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What is the IDPL?

How we built it

Examples of use

Overview
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Who is the IDPL?
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Phil Papadapolus -- UCSD 
Miron Livny -- Wisconsin

Collaborators in 
China:Beihang  // CNIC
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A network engineer worldview:
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A Topologist’s World View
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Wait?  What about PerfSonar?
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www.perfsonar.net
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Wait?  What about PerfSonar?
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www.perfsonar.net

Necessary, not sufficient

Network only



1. Co-scheduling of jobs
Start client and server simultaneously

2. Timed start of jobs
To prevent overlap and race conditions

3. Returning and managing of results

Requirements for data placement
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› Using static slots
› One slot per host
› Submit two-host job

hProc 0 is client

hProc 1 is server
• (just a convention)

Co-Scheduling with Parallel 
Universe
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Universe = parallel
Executable = startup_script.sh
+ParallelShutdownPolicy = “WAIT_FOR_ALL”
<usual file transfer stuff>
Requirements = (machine == “client-machine-name”)
Queue
Requirements = (machine == “server-machine-name”)
Queue

Example Submit file
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#!/bin/sh
if [ $_CONDOR_PROCNO = 0 ]
then

do_client_stuff
else

do_server_stuff
fi

Startup Script (mark 1)

13



› Synchronization problem
hNot actually co-scheduled

hServers need to tell clients their port numbers

But this doesn’t work…
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Unix Process Condor Job
fork/exec condor_submit
kill -9 condor_rm
Environment variables Job Attributes
Standard error file Condor job log

Unix Process :: Condor Job
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› condor_chirp set_job_attr
› Uses job ad as a blackboard whiteboard
› Always read/writes to Proc 0

(in parallel universe)

condor_chirp to the rescue!
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Start Server

Listen on ephemeral port

condor_chirp set_job_attr Port #

Simplified Workflow
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condor_chirp get_job_attr Port #

repeat as needed

run test

Server Side

Client Side



› Need to do this periodically
› Condor cron – two features 
   on_exit_remove = false 

cron_minute = 23 
cron_hour = 0-23/2 
cron_month = * 
cron_day_of_week = *

That works – once
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on_exit_remove = false
Means one job for all runs

stale set_job_attr’s

held jobs a headache

Really want one condor job per run

Problems with condor cron
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Enter…

“CronMan”

20



› Have dagman itself be the restarter
hCreates a new job every time

› With a one-node dag
› Whose one node has a delayed start time

hGives the placement job the job-nature

The Idea
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JOB A placement4-submit
SCRIPT POST A /bin/false
RETRY 1000000

The dag file
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Universe = parallel
Executable = startup_script.sh
+ParallelShutdownPolicy = “WAIT_FOR_ALL”

cron_minute = 30
cron_window = 400
Requirements = (machine == “client-machine-name”)
Queue
Requirements = (machine == “server-machine-name”)
Queue

Modified Submit file
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$ condor_q
ID        OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD
26795.0   gthain     1/20 23:50  11+12:26:06 R  0   0.3  condor_dagman 
27720.0   gthain     5/11 10:22   0+00:00:00 I  0   0.0  wrapper_script 
27720.1   gthain     5/11 10:22   0+00:00:00 I  0   0.0  wrapper_script 

condor_q output
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› What about reporting results?

› condor_chirp ulog “server start”
› condor_chirp ulog “client results x y z”

Two of three problems solved
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000 (27720.000.000) 05/11 10:22:48 Job submitted from host:    DAG Node: A
014 (27720.000.000) 05/11 11:17:00 Node 0 executing on host: client
008 (27720.000.000) 05/11 11:17:00 ‘client:start'
014 (27720.000.001) 05/11 11:17:04 Node 1 executing on host:
001 (27720.000.000) 05/11 11:17:04 Job executing on host: MPI_job
008 (27720.000.000) 05/11 11:17:06 'server:start'
033 (27720.000.000) 05/11 11:17:08 Setting job attribute iperfServer to '20650'
008 (27720.000.000) 05/11 11:17:31 
‘results,1462979830.739976,1462979851.114580,1,20.100000,5736960'
008 (27720.000.000) 05/11 11:17:31 'komatsu.chtc.wisc.edu(iperf) client:end'
008 (27720.000.000) 05/11 11:17:31 'komatsu.chtc.wisc.edu(irods) client:start'
008 (27720.000.000) 05/11 11:17:31 'davos.cyverse.org(iperf) server:end'

Job log output
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Then forward to Graphite
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Application of IDPL:
The Phytomorph problem
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PI in the Spalding lab researching corn seedlings

Runs analysis jobs at Wisconsin HTCondor pool

Pulling data from Cyverse (nee iPlant) in Arizona

Claims data xfer rates slow 
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› All performance testing had been LAN
› Our Networking folks ID’d problems
› Made one big fix

hDon’t set TCP_SNDBUF explicitly!

› Gave us new clients & servers

After talking with iRODS devs
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Add more protocols

More sites

Work with clouds

Future Work
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› Try CronMan pattern yourself!
hEven with vanilla universe jobs

› Think about Unix process patterns
› Example on slides simplified!
› Real code on git hub at

hhttps://github.com/iDPL/placement

Thank you!
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