Provisioning Cloud-Based Computing Resources
via a Dynamical Systems Approach

Marty Kandes

University of California, San Diego

May 18, 2016

Objective

Build a service for provisioning cloud-based computing resources
that can be used to augment users’ existing, fixed resources and
meet their batch job demands.

Vision

0OSG L1
/ \
0OSG |

‘\\\\\\ AWS‘/~7%>
AWS
<_>
LOCAL LOCAL

condor_annex = HTCondor + Amazon Web Services

condor_annex is a Perl-based script that utilizes the AWS CLI and
other AWS services to orchestrate the delivery of HT Condor
execute nodes from the cloud to your HTCondor pool.

Some key features:
» Supports bidding for spot instances.

> Instances sitting idle, not running user jobs will terminate
after a fixed idle time (20 min).

» Each “annex” itself also has a finite lifetime.

My Problem

How many instances do | order with condor_annex to meet current
user job demand?

My Original Assumptions

Known knowns:
» Idle instances terminate after a fixed lifetime (20min)
> Instances terminate when annex lease expires

» Assume (for now) single-core user jobs and instances

Known unknows:
» User jobs arrive in queue at some unknown rate

» More user jobs than instances that can be purchased

v

User jobs flock away to “free” resources at some unknown rate

v

User job runtimes are unknown at submission

v

Spot instances are preempted at some unknown rate

v

Spot prices vary with time

Optimization Problem vs. Control Problem

» Forget optimally scheduling jobs and resources; too hard.
> Instead, seek to provision resources in a controlled way.

» Build a system that aims to use resources safely and efficiently.

Simple System =% Simple Dynamics

0.9}
08}
07}
06}
05
04l
03}
02t

0.1-

Logistic Map: xp4+1 = 0x, (1 — x,), where 0 < xg < 1.

[m] = =

An Oversimplified Provisioning Model

Dynamical Systems 101
dN
==

F(N) = oN (1— ﬁ) VY

1. Find equilibria. Set ‘Z,—’;’ = 0 and solve for N*.

aN*(l—,Y(>—)\N*:O = N*zO,K(

2. Check stability of equilibria.

df N
df
— =0—-A<0 <<= o<\
dN | N« g
df
— =A—0<0 << o>\
dNN*:K(l—g)

Provisioning Model |: State Diagram

Submit ——»

Flock

mtart
Match

Xq

Provision l

XQ

_’

—_—>

|

X1

Spin—up l

Terminate

_’

XR

— Terminate

Complete

Provisioning Model |: System of Equations

dx
9 _
I = Zq — OIRXqX|] — OqgfXq + ORqXR

dxq
ar 0gQXq — 0QIXQ

dx;
dr = 0QIXQ — TIRXgX| + ORIXR — TITX]
dXR

dt = O|RXgX] — ORIXR — ORqXR — ORTXR

Provisioning Model |: Definitions

>

vV V. V. VY YV V.V VYvY

Xq = number of user jobs in the queue

xqQ = number of instances in the queue

x; = number of instances sitting idle

Xgr = number of instances busy running user jobs

Y, = rate of user job submission (jobs/time)

or = 1/7ir = matchmaking rate; g = idle-running lifetime
oqf = 1/7qr = flocking rate; 7qr = flocking lifetime

ORq = 1/TRq = restart rate; Tpq = restart lifetime

0gQ = queueing rate

o = 1/7g = instance spin-up rate; Tg; = annex start-up
time

» ogr = 1/Tr; = job completion rate; Tg; = job lifetime
» o7 = 1/7j7 = idle termination rate; 7;7 = idle-termination

lifetime

orT = 1/7TRT = running termination rate; Trr = annex
lifetime

Provisioning Model |: Equilibria

Solve. i,
pra fq (Xq, %@, x1,xr) =0
az,(—f = fq (xq, %@, x1,xr) =0
% = fi (xg,XQ, X1, xr) =0
% = fr (Xq, XQ, X1, Xg) =0

Find two equilibrium points.

X [Ux X x Uk
X = (XQ1’X01’X/1’XR1)

A T x Uk
X2 = (XCI2’XQz’X/2’XR2)

Provisioning Model |: Stability of Equilibria

Find Jacobian.

dfy dfq dfy dfg
dxqg dxq dx; dxp

g | e de d o
J=_— = dxqg dxgo dx; dxg
Tdx | @ di dn dh

qu dXQ dX[dXR
dig dfs diz di
dxqg dxq dx; dxg

Compute eigenvalues of Jacobian about xj and x3.
f(x) = f(x*) + J(x")(x —x*) + - --

If the eigenvalues all have real parts that are negative, then the
system is stable near the stationary point, if any eigenvalue has a
real part that is positive, then the point is unstable.

Validation Test |: Parameters

b xq(t = 0) = xg(t = 0) = x/(t = 0) = xg(t = 0) =0

>

>

>

>

>4 = 60 jobs per hour

or =1/7r =1 / 5 minutes

oqr = 0 (No flocking)

oRrqg = 0 (No restarts)

oqQ = 0.1

oqQr =1/7q1 = 1 / 10 minutes

ori =1/7rr =1/ 2 hours

o =1/77 =1 / 20 minutes

orT = 1/7r7 =1 / 12 hours

xj = (—1.71566, —0.0285943,2.91433, 102.857)
x5 = (87.4299,1.45717,0.0571886, 102.857)

A1 = (54.4891, —5.9492, —1.98, —0.583333)

A2 = (—1052.84, —5.89802, —0.583333, —0.103362)

Validation Test I: Simulation Results (72 Hours)
250

200 |

150 |

100 |

50 |

Validation Test I: Experimental Results (72 Hours)
250
200 |

150 |

100 |

50 |

ol

Possible Source of Oscillations

Discretization-induced (discrete time, discrete state)

Delay-induced (discrete delay); Hopf bifurcation

New “Large Workflow" Assumptions

Provision resources based on individual submissions

N = jobs per user submission > M = max instances
User-specified workflow “deadline”

Tdeadline > TRT > TR > At
User-specified estimate of average job lifetime, 7.

Meet deadline or run out of money; minimize waste and cost

Acknowledgments

Todd Miller @ UW - Madison
Center for High Throughput Computing, HT Condor

Frank Wiirthwein @ UCSD
Open Science Grid, Executive Director

Jeffery Dost © UCSD
Open Science Grid, Glidein Factory Operations

Edgar Fajardo @ UCSD
Open Science Grid, Software

