
Scheduling Policy

John (TJ) Knoeller

Condor Week 2017

› Policy options in the SCHEDD

Limits

Job policy

Mutating jobs

Preventing changes

2

Overview

› Max jobs running

› Max jobs per submission

› Max jobs per Owner (8.6)

› Max running DAGs per Owner (8.6)

› Max materialized jobs per cluster (8.7.1)

› Max active input transfers

› Max active output transfers

Limits

3

› Owner attribute of job is OS ‘user’

Shadow impersonates Owner for file i/o

Set by SCHEDD based on submit identity

Immutable

› Accounting ‘user’ a.k.a. Submitter

Who’s quota/priority is checked/docked

(Owner + Nice) + Domain + AccountingGroup

User can change at will

User vs Owner vs Submitter

4

› “Fair” share is by submitter

Negotiator only knows about submitters

Priority / Quota

Transfer queue

› A few per-owner limits

Max jobs per owner (8.6)

Max running DAGs per owner (8.6)

Most limits are Submitter limits

5

› Several talks on this on Thursday

› Schedd Stats

condor_status –schedd –direct -long

› Per submitter stats

condor_status –submit –long

condor_sos condor_q –tot –long

› Show jobs doing file transfer

condor_sos condor_q –io

Monitoring the limits

6

› You want to have a policy about what jobs

are allowed, or require certain attributes?

Submit requirements

Submit attributes

Job transforms

Job policy

7

› All jobs must have "Experiment" attribute

Reject jobs that don't conform to the policy

SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) CheckExp

SUBMIT_REQUIREMENT_CheckExp = \

JobUniverse == 7 || Experiment isnt undefined

SUBMIT_REQUIREMENT_CheckExp_REASON = \

"submissions must have +Experiment"

JobUniverse 7 is Scheduler universe, i.e. DAGMAN.

JobUniverse 12 is Local universe, maybe except this also?

Example job policy

8

› Configure SUBMIT_ATTRS to add

attributes to jobs.

SUBMIT_ATTRS = $(SUBMIT_ATTRS) Experiment

Experiment = "CHTC"

› Job ad starts with Experiment="CHTC"

before the submit file is processed

Defaulting job attributes

9

› Good for setting defaults

› Work happens outside of the SCHEDD

› User can override or un-configure

› Unconditional

› May not happen with remote submit

(Depends on who owns the config)

SUBMIT_ATTRS

10

› Configure JOB_TRANSFORM_*

JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) SetExp

JOB_TRANSFORM_SetExp = [set_Experiment = "CHTC";]

›Experiment="CHTC" written into each

job ad as it is submitted.

probably not a good thing in this case

Mutating jobs using job

transforms (new in 8.6)

11

JOB_TRANSFORM_NAMES = $(JOB_TRANSFORM_NAMES) SetExp

JOB_TRANSFORM_SetExp @=end

[

Requirements = JobUniverse != 7 && Experiment is undefined

set_Experiment = "CHTC";

]

@end

› Adds Experiment="CHTC" to each job

that doesn't already have that attribute

Transforming only some jobs

12

› Converted to native syntax on startup

› Job router syntax is loosely ordered

copy > delete > set > eval_set

› Native syntax is

Confusing (and might be changing)

Top to bottom

Has temporary variables

Has Conditionals

About job transforms

13

Use job transform to add pool constraint to vanilla jobs

based on whether the job needs GPUs or not

#

JOB_TRANSFORM_GPUS @=end

REQUIREMENTS JobUniverse == 5

tmp.NeedsGpus = $(MY.RequestGPUs:0) > 0

if $INT(tmp.NeedsGpus)

SET Requirements $(MY.Requirements) && (Pool == "ICECUBE")

else

SET Requirements $(MY.Requirements) && (Pool == "CHTC")

endif

@end

Job transform native syntax

14

› IMMUTABLE_JOB_ATTRS

Cannot be changed once set

› PROTECTED_JOB_ATTRS

Cannot be changed by the user

› SECURE_JOB_ATTRS

Like protected, but have security implications

IMMUTABLE_JOB_ATTRS=$(IMMUTABLE_JOB_ATTRS) Experiment

Preventing change

15

› How do I assign jobs to accounting groups

automatically, while preventing users from

cheating?

Job transforms + Immutable attributes

› But doing this in classad language is painful

eval_set_AcctGroup=\

IfThenElse(Owner=="Bob","CHTC",

IfThenElse(Owner=="Alice","Math",

IfThenElse(Owner=="Al","Physics","Unknown")

))

The motivating case for all this

16

› Map file is text, with 3 fields per line

› * <key_or_regex> <result_list>

* Bob CHTC, Security

* Alice CHTC, Math, Physics

* /.*Hat/i Problem

* /.*/ CHTC

› Yes, the first field must be *

Introducing Map files

17

SCHEDD_CLASSAD_USER_MAP_NAMES = MyMap

CLASSAD_USER_MAPFILE_MyMap = /path/to/mapfile

<or>

SCHEDD_CLASSAD_USER_MAPDATA_MyMap @=end

* Bob CHTC,Security

* Alice CHTC,Math,Physics

* /.*Hat/i Problem

* /.*/ CHTC

@end

Can now use the userMap("MyMap") function in Classad expressions in

the SCHEDD.

Defining a map

18

result = userMap(mname, input)

map input to first result

result = userMap(mname, input, preferred)

map input to preferred result

result = userMap(mname, input, pref, def)

map input to preferred or default result

The Classad userMap function

19

SCHEDD_CLASSAD_USER_MAP_NAMES = $(SCHEDD_CLASSAD_USER_MAP_NAMES) Groups

CLASSAD_USER_MAPFILE_Groups = /path/to/mapfile

Assign groups automatically

JOB_TRANSFORM_NAMES = AssignGroup

JOB_TRANSFORM_AssignGroup @=end

[

copy_Owner="AcctGroupUser";

copy_AcctGroup="RequestedAcctGroup";

eval_set_AcctGroup=usermap("AssignGroup",AcctGroupUser,AcctGroup);

]

@end

Prevent Cheating

IMMUTABLE_JOB_ATTRS = $(IMMUTABLE_JOB_ATTRS) AcctGroup AcctGroupUser

SUBMIT_REQUIREMENT_NAMES = $(SUBMIT_REQUIREMENT_NAMES) CheckGroup

SUBMIT_REQUIREMENT_CheckGroup = AcctGroup isnt undefined

SUBMIT_REQUIREMENT_CheckGroup_REASON = strcat("Could not map '", Owner, "' to a group")

Putting it all together

20

use FEATURE:AssignAccountingGroup(/path/map)

You can run

condor_config_val use feature:AssignAccountingGroup

to see what this metaknob expands to

Or, to put it another way

21

Any Questions?

22

