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Objective

Build a service for provisioning cloud-based computing resources
that can be used to augment users’ existing, fixed resources and
meet their batch job demands.
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condor annex = HTCondor + Amazon Web Services

condor annex is a Perl-based script that utilizes the AWS CLI and
other AWS services to orchestrate the delivery of HTCondor
execute nodes from the cloud to your HTCondor pool.

Some key features:

I Supports bidding for spot instances.

I Instances sitting idle, not running user jobs will terminate
after a fixed idle time (20 min).

I Each “annex” itself also has a finite lifetime.



My Problem

How many instances do I order with condor annex to meet current
user job demand?



My Original Assumptions

Known knowns:

I Idle instances terminate after a fixed lifetime (20min)

I Instances terminate when annex lease expires

I Assume (for now) single-core user jobs and instances

Known unknows:

I User jobs arrive in queue at some unknown rate

I More user jobs than instances that can be purchased

I User jobs flock away to “free” resources at some unknown rate

I User job runtimes are unknown at submission

I Spot instances are preempted at some unknown rate

I Spot prices vary with time



Optimization Problem vs. Control Problem

I Forget optimally scheduling jobs and resources; too hard.

I Instead, seek to provision resources in a controlled way.

I Build a system that aims to use resources safely and efficiently.



Simple System 6=⇒ Simple Dynamics

Logistic Map: xn+1 = σxn (1− xn), where 0 ≤ x0 ≤ 1.



An Oversimplified Provisioning Model
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Dynamical Systems 101
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1. Find equilibria. Set dN
dt = 0 and solve for N∗.
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2. Check stability of equilibria.
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Provisioning Model I: State Diagram
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Provisioning Model I: System of Equations

dxq
dt

= Σq − σIRxqxI − σqf xq + σRqxR

dxQ
dt

= σqQxq − σQI xQ

dxI
dt

= σQI xQ − σIRxqxI + σRI xR − σIT xI

dxR
dt

= σIRxqxI − σRI xR − σRqxR − σRT xR



Provisioning Model I: Definitions

I xq = number of user jobs in the queue

I xQ = number of instances in the queue

I xI = number of instances sitting idle

I xR = number of instances busy running user jobs

I Σq = rate of user job submission (jobs/time)

I σIR = 1/τIR = matchmaking rate; τIR = idle-running lifetime

I σqf = 1/τqf = flocking rate; τqf = flocking lifetime

I σRq = 1/τRq = restart rate; τRq = restart lifetime

I σqQ = queueing rate

I σQI = 1/τQI = instance spin-up rate; τQI = annex start-up
time

I σRI = 1/τRI = job completion rate; τRI = job lifetime

I σIT = 1/τIT = idle termination rate; τIT = idle-termination
lifetime

I σRT = 1/τRT = running termination rate; τRT = annex
lifetime



Provisioning Model I: Equilibria

Solve.
dxq
dt

= fq (xq, xQ , xI , xR) = 0

dxQ
dt

= fQ (xq, xQ , xI , xR) = 0

dxI
dt

= fI (xq, xQ , xI , xR) = 0

dxR
dt

= fR (xq, xQ , xI , xR) = 0

Find two equilibrium points.
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Provisioning Model I: Stability of Equilibria

Find Jacobian.
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Compute eigenvalues of Jacobian about x∗1 and x∗2.

f(x) = f(x∗) + J(x∗)(x− x∗) + · · ·

If the eigenvalues all have real parts that are negative, then the
system is stable near the stationary point, if any eigenvalue has a
real part that is positive, then the point is unstable.



Validation Test I: Parameters

I xq(t = 0) = xQ(t = 0) = xI (t = 0) = xR(t = 0) = 0

I Σq = 60 jobs per hour

I σIR = 1/τIR = 1 / 5 minutes

I σqf = 0 (No flocking)

I σRq = 0 (No restarts)

I σqQ = 0.1

I σQI = 1/τQI = 1 / 10 minutes

I σRI = 1/τRI = 1 / 2 hours

I σIT = 1/τIT = 1 / 20 minutes

I σRT = 1/τRT = 1 / 12 hours

I x∗1 = (−1.71566,−0.0285943, 2.91433, 102.857)

I x∗2 = (87.4299, 1.45717, 0.0571886, 102.857)

I λ1 = (54.4891,−5.9492,−1.98,−0.583333)

I λ2 = (−1052.84,−5.89802,−0.583333,−0.103362)



Validation Test I: Simulation Results (72 Hours)



Validation Test I: Experimental Results (72 Hours)



Possible Source of Oscillations

Discretization-induced (discrete time, discrete state)

Delay-induced (discrete delay); Hopf bifurcation



New “Large Workflow” Assumptions

Provision resources based on individual submissions

N = jobs per user submission � M = max instances

User-specified workflow “deadline”

Tdeadline � τRT > τRI > ∆t

User-specified estimate of average job lifetime, τRI .

Meet deadline or run out of money; minimize waste and cost
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Questions?


