
Disk-to-Disk and Day-to-Day
Placement Performance Metrics on

a Trans-Pacific HTCondor
Infrastructure

Philip Papadopoulos, Ph.D

University of California, San Diego

Greg Thain

HTCondor Maven

University of Wisconsin, Madison

NSF Award #ACI-1339508: EAGER: Fundamental Issues in International Data Placement for
Data-Intensive Applications, a Laboratory Approach

Partners

• University of Wisconsin, Madison
• Miron Livny
• Greg Thain

• Beihang University, Beijing
• Prof. Depei Qian
• Dr. Hailong Yang
• Guang Wei
• Zhongzi Luan

• CNIC – Computer Network Information Center, Chinese
Academy of Science, Beijing
• Dr. Luo Ze
• Dr. Gang Qin

Existential Problems

• We know the “speed of light” through the network via
measurements tools/suites like perfSONAR

• Many researchers only really care about
• Can I move my data reliably from point A to point B

• Will it complete in a timely manner?

• D2D: Disk-to-disk AND Day-to-Day.

• “Security” is more involved than memory-to-memory
networking tests -- touching disks is inherently more invasive

• Is network measurement always a good proxy for disk-to-disk
performance?

iDPL – Data Placement Lab

• Proof-of-principle project (EAGER, NSF ACI#1339508)

• Routinely measure end-to-end and disk-to-disk performance
among a set of international endpoints
• Compare performance of different data movement protocols

• raw socket, scp, FDT, UDT, GridFTP, iRODs, …

• Correlate to raw network performance

• IPv4 and IPv6 whenever possible

• Re-use as much existing “command-and-control”
infrastructure as possible

• Pay attention to some routine security concerns

5/4/2017 7

HTCondor: Generic Execution Pool

• Use HTCondor to assemble
resources into a common
execution environment
• Must trust each other enough to

support remote execution

• NO common username is
required

• Pool password limits who can
be added to global exec pool

• Current Configuration
• Job submission at 4 sites

• Host-based firewalls limits
access

Transpacific

HTCondor

Execution

Pool

“ Where you care about every single

host in your pool”

High Level Structure: Disk-to-Disk, Day-to-Day

1. Network test (iperf)

2. Network test (iperfV6)

3. Move file via raw socket

4. Move file via FDTv6

5. Move file via UDT

6. Move file via GridFtp

7. Network test (iperf)

Test Manifest

Repeat Test
every N
hours

Submit Test as

an HTCondor

Job.

Let HTCondor

handle errors,

recovery,

reporting,

iteration

• Separate concerns – Let Condor do what it does well.

• Scheduling

• Recovery

• Output back to submitter

• Wisconsin  Beihang is a different experiment than

BeihangWisconsin

Host A

Condor Parallel Universe

DestSource

Parallel Universe

JobID.1JobID.0

Shared Job Attributes
(write/read via Chirp)

Job Attributes Used to publish
“rendezvous” information, .e.g.,
• <Host, port>
• User ID
• MD5 hash of file
• Ephemeral public ID

Host B

“Use FDT to place a file on Host B which is sourced on A”
• Server and Client Processes must be executed on two hosts at the same

time

Things encountered trying to run day-to-day

• Public IP → Public IP mapping (e.g. 115.x.y.x → 210.p.q.r)

• IP address renumbering (4 different institutions: BUAA, CNIC, UWisc, UA)
• Raw addresses live in a number of places: logs, iptables, condor config, etc.

• Stateless vs. Stateful firewall at University of Arizona

• perfSONAR installing its own set of FW rules, overwriting the system

• Defining a narrow range of ports (e.g. HTCondor Collector/Startd, 5000-5010
for ALL placement experiments)

• Remembering to be clueful sysadmins and installing v6 versions of everything.

• UCSD blackholed traffic to a particular host without notification to owner.
Within UCSD was working, outside was not.

• Need to tune TCP params for 10G
• OS updates wipe out tuned TCP parameters

• Git not performing automated garbage collection

• Chinese holidays shut down everything

5/4/2017 11

Sample Results: UCSD  BUAA (v4 & v6)

• Highly variable raw
network
performance

• Netcat (Raw Socket)
mirrors network –
good correlation

• SCP, uniformly low

• IPv4 essentially
flatlined (at the
origin)

5/4/2017 12

iRODS Testing – 24 Day Trace Wisc -> UA

• Highly variable raw network performance

• iRODS and iRODSPut 5-15 % of the raw network

• Raw socket ~ 90MB/sec 35-100% of network (Likely, this is disk
performance limits)

Y axis scale is 1/10th of left graph

Testing performance to Cloud Instances

• Both instances: “West” datacenters, 1-2 cores, On-Demand

• Significant network performance differences, Less so for disk-to-disk

Custom software – Common Structure

• Observation: Different
Placement Algorithms follow
roughly the same pattern
• Client (data flows from client),

Server (data flows to server)

• Setup exchange – via Chirp
• Port utilized (e.g. iperf server is

on port 5002)

• Public key credentials (e.g. ssh
daemon only supports
connection with specific key)

• Completion exchange
• MD5 sum (or other hash) of sent

file

Mover

iPerf SCP

Git
Clone

SCPv6iPerfV6

Netcat

Git
Clone

V6

Partial Class Hierarchy

FDT

FDT
v6

netcat
V6

Custom Software – DataMover.py

• All movers are DataMovers (OO)

• All movers run in user space (including daemons like ssh,gridftp)

• Some only differ by v4 or v6
• DataMover IperfMover IperfV6Mover

• Some require some complicated setup (e.g. SCPMover)
1. Client creates public/private keypair. Public key written via Chirp

2. Server configures user-level ssh daemon

1. Uses public key as only accepted key

2. Publishes port, full directory path, and name of user on server side

3. Client connects to server and transfers file

• Some are pull-based movers
• E.g. the “server” pulls from the client

HTCondor Chirp – Per Job Scratchpad

Client executing in an
HTCondor slot

Test Manifest

placement.py

Client

Executes as local

user “userAlpha”

Job 36782

Server executing in an
HTCondor slot

Test Manifest

placement.py

Server

Executes as local

user “userBeta”

Job 36782Chirp Common

scratchpad Specific

to Job 36782

SCPport = 5003

MD5 = 0x12798ff

write

write

read

read

Chirp provides generic rendevous information

All Chirp information is logged, No private

(e.g. temporary passwords) info written into

the scratchpad

Recording and Displaying Experimental Data

• Each Placement Experiment (e.g. UCSD  CNIC)
• Appends verbose information to a “job log” on the submit host

• Each individual placement job has stdout,stderr recorded for client
and server
• 10-50Kbytes of text per iteration of the experiment

• 1 Year of exeriments (hourly)
• O(70MB) job log (1 log for all 8760 experiments, appended at each iteration)

• O(500MB) stderr,stdout data (8760 jobs/experiment/year)

• All highly-compressible text.

• Use Git to record these
• An interesting story (next slide)

We use Git to record each job within an
experiment

• Git add after each job within an experiment, replicate raw
data (GitClone mover) across the iDPL

~500MB of

Experiment

Data (Text)

[phil@murpa ucsd2wisc]$ du -sh .git placement*log detail

23G .git

69M placement4.log

32M placement6.log

421M detail

Git

Explodes to

23G in its

repo

GIT does NOT automatically garbage collect

[phil@murpa ucsd2wisc]$ git gc

Counting objects: 63777, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (63772/63772), done.

Writing objects: 100% (63777/63777), done.

Total 63777 (delta 50503), reused 0 (delta 0)

Removing duplicate objects: 100% (256/256), done.

[phil@murpa ucsd2wisc]$ du -sh .git

107M .git

git gc

Repo is a

svelte

107M

What has been good/not-so-good in HTCondor

The Good:
• DAGman used for repetitive execution, Git logging of data
• “CRONDOR” used to execute job at specific time
• Per-job (iteration) stdout/stderr essential for debugging
• Reliability of Condor in the face of reboots of Master Collector,

Schedd’s , startd’s, network partitioning, …
• Handles Cloud Networking (Non-routable/routable) split brain

addressing

• The Not-So-Good
• Parallel (Dedicated Scheduler) configuration limits scaling,

execution within OTHER pools
• I don’t have a good understanding of more flexible ways inside of

HTCondor to handle security/identity

Commonly Available Components

• Use HTCondor as job launching, job control
• Directed Acyclic Graph Scheduler enables periodic submission
• HTCondor’s Chirp mechanism enables “rendevouz” for port

advertisement
• Well understood user/security model
• Scales well, but iDPL uses it in a Non-HTC mode

• Graphite, Carbon and Whisper Database
• Time-series display.
• Open-sourced from Orbitz
• Used at multiple large-scale data centers

• Python > 2.6.x

• Git – Software revision AND raw data stewardship

Sites

• Code: github.com/idpl/placement

• Graphite server (just a VM): http://vi-1.rocksclusters.org

• HTCondor - https://research.cs.wisc.edu/htcondor

Others

• FDT - http://monalisa.caltech.edu/FDT/

• Graphite/Carbon/Whisper - http://graphite.readthedocs.io/

• GridFTP - http://toolkit.globus.org/toolkit/docs/latest-
stable/gridftp/

• iRODS https://irods.org/

• UDT - http://udt.sourceforge.net/

http://vi-1.rocksclusters.org/
https://research.cs.wisc.edu/htcondor
http://monalisa.caltech.edu/FDT/
http://graphite.readthedocs.io/
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
https://irods.org/
http://udt.sourceforge.net/

