price, notably non-universal connectivity. 
Two endpoints separated by one or more 
firewalls/NATs1 cannot talk to each other in general. 
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The Internet has also become asymmetric because most 
firewalls allow outbound (to the world) but block 
inbound (from the world) communications. 
Asymmetry is a special case of non-universal 
connectivity. However, it deserves attention because 
most client-server applications can get around it by 
placing servers in publicly accessible places. 

The grid [2] may be one of the areas most damaged 
by the connectivity problem because it is generally 
bidirectional in communication, multi-organizational, 
huge in scale, and geographically distributed. In grids, 
the connectivity problem generally results in the waste 
of resources because researchers may not harness 
resources separated from their networks by firewalls. 
Computing jobs cannot be staged from the world into a 
firewalled network, and vice versa [3] [4]; data 
placement cannot be completed because data cannot 
move into or out of a firewalled network. 

Middleware approaches are very attractive for 
dealing with the connectivity problem. They are easy 
to deploy because neither the Internet nor operating 
systems need be changed, and many applications can 
benefit from them. 

This paper presents a middleware firewall traversal 
system called CODO (Cooperative On-Demand 
Opening). CODO dynamically configures a firewall so 
that authorized applications can communicate through 
it. In CODO, both firewalls and applications benefit 
through their cooperation. CODO-enabled firewalls 
can protect networks better because pinholes are made 
only for authorized applications, are narrow and exist 
only when required. Unauthorized applications cannot 
get through the firewalls. Also, better understanding of 
firewall parameters by authorized applications enables 
them to communicate without frustration. Unlike 
previous approaches, CODO supports the most 
restrictive settings in that both inbound and outbound 
communications are controlled. Since CODO provides 

                                                                           

 

1 Throughout, we use firewall to collectively refer firewall 
and NAT. The term NAT is used to specifically denote NAT. 



the Berkeley socket API, applications can easily 
become CODO-enabled. With interposition 
mechanisms such as [6] and [7], applications can 
benefit from CODO even without re-linking. 

This paper also discusses how a firewall traversal 
system can fit in the overall security enforcement of a 
network. We introduce firewall traversal mechanisms 
as components that complement firewall functions. 

In §2, we discuss a packet flow model within a 
firewall and define the firewall traversal problem 
within that model. The architecture and connection 
procedure of CODO are presented in §3 and §4, 
respectively. §5 discusses the fault tolerance issue and 
§6 explains the implementation. §7 and §8 present 
performance data and related research, respectively. 

2. Problem Definition 

The firewall traversal problem has been around for 
many years, though it is vaguely defined, raising many 
questions such as "if a firewall is opened for an 
application, does it blindly pass packets to/from the 
application?" and "how does a traversal mechanism fit 
in the security policy the firewall tries to enforce?" To 
avoid confusion, we define the problem as follows. 

Firewalls block malicious or unwanted traffic while 
allowing benign and desired traffic. What is malicious 
or unwanted (or equivalently benign and desired) is 
defined by firewall rules. To traverse a firewall, a 
packet must pass the tests defined by the firewall rules. 
If a packet fails a test, then it is rejected. Otherwise, it 
continues to traverse the chain of tests until it fails a 
test or passes all the tests.  

Figure 1 shows a packet flow model in a firewall. 
When a packet enters a firewall, it undergoes one or 
more tests that we collectively call the application-
neutral test. The test is specified with application-
independent properties such as IP address, source 

routing flag, and ICMP message type. This test drops 
packets that are considered dangerous no matter what 
application sends or receives them. For example, 
overly fragmented packets are considered dangerous 
and may be dropped at this stage. If a packet passes 
this test, it may be allowed or sent to the owner test. 
The owner test allows traffic for authorized 
applications but blocks it for unauthorized or 
dangerous applications. For example, many firewalls 
allow SSH but block telnet and rlogin traffic. If a 
packet belongs to an authorized application, it may be 
allowed or sent to auxiliary tests that are specifically 
designed for individual applications. If an application 
is known to be vulnerable, say to a buffer overflow 
attack, an administrator may have an owner test to 
block the application. However, a better approach may 
be to allow the application traffic only if it does not 
contain an attack signature. The auxiliary tests can be 
used to block only malicious packets while allowing 
benign ones. 

Depending on firewall implementations and 
configurations, packets may flow differently from the 
model: tests may be applied in a different order; 
multiple tests from different stages may be combined; 
some tests are not available in a firewall and may be 
performed by a third party product such as an IDS 
(Intrusion Detection System) [8]. However, we believe 
that this model is general and accurate enough for our 
discussion. 

The connectivity problem may be defined as a 
situation where a benign application cannot traverse a 
firewall. We believe that the problem occurs mostly 
because benign applications fail the owner test (false 
negative), as firewalls are overzealous in blocking 
malicious applications. The owner test is also very 
important to network security because errors in this test 
may result in (1) malicious or undesirable applications 
passing firewalls (false positive) or (2) incorrect 
auxiliary tests being applied to packets, resulting in 
false negatives and false positives. For these reasons, 
this paper (and firewall traversal problems in general) 
focuses on the owner test. Our goal is to satisfy the 
following requirement: 

Authorized applications' traffic must pass the owner 
test and unauthorized traffic must fail. 

Note that the above condition is crucial to not only 
an application s correct operation (grid perspective) but 
also network security (security perspective). Also note 
that we do not aim to reinvent firewalls to achieve our 
goal. Instead, we propose a scheme that dynamically 
configures existing firewalls to help them with the 
owner test. 
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Figure 1:  Packet flow model 



We have challenges to achieving our goal. To 
perform the owner test, a firewall must know what 
application has sent or will receive the packet under 
scrutiny. However, packets generally do not convey the 
information about their source/destination applications. 
Almost every firewall uses port number to bind packets 
to an owner application. For example, packets with 
port 80 are considered be Web traffic. However, a port 
number is at most a hint to an application s identity 
because it is a shared resource used by any application 
with the appropriate privileges. It is extremely difficult 
to bind packets to owner applications without help 
from applications themselves. The second challenge is 
that applications are not aware of state changes in 
stateful firewalls they need to traverse. For instance, if 
a TCP connection is inactive for a while, it may 
become stale because a firewall flushes its state 
without any notification to the application. False 
negative errors occur in this case. Therefore, 
applications need notification from firewalls. 

3. Architecture 

To handle challenges and achieve our goal, CODO 
uses extensive cooperation between firewalls and 
applications. In CODO, connections into or out of a 
network are enabled through the cooperation of stateful 
firewalls, firewall agents (FAs), and client libraries 
(CLs) linked with the application. Figure 2 shows a 
typical CODO topology.  

With CODO, a firewall can start with a 
configuration that allows no application to traverse. It 
also need not allow outbound communications. 
However, it may still have other rules for application-
neutral or auxiliary tests. The FA running on the 
firewall machine dynamically adds and deletes rules 
for owner tests. During the initialization, it adds a few 
firewall rules to allow CODO commands to be 
delivered to it. The FA has a list of applications that 
can traverse the firewall. Since the list must be part of 
the firewall policy, we may think of the FA as a part of 

the firewall or an entity that enforces a part of the 
policy delegated from the firewall. 

Through a secure TCP connection established using 
a certificate given to an application, the CL interacts 
with the FA on behalf of the application. It informs the 
FA of application activities such as binding a socket to 
an address, closing a socket, and trying to connect to a 
server. Using this information, the FA adds and deletes 
firewall rules for the application. The FA also informs 
the CL of necessary information such as how often a 
connection state will be flushed by the firewall. The 
CL uses this information to help the application 
communicate over the firewall. The application uses 
CODO services by calling CODO socket functions that 
the CL provides. 

CODO has several desirable characteristics: 

 

Quality owner test. Through the exchange of 
information about firewalls and applications, the FA 
and the CL have up-to-date and sufficient knowledge 
to avoid owner test errors. Since the FA knows what 
(IP, port) pairs an authorized application is using at 
any given moment, it knows the exact binding 
between an (IP, port) and the application using the 
endpoint address. Therefore, CODO can avoid 
owner test errors caused by the errors in binding 
from (IP, port) pairs to owner applications. Also, the 
CL s knowledge about the firewall enables it to 
refresh or recreate firewall s state appropriately. This 
helps avoid false negative owner tests caused when 
the firewall flushes states for connections inactive 
for a while. 

 

Narrow and short opening. The FA adds firewall 
rules with no wildcard. In other words, rules are 
specified with a specific (protocol, source IP, source 
port, destination IP, destination port). This means 
that (1) a rule is added to the firewall only when 
there is an authorized pair of client and server and 
(2) only the intended client and server can traverse 
the firewall using the rule. In addition, to limit the 
duration of firewall rules as much as possible, the 
FA deletes the rules it adds as soon as the stateful 
firewall creates the necessary states (i.e. stateful 
rules) to allow subsequent packets to traverse. 
Therefore, with CODO, firewall openings are as 
narrow and short as possible. 

 

Flexible control. CODO uses X.509 certificates to 
authenticate and authorize applications. This means 
that CODO is very flexible and can enforce various 
security policies. For example, CODO can 
differentiate versions or implementations of an 
application. If a vendor s implementation of an 
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Figure 2: CODO topology 
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Figure 3: Firewall-to-firewall connection. 
Both networks allow neither inbound nor outbound 
communications. The client and server FA add firewall 
rules for outbound and inbound communications, 
respectively. 

application turns out to be vulnerable to a dangerous 
attack, then it can be given a different certificate 
from other implementations and disallowed from 
communicating with the world. 

 
Inbound & outbound control. CODO controls 
outbound communications as well as inbound. With 
CODO, only authorized clients and servers can 
communicate with the world. 

 

Easy deployment. CL interface is almost the same 
as the Berkeley socket API. In fact, CODO functions 
have the same arguments as their Berkeley socket 
counterparts. This allows for easy integration of 
applications with CODO. 

4. Connection procedure 

With CODO, applications call CODO functions. 
The call sequence is the same as with a Berkeley 
socket. For instance, a server creates a TCP socket, 
binds it to an address, makes it passive, and accepts 
connections from clients. A client creates a TCP socket, 
optionally binds it to an address, and connects it to a 
server. The server and client exchange data through the 
established connection. This section explains how 
CODO connections are established over firewalls as 
responses to CODO calls from applications. 

4.1 Server binding 
To be able to accept connections from the outside 

world, a server socket behind a firewall must be locally 
bound, registered to the FA of its network, and 
officially bound. 

Local binding is nothing new. Just as with regular 
binding, a socket is bound to an address. Through the 
local binding, an (IP, port) pair, called the local address, 
is assigned to the socket. 

To arrange connections to a server socket, the FA 
of the server network must have enough information 
about the server socket. The FA needs this information 
to avoid owner test errors as explained in §3. The 
information is collected via registration. After a server 
socket is bound to a local address, the server s CL 
sends a registration request with the local address and 
the type of the socket. After authentication and 
authorization and the official binding (explained 
shortly), the FA records the information sent by the CL 
and other information that it collects from the official 
binding process. 

NAT translates private addresses into public ones, 
and vice versa, as packets pass through it. Because of 
this translation, we may think of a socket inside a 
private network as having two addresses, a private (IP, 

port), called the local address in this paper, and a 
public (IP, port) that the NAT of the private network 
assigns for address translation. We may view the 
public (IP, port) as the address that the socket leases 
from the NAT box. Since the Berkeley socket API 
allows only one address per socket, a NAT traversal 
system with the same API must choose one address to 
make visible to the application and hide the other 
inside the system. We define the address that is known 
to the application as the official address of a socket. 
Similar to previous systems [10] [11], CODO uses the 
address a socket leases from a NAT box as its official 
address. Note that this is a natural decision because the 
leased address is globally unique. 

Official binding is the process of assigning the 
official address to a server socket. When an FA 
receives a registration request with a private local 
address, it finds a public address and rents the address 
to the server socket. This leased address becomes the 
official address of the socket and will be used to add 
NAT binding rules. Of course, if the local address is 
public, then it becomes the official address without 
address leasing. As a successful response to the 
registration request, the FA sends the official address 
to the CL of the server application. 

When an application calls getsockname asking 
for the address to which a CODO socket is bound, the 
CL returns with the official address instead of the local 
(real) address. Thus, the local address of a CODO 
socket is hidden inside the system. 

4.2 Connection arrangement 
This section explains how a TCP connection is 

made for the most complex client-server configuration. 
In this configuration, both the client and server 
networks allow neither inbound nor outbound 
connections (figure 3). Simpler configurations follow a 
similar process with the omission or modification of 
some steps. For example, if the client network allows 



outbound connections, then we do not need steps to 
add rules to allow outbound connections. UDP 
connections will be explained in §4.3. 

We assume that the server FA has the information 
about the server socket through the binding process 
described in §4.1. We also assume that the client 
knows the official address of the server socket. For 
example, Condor [4] components such as the job 
scheduler and machine manager advertise their 
addresses to a central manager that collects and 
maintains information about jobs and machines. To 
connect to a Condor component, its address is retrieved 
from a central manager. In this case, the official 
address of a component will be stored in and retrieved 
from the central manager because only official 
addresses are known to applications. 

A connection from a client socket at address C1 to 
a server socket whose official address is S1 and local 
address S2 is established through the following steps: 

(1) The client CL makes a TCP connection to the 
client FA and asks for a connection to S1. 

(2) The client FA reserves an address C2 for an NAT 
binding, if C1 is a private (IP, port). The client FA 
makes a TCP connection to the server FA and asks 
for a connection from C2 (or C1 if it is public) to 
S1. 

(3) The server FA adds a firewall rule to allow the 
inbound connection from C2 (or C1) to S1. If S1 

 

S2, i.e. S2 is a private (IP, port), then a NAT 
binding rule [C2 (or C1) S1, C2 (or C1) S2] is 
added instead. By a NAT binding rule [W X, 
Y Z], packets with source address W and 
destination address X are translated into packets 
with source address Y and destination address Z. 
The timeout value after which states in the server 
firewall are flushed is returned to the client FA. 

(4) The client FA adds a firewall rule to allow the 
outbound connection from C1 to S1. If C2 was 
reserved, then a NAT binding rule [C1 S1, 
C2 S1] is added instead. The minimum of the 
timeout value of the client firewall and the value 
returned from the server FA is returned to the 
client CL. The client CL uses this value to 
periodically send heartbeats to refresh states in the 
firewalls. 

(5) The client CL makes a connection to S1. At this 
point, necessary states are created at both firewalls 
and subsequent packets between the client and 
server can traverse those firewalls without the 
rules added in (3) and (4). 

(6) The client and server FAs delete the firewall or 
NAT binding rules they added, respectively. How 
FAs detect that necessary states have been created 
at firewalls will be discussed in §6. 

How the client CL knows that it should contact the 
client FA (step 1) and how the client FA knows that it 
must contact the server FA (step 2) need explanation. 
In the current implementation of CODO, each node has 
a manually configured table. Given an IP, the table 
tells if the node can directly connect to the IP. It also 
tells what FA must be contacted if a direct connection 
is impossible. This approach is not scalable and a 
better solution is under investigation. However, the 
table should not be very big because multiple IPs can 
be aggregated with a mask. If all IPs within a network 
can be aggregated with a mask as is true for most 
private networks, only a single entry is needed for the 
network. Furthermore, when we add a new network, 
we only need to change the tables at public nodes 
(including FAs). Nodes behind a firewall only need 
know about local nodes. For all the other nodes, they 
just need ask their local FA for connection 
arrangement. 

Connection establishment within a private network 
also needs help from CODO. A client in the same 
private network as a server cannot make a direct 
connection with the server s official address. In this 
case, the client CL asks the server FA2 for the server s 
local address and then makes a direct connection to it. 
No NAT bindings are made for intra-network 
connections. 

4.3 UDP connections 
Although there is no connection setup in UDP 

communications, we can loosely define a UDP session 
as a set of UDP messages that are allowed or rejected 
as a whole by stateful firewalls. More precisely, it is a 
series of UDP messages from a client to a server such 
that each message passes a firewall before a predefined 
timeout from the previous one. 

In order to support UDP sessions over firewalls, a 
CL maintains a mapping table. Each entry (X, Y) in the 
table maps the official address X of a peer to the peer s 
address Y, meaning that UDP messages addressed to X 
by the application must be sent to Y. When the 
application calls sendto with the receiver s address X, 
the CL searches the mapping table for the address. If 
the entry (X, Y) is found, then it refreshes the timeout 
value of the entry and sends the packet to Y. Otherwise, 

                                                

 

2 The server FA is also the client FA in this case because the 
client and the server are in the same network. 



a procedure similar to the TCP cases explained in §4.2 
is performed. If the procedure succeeds, then the 
sender s CL creates a new entry with the address that 
the receiver s FA has returned and then sends the UDP 
message using the entry. Entries not referred to for a 
while are deleted.  

5. Fault tolerance 

Successful connection depends on the reliability of 
FAs. Nevertheless, applications should continue to 
work with a limited ability in the event of FA failure. 
During FA downtime, CLs operate as if the FAs did 
not exist. For example, if a server CL cannot contact its 
FA the server FA at binding time, it downgrades the 
socket to a regular Berkeley socket, which bypasses all 
CODO mechanisms. In this case, the server can accept 
connections only from clients that do not need help 
from the server FA. If a client CL cannot contact a 
server FA, it attempts a direct connection to the server. 

If an FA recovers from its failure, servers affected 
by the failure should upgrade their sockets to support 
CODO mechanisms3. To achieve this goal, we design 
FAs to maintain soft state so that they can recover by 
receiving socket information from server CLs. 
Therefore, the CL periodically tries to contact the 
failed FA. If successful, it upgrades sockets by doing 
whatever it would have done if the FA had not failed, 
and the FA recovers its state during this upgrade 
process. 

If a firewall fails before step (6) in the connection 
process, unnecessary rule may still exist in the firewall 
when it recovers. The firewall must delete these 
unnecessary rules to maintain a high level of security. 
If a firewall supports timeouts on rules, then garbage 
collection would be able to clean up the unnecessary 
rules. Unfortunately, the firewalls we targeted do not 
support timeouts. Instead of garbage collection, each 
FA records a snapshot of rules it created in a persistent 
file. During startup, it deletes all the rules recorded in 
that file. This blind flush will certainly delete necessary 
rules as well. However, the necessary rules are 
recreated as a part of the (soft) state recovery explained 
above. 

6. Implementation 

                                                

 

3 The upgrade process should not change the official 
address of a socket. Therefore, sockets with private (IP, 
port) may not be upgraded. A private official address is 
assigned to a socket behind a NAT box when its FA is 
down at binding time. 

The CL is implemented as a C/C++ library and as a 
layer between the application and the kernel, as 
depicted in Figure 4. Applications use CODO socket 
calls to create a CODO socket, bind it to an address, 
connect to a server, accept a connection from a client, 
and so forth. The CL provides some file system calls so 
that applications may duplicate socket descriptors, 
make a socket non-blocking, and multiplex multiple 
file descriptors, including CODO sockets. The CL also 
has a few functions for process control, such as 
CODO_fork and CODO_execve. These are mainly for 
inheriting open sockets to child processes. All CODO 
calls have the same APIs as their regular counterparts.   

The FA is implemented as a daemon running on the 
firewall machine. It uses the Linux Netfilter [9] API to 
add, delete, and list rules. Although CODO currently 
supports only firewalls based on Netfilter, it interacts 
with firewalls through an abstraction layer that defines 
necessary firewall functions to dynamically control it. 
Therefore, any firewall with those functions can be 
easily supported. 

In §3 and §4.2, we claimed that the FA deletes 
firewall rules it added when they become unnecessary 
after the stateful firewall creates enough state 
information to allow subsequent packets to traverse. 
Here, we explain how the FA interacts with the stateful 
firewall. To detect that the rule becomes unnecessary, 
CODO uses Netfilter s user space packet-processing 
mechanism. Netfilter allows user processes to specify 
various conditions and to handle packets satisfying 
those conditions. To allow a connection from a client 
to a server, the FA adds a Netfilter rule that allows 
initial packets4 (first SYN packets, for example) from 
the client to the server. In addition, it also adds other 
rules to catch non-initial packets that are sent from the 

                                                

 

4 The initial packet may be sent multiple times because 
of retry mechanism of reliable protocols such as TCP. 
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Figure 4: CL implementation 



client to the server, or vice versa, that would otherwise 
be allowed by the firewall. Note that those non-initial 
packets will be denied by the firewall and not caught 
by the FA until the necessary state has been created at 
the firewall because the first rule only allows initial 
packets. When such a packet is caught, FA deletes the 
rule that allows initial packets and those that catch non-
initial packets. 

7. Performance measurement 

To measure the performance, we set up two private 
networks. Each network has two private nodes behind 
a Linux NAT box (headnode) with two network 
interfaces. Nodes within each private network are 
connected via 100Mbps Ethernet. The two networks 
are connected via a department network (100Mbps). 
Neither inbound nor outbound connections are allowed 
through the NATs. Every machine has two 2.4 GHz 
CPUs with 512K cache and 2G RAM with about 1.7G 
free space. 

Using a test suite that we wrote, we measured 
connection setup and data transfer times. In our test 
suite, a client makes a connection to a server and then 
sends 100 messages of 10K bytes long back-to-back. 
The server echoes back to the client. When every 
message is echoed, the client tears down the 
connection. We inserted random delay between 
connections. Actual delay was determined using a 
Poisson process with a mean ( ) of 3 seconds.

 

Table 1: TCP connection and transfer. Numbers are 
microseconds. Those in parenthesis are standard 
deviation. 

Inter Intra 

 

Conn Data Conn Data 
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27320 
(1330) 

279945

 

(6921)

 

4958 
(142) 

141853 
(5370) 

Reg. 
543 
(77) 

278187

 

(7022)

 

221 
(58) 

141494 
(5366) 

Table 1 shows the average time to make a 
connection and the average (total) time that 100 
messages are echoed. In order to indicate the overhead 
of CODO, the table also has numbers for regular 
sockets with NATs manually configured to allow 
traffic between two networks. For private-private 
measurements ( Inter column), we used a client in one 
network and a server in the other. For intra-network 
communication ( Intra column), we used a client and a 
server both in the same private network. We used 
X.509 (RSA) public key for authentication and session 
keys establishment. SHA-1 and 3DES were used for 

integrity and encryption of CODO commands, 
respectively.   

The tables show that CODO overhead is large for 
connection setup, increasing the latency of 
communications. Considering the security mechanisms 
used and the number of interactions between client and 
CODO agents, the overhead is not surprising. As 
explained in §6, CODO uses Netfilter s user space 
packet-processing to detect when necessary states are 
created. Our profile showed that CODO consumes 10 ~ 
15msec per connection for processing packets at the 
user level. If firewalls were to support one-time rules 
that are automatically deleted after allowing a certain 
number of connections, we would be able to 
dramatically reduce CODO connection time. Once a 
connection is made, minimal overhead is observed for 
data communication. Figure 5 and 6 show the scatter 
plot of inter-network and intra-network data transfer, 

 

Figure 6: Intra-network data transfer 

 

Figure 5: Inter-network data transfer 



Figure 7: Concurrent connections. The X-axis 
shows the number of concurrent connections issued by 
each client. The Y-axis shows the total time to set up 
multiple connections. 

respectively, for the first 2,000 experiments. X-axis 
represents experiments and y-axis shows the data 
transfer time for each experiment. For some reason, 
times were measured around 2 (figure 6) or 3 (figure 5) 
popular values forming bands. Those figures show that 
the overhead of CODO data transfer is very small and 
clearly within the range of network and measurement 
fluctuation. Intra-network data transfer occurs directly 
between the client and the server without any 
involvement of NAT or CODO FA. Therefore, figure 6 
shows a slight overhead of CL. Figure 5 shows the 
overhead at headnodes (of the client and server 
networks) plus CL overhead. 

To see how well CODO scales, we also tested 
concurrent connection setup. Figure 7 shows the time 
to establish multiple connections in parallel. In this test, 
two clients running on each host in a private network 
issued concurrent connections (i.e. non-blocking 
connections) to a single server running in another 
private network. Each client issued up to 100 non-
blocking connections simultaneously. Each client 
issued one connection to measure the time of single 
connection setup, and then issued two connections in 
non-blocking fashion to measure the time to setup two 
connections, and so on. Two clients started almost at 
the same time. Figure 7 shows the total connection 
time for each concurrency level observed by each 
client. For example, it took about 2.4 seconds for 
client-1 to finish 79 connections. At that moment, 
client-2 was issuing about 70 parallel connections. 

Therefore, we should read the figure as 79 parallel 
connections established within 2.4 seconds while a 
total of 150 parallel connections are being made to the 
server. Packet loss was observed when the total 
concurrency level was about 150 or higher, resulting in 
delay in connection setup. In the test, client-1 finished 
when client-2 had 88 concurrent connections. 
Therefore, the figure shows that 100 parallel 
connections without competing clients were 
established within 1.8 seconds, which is about 63 times 
(instead of 100 times or more) slower than a single 
connection setup. The result shows that the connection 
overhead is amortized as we have multiple connections 
occurring simultaneously. CODO achieves this speed 
up by interleaving multiple connection establishments. 

8. Related research 

Many firewall traversal systems have been 
proposed or developed. Unlike CODO, previous 
research mainly focused on how to enable applications 
to traverse firewalls, with no or little attention to the 
security of the network. No previous system allows 
strong control on both inbound and outbound 
communications. 

GCB [10], STUN [11], and TURN [12] use the fact 
that most firewalls allow outbound connections. Since 
these systems do not interact with firewalls, they are 
relatively easy to deploy. However, these systems 
exploit the common configuration of firewalls to a 
degree that most network administrators may not 
intend. For this reason, they are sometimes considered 
to deceive firewalls and be harmful to network security. 
Similar to CODO, DPF [10], RSIP (Realm Specific IP) 
[20] [21], UPnP (Universal Plug-and-Play) [18], some 
personal firewalls, and port knocking [19] dynamically 
controls firewalls for applications. DPF, RSIP, and 
UPnP open a firewall whenever there is a server behind 
the firewall so that any client can reach the server 
through the firewall. Therefore, these systems open 
firewalls wider and longer than CODO. Personal 
firewalls can reliably and securely control traffic based 
on sender/receiver applications so that only authorized 
applications can communicate with others. However, 
they can only be used for the host protection but not for 
the network protection. In port knocking, users can 
open a firewall through a sequence of unsuccessful 
connection attempts. It may not work for applications 
using many dynamic ports because it may need too 
many unsuccessful connections to code arbitrary port 
numbers that a firewall must open. Port knocking also 
has a scalability problem because predefined ports 
must be reserved for each user or application. SOCKS 



[14] enables communications through a firewall by a 
proxy relaying connections. Like CODO, it uses a 
strong security mechanism and therefore can enforce 
various security policy using certificates. However, 
unlike CODO and other systems, it uses the local 
address (§4.1) as the official address and is not able to 
support private networks because multiple server 
sockets in different private networks may have the 
same official address. Overlay networks [22] can be 
used to traverse firewalls. However, they are rather 
area or application specific and are not adequate for 
general purpose use. CODO can be used to facilitate 
communications between overlay nodes (i.e. overlay 
routers and end nodes). VPNs also provide a secure 
mechanism to traverse firewalls. However, these are 
mainly for extending corporate networks across 
insecure public networks. In VPN, therefore, traffic is 
controlled based upon sending/receiving networks or 
hosts instead of applications. 

More fundamental approaches to solve connectivity 
problems have also been proposed. TRIAD [15] and 
IPNL (a NAT-extended Internet architecture) [16] 
propose a new layer between TCP/UDP and IP. They 
provide elegant solutions to NAT traversal, but they 
cannot be used for firewall traversal. 

To solve various problems of ALG (Application 
Level Gateway), the IETF MIDCOM group defines a 
decoupled architecture [13]. The main idea of the 
architecture is to move the functionality of ALG that is 
currently embedded in firewalls to a separate entity 
called MIDCOM agent. Since the application 
awareness is moved out of the firewall, firewalls need 
not be changed when a new application is added to the 
support list. Since it starts from ALG, MIDCOM still 
shares with ALG approaches in how application s 
communication activities are understood. Like ALGs, 
MIDCOM agents try to understand application s 
communication activities by looking at packet 
payloads and alter them if necessary. This contrasts 
with CODO s approach in which the library linked 
with the application explicitly reports to the firewall 
agent. MIDCOM approach provides applications 
transparency. However, each application requires a 
specialized agent that may understand its 
communication semantics. Furthermore, not every 
application can be understood by looking at packets 
passing a firewall. 

IPv6 [17] is beginning to be widely deployed. It 
provides enough address space and enables easy 
network management. Thus, it solves most problems 
that NATs try to solve. However, it is still questionable 
whether IPv6 can replace NATs completely. 

Furthermore, firewalls will certainly exist after the full 
deployment of IPv6. 

9. Conclusion 

This paper defined the firewall traversal problem 
within a framework of network security and discussed 
a firewall traversal mechanism as (1) a way to enable 
applications to traverse firewalls and (2) a component 
that helps an important firewall function owner test. 
Within this context, this paper introduced a firewall 
traversal system, called CODO. CODO enables benign 
and authorized applications to communicate over 
firewalls and helps firewalls to block malicious or 
unwanted applications. Therefore, security managers as 
well as application developers, end users, and service 
providers may benefit from CODO. This is contrary to 
the general thought that firewall traversals are harmful 
to network security. 
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