
Building the
International Data Placement Lab

Greg Thain
Center for High Throughput Computing

What is the IDPL?

How we built it

Examples of use

Overview

2

Who is the IDPL?

3

Phil Papadapolus -- UCSD
Miron Livny -- Wisconsin

Collaborators in
China:Beihang // CNIC

Beihang

CNIC UCSD (2x)

Wisc

A network engineer worldview:

5

 BUAA /
 CNIC

 UCSD

 Wisconsin

200 ms ping

50 ms ping

A Topologist’s World View

6

 Beihang

 CNIC UCSD1

 Wisconsin UCSD2

Run full set hourly

Wait? What about PerfSonar?

7

www.perfsonar.net

8

Wait? What about PerfSonar?

9

www.perfsonar.net

Necessary, not sufficient

Network only

1. Co-scheduling of jobs
Start client and server simultaneously

2. Timed start of jobs
To prevent overlap and race conditions

3. Returning and managing of results

Requirements for data placement

10

› Using static slots
› One slot per host
› Submit two-host job

hProc 0 is client

hProc 1 is server
• (just a convention)

Co-Scheduling with Parallel
Universe

11

Universe = parallel
Executable = startup_script.sh
+ParallelShutdownPolicy = “WAIT_FOR_ALL”
<usual file transfer stuff>
Requirements = (machine == “client-machine-name”)
Queue
Requirements = (machine == “server-machine-name”)
Queue

Example Submit file

12

#!/bin/sh
if [$_CONDOR_PROCNO = 0]
then

do_client_stuff
else

do_server_stuff
fi

Startup Script (mark 1)

13

› Synchronization problem
hNot actually co-scheduled

hServers need to tell clients their port numbers

But this doesn’t work…

14

Unix Process Condor Job
fork/exec condor_submit
kill -9 condor_rm
Environment variables Job Attributes
Standard error file Condor job log

Unix Process :: Condor Job

15

› condor_chirp set_job_attr
› Uses job ad as a blackboard whiteboard
› Always read/writes to Proc 0

(in parallel universe)

condor_chirp to the rescue!

16

Start Server

Listen on ephemeral port

condor_chirp set_job_attr Port #

Simplified Workflow

17

condor_chirp get_job_attr Port #

repeat as needed

run test

Server Side

Client Side

› Need to do this periodically
› Condor cron – two features
 on_exit_remove = false

cron_minute = 23
cron_hour = 0-23/2
cron_month = *
cron_day_of_week = *

That works – once

18

on_exit_remove = false
Means one job for all runs

stale set_job_attr’s

held jobs a headache

Really want one condor job per run

Problems with condor cron

19

Enter…

“CronMan”

20

› Have dagman itself be the restarter
hCreates a new job every time

› With a one-node dag
› Whose one node has a delayed start time

hGives the placement job the job-nature

The Idea

21

JOB A placement4-submit
SCRIPT POST A /bin/false
RETRY 1000000

The dag file

22

Universe = parallel
Executable = startup_script.sh
+ParallelShutdownPolicy = “WAIT_FOR_ALL”

cron_minute = 30
cron_window = 400
Requirements = (machine == “client-machine-name”)
Queue
Requirements = (machine == “server-machine-name”)
Queue

Modified Submit file

23

$ condor_q
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
26795.0 gthain 1/20 23:50 11+12:26:06 R 0 0.3 condor_dagman
27720.0 gthain 5/11 10:22 0+00:00:00 I 0 0.0 wrapper_script
27720.1 gthain 5/11 10:22 0+00:00:00 I 0 0.0 wrapper_script

condor_q output

24

› What about reporting results?

› condor_chirp ulog “server start”
› condor_chirp ulog “client results x y z”

Two of three problems solved

25

000 (27720.000.000) 05/11 10:22:48 Job submitted from host: DAG Node: A
014 (27720.000.000) 05/11 11:17:00 Node 0 executing on host: client
008 (27720.000.000) 05/11 11:17:00 ‘client:start'
014 (27720.000.001) 05/11 11:17:04 Node 1 executing on host:
001 (27720.000.000) 05/11 11:17:04 Job executing on host: MPI_job
008 (27720.000.000) 05/11 11:17:06 'server:start'
033 (27720.000.000) 05/11 11:17:08 Setting job attribute iperfServer to '20650'
008 (27720.000.000) 05/11 11:17:31
‘results,1462979830.739976,1462979851.114580,1,20.100000,5736960'
008 (27720.000.000) 05/11 11:17:31 'komatsu.chtc.wisc.edu(iperf) client:end'
008 (27720.000.000) 05/11 11:17:31 'komatsu.chtc.wisc.edu(irods) client:start'
008 (27720.000.000) 05/11 11:17:31 'davos.cyverse.org(iperf) server:end'

Job log output

26

Then forward to Graphite

27

Application of IDPL:
The Phytomorph problem

28

PI in the Spalding lab researching corn seedlings

Runs analysis jobs at Wisconsin HTCondor pool

Pulling data from Cyverse (nee iPlant) in Arizona

Claims data xfer rates slow

29

30

› All performance testing had been LAN
› Our Networking folks ID’d problems
› Made one big fix

hDon’t set TCP_SNDBUF explicitly!

› Gave us new clients & servers

After talking with iRODS devs

31

32

Add more protocols

More sites

Work with clouds

Future Work

33

› Try CronMan pattern yourself!
hEven with vanilla universe jobs

› Think about Unix process patterns
› Example on slides simplified!
› Real code on git hub at

hhttps://github.com/iDPL/placement

Thank you!

34

	Slide 1
	Overview
	Who is the IDPL?
	Slide 4
	A network engineer worldview:
	A Topologist’s World View
	Wait? What about PerfSonar?
	Slide 8
	Wait? What about PerfSonar?
	Requirements for data placement
	Co-Scheduling with Parallel Universe
	Example Submit file
	Startup Script (mark 1)
	But this doesn’t work…
	Unix Process :: Condor Job
	condor_chirp to the rescue!
	Simplified Workflow
	That works – once
	Problems with condor cron
	Enter… “CronMan”
	The Idea
	The dag file
	Modified Submit file
	condor_q output
	Two of three problems solved
	Job log output
	Then forward to Graphite
	Application of IDPL: The Phytomorph problem
	Slide 29
	Slide 30
	After talking with iRODS devs
	Slide 32
	Future Work
	Thank you!

