
Matchmaker Policies:

Users and Groups
HTCondor Week, Madison 2017

Jaime Frey (jfrey@cs.wisc.edu)

Center for High Throughput Computing

Department of Computer Sciences

University of Wisconsin-Madison

› So you have some resources…

… how does HTCondor decide which job to run?

› The admin needs to define a policy that

controls the relative priorities

› What defines a “good” or “fair” policy?

HTCondor scheduling policy

2

› HTCondor does not share the same model

of, for example, PBS, where jobs are

placed into a first-in-first-out queue

› It instead is based around a concept called

“Fair Share”

Assumes users are competing for resources

Aims for long-term fairness

First Things First

3

› Available compute resources are “The Pie”

› Users, with their relative priorities, are each

trying to get their “Pie Slice”

› But it’s more complicated: Both users and

machines can specify preferences.

› Basic questions need to be answered, such

as “do you ever want to preempt a running

job for a new job if it’s a better match”? (For

some definition of “better”)

Spinning Pie

4

› First, the Matchmaker takes some jobs

from each user and finds resources for

them.

› After all users have got their initial “Pie

Slice”, if there are still more jobs and

resources, we continue “spinning the pie”

and handing out resources until everything

is matched.

Spinning Pie

5

› If two users have the same relative priority,

then over time the pool will be divided

equally among them.

› Over time?

› Yes! By default, HTCondor tracks usage

and has a formula for determining priority

based on both current demand and prior

usage

› However, prior usage “decays” over time

Relative Priorities

6

› Example: (A pool of 100 cores)

› User ‘A’ submits 100,000 jobs and 100 of

them begin running, using the entire pool.

› After 8 hours, user ‘B’ submits 100,000 jobs

› What happens?

Pseudo-Example

7

› Example: (A pool of 100 cores)

› User ‘A’ submits 100,000 jobs and 100 of

them begin running, using the entire pool.

› After 8 hours, user ‘B’ submits 100,000 jobs

› The scheduler will now allocate MORE than

50 cores to user ‘B’ because user ‘A’ has

accumulated a lot of recent usage

› Over time, each will end up with 50 cores.

Pseudo-Example

8

Overview of Condor Architecture

9

Central

Manager

Greg Job1

Greg Job2

Greg Job3

Ann Job1

Ann Job2

Ann Job3

Greg Job4

Greg Job5

Greg Job6

Ann Job7

Ann Job8

Joe Job1

Joe Job2

Joe Job3

Schedd A Schedd B

worker worker worker worker worker worker

Usage

History

› Negotiator computes, stores the user prio

› View with condor_userprio tool

› Inversely related to machines allocated

(lower number is better priority)

A user with priority of 10 will be able to claim

twice as many machines as a user with priority

20

Negotiator metric: User Priority

10

› Bob in schedd1 same as Bob in schedd2?

› If have same UID_DOMAIN, they are.

› We’ll talk later about other user definitions.

› Map files can define the local user name

What’s a user?

11

› (Effective) User Priority is determined by

multiplying two components

› Real Priority * Priority Factor

User Priority

12

› Based on actual usage

› Starts at 0.5

› Approaches actual number of machines used

over time

Configuration setting PRIORITY_HALFLIFE

If PRIORITY_HALFLIFE = +Inf, no history

Default one day (in seconds)

› Asymptotically grows/shrinks to current usage

Real Priority

13

› Assigned by administrator

Set/viewed with condor_userprio

Persistently stored in CM

› Defaults to 1000 (DEFAULT_PRIO_FACTOR)

› Allows admins to give unequal prio to

different users

› “Nice user”s have Prio Factors of

10,000,000,000

Priority Factor

14

› Command usage:

condor_userprio
Effective Priority

User Name Priority Factor In Use (wghted-hrs) Last Usage

-- --------- ------ ----------- ----------

lmichael@submit-3.chtc.wisc.edu 5.00 10.00 0 16.37 0+23:46

blin@osghost.chtc.wisc.edu 7.71 10.00 0 5412.38 0+01:05

osgtest@osghost.chtc.wisc.edu 90.57 10.00 47 45505.99 <now>

cxiong36@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.29 0+00:09

ojalvo@hep.wisc.edu 500.00 1000.00 0 398148.56 0+05:37

wjiang4@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.22 0+21:25

cxiong36@submit.chtc.wisc.edu 500.00 1000.00 0 63.38 0+21:42

condor_userprio

15

› Manage priorities across groups of users

and jobs

› Can guarantee maximum numbers of

computers for groups (quotas)

› Supports hierarchies

› Anyone can join any group (well…)

Accounting Groups (2 kinds)

16

› In submit file

Accounting_Group = group1

› Treats all users as the same for priority

› Accounting groups not pre-defined

› Admin can enforce group membership

Submit transforms and submit requirements

› condor_userprio replaces user with group

Accounting Groups as Alias

17

condor_userprio –setfactor 10 group1@wisc.edu

condor_userprio –setfactor 20 group2@wisc.edu

Note that you must get UID_DOMAIN correct

Gives group1 members twice as many

resources as group2

Prio factors with groups

18

› Must be predefined in cm’s config file:

GROUP_NAMES = a, b, c

GROUP_QUOTA_a = 10

GROUP_QUOTA_b = 20

› And in submit file:

Accounting_Group = a

Accounting_User = gthain

Accounting Groups w/ Quota

19

› “a” limited to 10

› “b” to 20

› Even if idle machines

› What is the unit?

Slot weight.

› With fair share for users within group

› Can create a hierarchy of groups, quotas

Group Quotas

20

› Also allows groups to go over quota if idle

machines.

› “Last chance” round, with every submitter

for themselves.

GROUP_AUTOREGROUP

21

› Match between schedd and startd can be

reused to run many jobs

› May need to create opportunities to

rebalance how machines are allocated

New user

Jobs with special requirements (GPUs, high

memory)

Rebalancing the Pool

22

› Have startds return frequently to negotiator

for rematching

CLAIM_WORKLIFE

Draining

More load on system, may not be necessary

› Have negotiator proactively rematch a

machine

Preempt running job to replace with better job

MaxJobRetirementTime can minimize

killing of jobs

How to Rematch

23

› Startd Rank

Startd prefers new job

• New job has larger startd Rank value

› User Priority

New job’s user has better priority (deserves

increased share of the pool)

• New job has lower user prio value

› No preemption by default

Must opt-in

Two Types of Preemption

24

› Gets all the machine ads

› Updates user prio info for all users

› Computes pie slice for each user

› For each user, finds the schedd

For each job (until pie slice consumed)

• Finds all matching machines for the job

• Sorts the machines

• Gives the best sorted machine to the job

› If machines and jobs left, spins pie again

Negotiation Cycle

25

› Single sort on a five-value key

 NEGOTIATOR_PRE_JOB_RANK

Job Rank

 NEGOTIATOR_POST_JOB_RANK

No preemption > Startd Rank preemption >

User priority preemption

 PREEMPTION_RANK

Sorting Slots: Sort Levels

26

› Evaluated as if in the machine ad

›MY.Foo : Foo in machine ad

›TARGET.Foo : Foo in job ad

›Foo : check machine ad, then job ad for

Foo

› Use MY or TARGET if attribute could

appear in either ad

Negotiator Expression

Conventions

27

› Negotiator adds attributes about pool usage

of job owners

› Info about job being matched

SubmitterUserPrio

SubmitterUserResourcesInUse

› Info about running job that would be

preempted

RemoteUserPrio

RemoteUserResourcesInUse

Accounting Attributes

28

› More attributes when using groups

SubmitterNegotiatingGroup

SubmitterAutoregroup

SubmitterGroup

SubmitterGroupResourcesInUse

SubmitterGroupQuota

RemoteGroup

RemoteGroupResourcesInUse

RemoteGroupQuota

Group Accounting Attributes

29

If Matched machine claimed,

extra checks required
›PREEMPTION_REQUIREMENTS

Evaluated when replacing a running job with

a better priority job

If False, don’t preempt

›PREEMPTION_RANK

Of machines negotiator is willing to preempt,

which one to prefer

30

›NEGOTIATOR_CONSIDER_PREEMPTION =
False

› Negotiator completely ignores claimed

startds when matching

› Makes matching faster

› Startds can still evict jobs, then be

rematched

No-Preemption Optimization

31

› Manage pool-wide resources

E.g. software licenses, DB connections

› In central manager config

›FOO_LIMIT = 10

›BAR_LIMIT = 15

› In submit file

›concurrency_limits = foo,bar:2

Concurrency Limits

32

› Many ways to schedule

Summary

33

