HTCondor Use In Operational Data Processing
For The Hubble Space Telescope (HST) And
The James Webb Space Telescope (JWST)

Michael Swam, Mary Romelfanger,
with acknowledgement to former team member and lead
designer Francesco Pierfederici

STScI | scince st

Who Are We (STScl) ?

The Space Telescope Science Institute (STScl) is located in Baltimore,
Maryland on the campus of Johns Hopkins University
STScl (est. 1981) houses employees of AURA, ESA, and CSRA
AURA — Association of Universities for Research in Astronomy
— A non-profit consortium of universities dedicated to astronomy research

— Holds NASA contracts for mission operations, science operations, or aspects of
those, for various space-based observatories

— Runs several ground-based observatories (Gemini)
ESA — European Space Agency

— Various international partner agreements define work roles on the NASA
contracts

CSRA — formerly Computer Sciences Corporation (sub-contractor)

STScI | scince st

Astronomy Missions at STScl
(mostly space observatories)

e Hubble Space Telescope (HST) : Science Operations, 1990

e James Webb Space Telescope (JWST) : Mission + Science Operations,
2018

e Kepler : Initial Data Processing and Archive, 2009
e Transiting Exoplanet Survey Satellite (TESS) : Archive, 2017

e Wide-Field InfraRed Survey Telescope (WFIRST) : Science Operations
(shared with IPAC, GSFC), 202x

e MAST — Mikulski Archive at Space Telescope : Multi-Mission Archive
holding HST, Kepler, Galex, FUSE, Astro-1,2 (HUT,UIT, WUPPE), etc.

e This talk will focus on the 2 main missions, so far: HST and JWST
— One uses HTCondor already, and one will very soon

(Are you getting acronym overload yet?
WARNING: This is NASA, the barrage has just begun...)

STScI | science msmmure :

HST (aka “The Hubble”)

STl

SPACE TELESCOPE
SCIENCE INSTITUTE

Launched: April 1990 from Space
Shuttle Discovery

Serviced: 5 times, last in 2009
Low-Earth Orbit: ~ 570 km

Size comparison: a school bus

Original (retired) instruments:
FOC, FOS, GHRS, HSP, WFPC-1

2"d generation retired instruments:
COSTAR, WFPC-2

“Active” instruments:
ACS, COS, FGS, NICMOS, STIS, WFC3

End of life: 202x ?
-de-orbit mission?
-if not atmospheric drag will

eventually win and the mirror will
land somewhere...

HST Data Processing — Short History

e Original data processing system (PODPS) delivered to STScl under NASA
contract from a vendor (TRW) to support launch/science ops in 1990

e Aredesigned data processing system (OPUS) developed by STScl went
operational in 1995, and is still used for some aspects of HST data
processing today

e (QOPUS features

— Distributed processing on a pool of machines (shared disk access)

— Uses a blackboard paradigm for distributing work

e Competing processes scan blackboard data structure, looking for work requests
they can satisfy, attempt to grab a job, only 1 will win the job, mark the
blackboard entry as taken, blackboard entry updated on success/failure

— Originally used file-system blackboards (directories of empty files)

— Redesigned in 2002 to use in-memory blackboards, held in servers
communicating via CORBA

e WHY change?

STScI | science msmmure :

STl

SPACE TELESCOPE
SCIENCE INSTITUTE

Planned Launch: Fall 2018 from ESA
Spaceport, French Guiana, on an
Ariane5 rocket

Servicing plans: None, due to cost
(but | thought | heard they included
a grappling handle...)

Orbit: Solar at 2"d Lagrange point
(L2), beyond the moon, 1.5 million
km away

— Why? Continuous viewing + stable
thermal environment

Size comparison: a tennis court
Instruments: FGS, NIRCAM, NIRISS,
NIRSPEC, MIRI

End of life: 5.5 yrs planned, goal =
10+ yrs, limiting factor = propellant
for orbit station keeping

HST / JWST : The Future of OPUS

e OPUS was re-evaluated under a trade-study in 2011 to choose the
“Workflow Management System” (WMS) for the James Webb Space
Telescope Data Processing System

e When examining current technologies and trade-offs, HTCondor came
to the fore, and was selected for use by JWST, after a prototyping
period and add-on development was performed

— Added STScl’s “Orchestrated Workflow Layer” = OWL
e The HST Mission Office decided to allow OPUS to be phased out for HST
Data Processing, in favor of HTCondor/OWL

— HST wins by gaining a more maintainable and versatile data processing
platform to meet HST’s data processing needs until the end of mission, i.e.
a technology “refresh”

— JWST wins by gaining a well-vetted Workflow Management System with
years of use by an operational mission (HST) by the time JWST launches

— Data Processing operations team wins by mastering just 1 system

STScI | scince st

Why the move to HTCondor?

e Better performance/flexibility for large processing runs

Pool our TEST and OPS machines, at least when active testing is not occurring

Capability to add machines when needed, then release them for normal ops
loads

e A more maintainable, reliable system into the future

OPUS was developed in-house, but the expertise has left

Uses highly-detailed C++/CORBA (not a lot of developers find this attractive),
dependence on 3™-party CORBA ORB (ACE/TAO)

Debugging complexity (usually just restart the CORBA servers + pipelines)

OPUS development has been rusty-railed for many years now, though it’s long
lifetime and continued use is testament to the solid design

Operating system maintenance, network security additions make this an
increasing risk

HUGE HTCondor user base, community of expertise and applications

STScI | scince st

Why is OWL necessary?

e OWL = Orchestrated Workflow Layer

— We found that HTCondor manages compute resources extremely well, but
lacked services for managing and tracking the data being processed

— Our experience with OPUS and HST Data Processing convinced us of the
need to manage and track the data flows through the computers over time

e What does OWL provide?
— A job-tracking database table that captures the full ClassAd plus a few
extras, for every workflow job step run by the system
e Populated and updated via HTCondor job hooks

— still not sure if that was a good choice; fine when our hooks work, hard to
diagnose when they fail (unable to capture stderr?)

— Template-driven workflow generation (“DAGs on-the-fly”) using the Jinja2
template engine

— A web app (OWL GUI) for monitoring dataset processing status and other
system features

STScI | scince st

More OWL add-ons

e We also wanted a way to specify and feed data processing runs into the
system

— Created a simple Data Processing Queue (DPQ) database table to hold
workflow requests that include
e Dataset name
e Workflow type
e Relative priority
— Created “The Shoveler” task to govern the order and rate at which DPQ
entries are sent through OWL workflow template generation to be
transformed into executing DAGMan jobs on the HTCondor pool
— Created a re-usable, configurable Poller task that can be instantiated to
watch for the arrival of certain files in a directory and turn each “file event”
into a set of DPQ inserts, to request data processing for that event

e Added a user-specific rescue Server that receives OWL GUI rescueDAG
requests to re-try a failed workflow

STScI | scince st :

What do we accomplish with this system?

e QOur paradigm: process everything once, reprocess MANY times...

e Science data is processed once on initial receipt from the observatory

Confirms that the instrument mode can be successfully processed
Saves the data products in the archive + safestore (media taken offsite)

Populates the archive catalog (database) of searchable metadata to
support archive research discovery

Data accounting metrics are collected to verify completeness and link back
to the observatory planning system to verify the proposer got all the
observations they asked for

e Reprocessing is driven by improvements in

Calibration reference data (darks, flats, distortion models, etc.)
Calibration algorithm improvements

Metadata enhancements/fixes (give more complete/useful information
related to the science observations to aid in interpretation and analysis)

Datasets are reprocessed ~5-30 times over the mission lifetime

STScI | scince st :

The Flow

New Data ReSp;?eCciisoSri]ng
Receipt Algorithm
J/
DPQ interface library (insert, update, delete)]
N\

Dataset Name Dataset Name Dataset Name Dataset Name
Recipe Name RecipeName /| — — &= &= = % Recipe Name Recipe Name
Priority Priority Priority Priority

Data Processing Queue (DPQ)

(requests for processing of a particular dataset, using a chosen recipe, at a specified priority)

STScI | scince st

'\ Data Processing Queue (DPQ) and the Shoveler

Dataset Name Dataset Name Dataset Name Dataset Name
Recipe Name Recipe Name /| = = = = = = Recipe Name Recipe Name
Priority Priority Priority Priority

Data Processing Queue (DPQ)

9c
°4 o

(requests for processing of a particular dataset, using a chosen recipe, at a specified priority)

v

The
\‘ One “shovel-full” of
Shoveler ’ the highest priority

workflow requests

‘ are periodically
shoveled to OWL...

STScI | scince st

W OWL Translates Workflow Request Into .

The
Shoveler

One “shovel-full” of
the highest priority
workflow requests

are periodically
shoveled to OWL...

Open Workflow Layer
(OWL)

Workflow templates rendered with dataset-
specific values into DAGMan .dag and .job files,
' ready for HTCondor scheduling and execution...

STScI | scince stmure

Open Workflow
Layer
(OWL)

Workflow templates rendered with dataset-

v specific values into DAGMAN .dag and .job files,

v ready for HTCondor scheduling and execution.
Submitted via DRMAA vl (www.drmaa.org)

'-"-'5"’-:»-”'-"- 'f')f:vJngh Throughput Computlng

Desktop

«" H ” . .
cycle scavenging Academic, Commercial, or
Local Processing Cluster - Government C_I‘_)l_Jd'
Small Auxiliary Resources computing facilities

STScI | scince stmure

Example DAG template

crds delivery.dag

Handles processing of a catalog file from the CRDS team, found by the CRDS

instantiation of the ManifestFilePoller

2015-07-24 75701 LThompson first version for JWST
2015-09-28 80484 Mary added PRIORITY

H H H= H= H= H= H

Job definitions
JOB CRDS SUBMIT crds submit {{ dataset }}.]job
JOB CRDS CONFIRM crds confirm {{ dataset }}.job

Job Relationships
PARENT CRDS SUBMIT CHILD CRDS CONFIRM

PRIORITY CRDS SUBMIT 180
PRIORITY CRDS CONFIRM 190

Q) SPACE TELESCOPE
ST&I SCIENCE INSTITUTE 16

Example JOB template

stage name = crds submit
Executable = $ENV(PIPELINE BASE)/bin/CrdsFileDelivery.py
Arguments = -r crds delivery -p {{pathname}} {{dataset}} submit

log stamp = S$$([CurrentTime])

+0ut = "ALOG S (log stamp) S (stage name) {{ dataset }}.out"
+Err = "ALOG S (log stamp) S (stage name) {{ dataset }}.err"
Universe = vanilla

Log = {{ dataset }}.condor log

+InputDataset = "{{ dataset }}"
+HookKeyword = "OWL"

+Instances =1

getenv = True

Notification = Never

Queue

Q) SPACE TELESCOPE
ST&I SCIENCE INSTITUTE 17

OWL GUI — Monitor Pane

® O ® /W owLGUI - WebAppiication * | B STScl Condor Monitor | Hist... % |+
J p

(' () @ | https:/iljwdmscwebv.stsci.eduw/owlgui/monitor/?retrieve=35000&startdate=01%2F01%2F2000&enddate=5%2F12%2F2016 c Q HTCondor dagman CurrentTime > ﬁ E Q G) 4 9 9

® Thu, 12 May 2016 19:53:23 UTC (133 DOY

. O @ Dashboard L Monitor £ Queue ‘D History < Poller & Preferences

Double-click a row for more options.

® e

START PROCESS COMPLETION EXIT

FILESET STATUS OWNER = 4 NAME PARENT NAME STATE DURATION TIME CODE GLOBAL J
jw93135012001_02108_00001_nrs2 @ mary Sggﬂi‘m INGEST_05 CREATE_POD Exited 30.84 28:13%254'07 0 iljwdmscdg
jw93135012001_02109_00001_nrs1 @ mary ggjggi‘w INGEST_05 CREATE_POD Exited 27.87 28:1:0'2?07 0 iljwdmscdg
jw93135012001_0210C_00001_nrs1 @ mary ﬁgfgﬂi"" INGEST_05 CREATE_POD Exited 26.93 28:13%':‘:’)'07 0 iljwdmscdg
jw93135012001_0210D_00001_nrs1 @ mary ggjggi‘w INGEST_1B LEVEL_1,INGEST_1A Exited 23.59 28:1360'%57'07 0 iljwdmscdg
jw93135326001_02105_00001_mirifulong @ mary ;8:12‘;'355'07 LEVEL_2B LEVEL_2A Exited 16.22 28:13%%":'07 0 iljwdmscdg
jw93135326001_02106_00001_mirifushort @ mary 28:12%'355'07 LEVEL_2B LEVEL_2A Exited 132.23 ;8:1;':257'07 0 iljwdmscdg
jw93135326001_02106_00001_mirifushort @ mary 28112%35;07 INGEST_2A INGEST_1B,LEVEL_2A Exited 28.91 28:13%22-07 0 iljwdmscdr
jw93135326001_02103_00001_mirifushort @ mary 28:12%3%'07 LEVEL_2B LEVEL_2A Exited 131.56 gg?;-gr;-w 0 iljwdmscdg
jw93135326001_02105_00001_mirifulong @ mary ggg&i‘w INGEST_2A INGEST_1B,LEVEL 2A Exited 28.73 28:13%25;'07 0 iljwdmscdg

STScI | scince st

OWLD interface to HTCondor + ClassAd

dmsdevvma3.stsci.edu#1053742.0#1452386777

Hold/Release Suspend/Continue

More Commands

Full Job Details
Scroll down within the table pane to view all.

Fields Value

globaljobid dmsdevvma3.stsci.edu#1053742.0#1452386777
mytype Job

targettype Machine

procid 0

autoclusterid 20219

STScI | scince st

Operations View

e Nearly all of the previous steps are automatic

e QOperators inspect the OWL GUI “Monitor” tab and filter for failed job
steps

— E.g. science calibration software can fail if matching calibration reference
data is not found on disk for the dataset’s instrument configuration

e OWL GUI can display log files showing the details on each failure

e QOperations can take corrective action outside the system

— E.g. contact the instrument science team to request additional calibration
reference data

e QOperations uses the OWL GUI to invoke a rescueDAG and re-runs the
failed workflow to get past the original failure

e OWL GUI provides “Poller” and “DpQueue” tables for alternate views

STScI | scince st :

HST — Daily Data Rates (very small)

e Average downlink volume for science telemetry files
— 4.7 GB perday [2013, 2014]
e 4 active science instruments
— ACS, WFC3: mainly imaging
— COS, STIS: mainly spectroscopic
e Onavg. 155 new science observations arriving each day
— Average mix of observations each day
e ACS=22,C0S=10, STIS=46, WF3 =77 [2013,2014]
(14% 6% 30% 50%)
— Approx. 2/3 imaging, 1/3 spectroscopic
e Average archive ingest rate
— 17.1 GB per day (data ‘expansion’ rate ~ 4x)

STScI | scince st

21

HST Datasets in Archive (for reprocessing)

e Current number of science datasets for each active (repro) instrument

— ACS: 222849
— COS: 32698
— STIS: 172970

— WEFC3: 213374

e A full-instrument reprocessing can require >200K observations to be
sent back through the processing algorithms to generate new data
products for re-ingest into the archive (old versions are “invisible”)

e All reprocessing runs at a lower priority than new downlinked data and
special processing (e.g. calibration reference file updates)

e The Shoveler honors the priorities in submitting work to HTCondor

e .job steps are also given priorities in the .dag files, so that once they are
running on the HTCondor pool, they proceed in relative priority-step
order

STScI | scince st :

A Reprocessing Scenario

e Reprocessing is driven by improvements to calibration reference data
or software
— E.g. Calibration programmers develop a calibration software improvement
that would result in improved science data products
e Database queries are run against the archive catalog (database tables
describing the characteristics of every science exposure held in the
archive) to identify datasets that could benefit from the improvement

e Dataset names and the appropriate type of reprocessing workflow are
submitted to the Data Processing Queue, at lower priority than
workflows for “fresh” data downlinks from the observatory

e The Shoveler picks up the reprocessing entries when the priorities
allow, submits them through OWL to HTCondor and the improved
science data products are generated and submitted to the data archive

e The system handles a mix of new data from the observatory and
reprocessing scenarios improving data already in the archive

STScI | scince st :

Hardware — HST Ops (very small)

e Currently 7 physical machines for daily processing / reprocessing
— OpslittleHelper — COLLECTOR, NEGOTIATOR, MASTER
e 2 cores, each w 1Gb memory
— 0psl1,2,3,4,5,6 — SCHEDD, STARTD, MASTER, OWLD
e 160 cores, each w/6Gb memory

e 288 cores, each w/2Gb memory
e A50TOTAL cores

— Red Hat Enterprise Linux 5

e far behind, we know! Due to a C++/database interface layer dependency we are
working through

e Shared disk access over 10Gb network to Isilon Network Attached Storage

(NAS)

e MS SQL Server databases on a clustered auto fail-over set of Win2008R
boxes

e 1Gb network to other machines

e Just Added: CycleServer () for pool monitoring

and management

STScI | scince st

HTCondor becomes operational for HST

e Dec-2013: Initially installed in a single non-critical processing area (parallel
calibration reference file delivery and archiving)

— Ops gained comfort/experience in operating HTCondor/OWL, while still relying
on OPUS for initial science data processing and reprocessing

— Further development on OWL and HST science workflows was needed before
science processing was ready for operational use

e Dec-2014: Moved reprocessing for active instruments over to HTCondor/
OWL

— June 2015: 15230 COS data products processed in 66 hrs

— Sept 2015: 90959 WFC3 data products processed in ~15 days

— Dec 2015: 16156 COS products processed in just over 52 hrs
e Oct-2015: First-look data workflows added

— All new data downlinked from HST is processed by HTCondor/OWL
e TBD:

— Full ACS instrument collection reprocessing
— Full WFC3 instrument collection reprocessing for latest CALWF3 updates

STScI | scince st

How is JWST similar/different?

e Similar to HST
— Same basic initial process/reprocess model
— Same HTCondor/OWL code (shared between missions)

e Differences from HST
— Bigger data volume —~ 60Gb / day science data
— File Sizes — some individual data products could approach 10Gb

— **High-priority requirement for downlinked wavefront-sensing data
e Used to determine JWST mirror alignment, elevated priority processing
e We needed to learn how to manage workflow priorities under HTCondor
— Engineering data

e Separate data stream, loaded into databases, accessed via web service calls
during science data processing for key parameters

— More flexible “association” model (group of exposures processed as a set)
e Dithers, mosaics, super-mosaics

e Contemporaneous calibration exposures

STScI | scince st

Where does JWST Data Processing stand?

e We are in the middle of JWST Data Management System (DMS) Build#6

— We turn over to the Integration & Test team 6/1/2016
(we probably shouldn’t be here... ;)

— 2 more planned DMS releases prior to launch in fall 2018

e Exercising the system using JWST ground test data suites

— Science Instrument Characterization set (SIC), 1200 datasets
— Day In the Life set (DIL), 1500 datasets

e @Gaining experience with the hardware (different from HST, next slide)
e Developing and debugging our workflows
e Struggling with getting end-to-end supporting data for the test suites

e Experimenting with HTCondor daemon allocation, setting memory
thresholds in .job files for certain calibration steps, reallocating
memory to different core subsets, etc. (“tuning”)

STScI | scince st

Hardware — JWST Integration & Test
(pseudo-Ops)

Currently 6 virtual machines (Vmware ESX) for daily processing /
reprocessing

1 dedicated for HTCondor SCHEDD, MASTER, OWLD
e 4 cores, each w/8Gb memory

1 dedicated for HTCondor NEGOTIATOR, COLLECTOR, MASTER
e 4 cores, each w/2Gb memory

4 worker machines for HTCondor STARTD, MASTER, OWLD
e 64 cores, each w/8-12 Gb memory

Red Hat Enterprise Linux 6

Pathfinder for eventual Ops pool (which will have core counts at least
comparable to the HST pool)

Shared disk access over 10Gb network to Isilon Network Attached Storage
(NAS)

MS SQL Server databases on a clustered fail-over set of Win2012 and
Win2008R2 boxes

1Gb network to other systems

CycleServer () for pool monitoring and
management

STScI | scince st

condor_config.local settings we tweaked

Our dominant paradigm (reprocessing) is running thousands of workflows, each of which normally doesn’t
take very long, on average (from 1-5 minutes), so Francesco tried to tune some HTCondor configuration
settings to enable us to start our workflows more quickly.

e NEGOTIATOR_INTERVAL = 1

e NEGOTIATOR_CYCLE_DELAY =0

e NEGOTIATOR_UPDATE_AFTER_CYCLE = True
.« #

e DAGMAN_SUBMIT_DELAY =0

e DAGMAN_USER_LOG_SCAN_INTERVAL = 1

e DAGMAN_ABORT_DUPLICATES = False

Job Hooks

. STARTER_INITIAL_UPDATE_INTERVAL=1

e STARTER_ENVIRONMENT = "DRMAA_LIBRARY_PATH=/usr/lib64/condor/libdrmaa.so"
e STARTD_ENVIRONMENT = "DRMAA_LIBRARY_PATH=/usr/lib64/condor/libdrmaa.so"
e OWL_HOOK_PREPARE_JOB = $(OWL_RELEASE_DIR)/bin/ow!_job_hook.py

e OWL _HOOK_JOB_EXIT = $(OWL_RELEASE_DIR)/bin/owl_job_hook.py

e OWL_HOOK_UPDATE_JOB_INFO =$(OWL_RELEASE_DIR)/bin/owl|_job_hook.py

e LOG_ON_NFS_IS_ERROR = False
e DAGMAN_LOG_ON_NFS_IS_ERROR = False

0 SPACE TELESCOPE
ST&I SCIENCE INSTITUTE

What are the challenges?

We are still HTCondor “newbies”, learning more all the time, but are
certain that we are not yet configuring and managing the system in an
optimal way (we seem to be “good enough” so far...)

What is the “best” allocation of HTCondor daemons across the pool?

What resources (memory/cpus) are necessary for the different daemons to
perform well?

Where are our bottlenecks?

We learned MUCH from our first days using CycleServer to view JWST test
processing in real-time

We have history with the OPUS system that clouds our thinking

Move AWAY from fine-granularity workflows to “super-jobs” (process
multiple observations or a full reprocessing run in a single job)

This approach will help us drive down the overheads we pay for each
workflow that we start-up and run

STScI | scince st 0

What are the challenges? (cont.)

e “Train wreck” scenarios during data processing can create an
operational burden to clean up and rescue failed workflows (e.g. a
“hiccup” in database connectivity can derail many of our workflows)

— Large reprocessing failures are easier to handle; just re-submit unfinished
datasets back to DPQ; reprocessing can always start at the beginning
e Allinputs for data being reprocessed are already available in the archive
— First-run processing is different

e completeness metrics are collected so we know all expected data from the
observatory was received and processed, and starting from the beginning on
failure can make metrics collection more difficult

e Grouping related exposures into combined products must wait for all pieces to
arrive on the ground, so there is data accounting that occurs in the first-run
that complicates failure recovery (and is unnecessary during reprocessing)

STScI | scince st 3

What are the challenges? (cont.)

e The population of the database table used to track dataset progress
through workflows is not completely robust

— We see sporadic HTCondor job hook failures, likely due to database
connectivity issues, so Operators can have difficulty in discerning real

failures from errant reports in the database (most-often the workflows
completed OK, but the DB says otherwise)

— We may back-off from real-time database insert/update in every job hook
call, and instead queue DB requests for more reliable, but less real-time,
capture of processing state

806592.000: Request is held.

Hold reason: Error from

STScI | scince st :

What are the challenges? (cont.)

e (Calibration programmers are clever folks who continue to devise new
computationally-expensive algorithms that make reprocessing of the
archive collection a performance burden

e Qur archive users would prefer if a reprocessing run did not take many
months to accomplish

— HTCondor to the rescue! grab all the CPUs we can get for major
reprocessing runs to speed things along

STScI | scince st :

In Closing

e We feel we are on the right path for JWST Data Processing

e We are getting on more solid operational footing with HST Data
Processing

e We will learn to optimize HST processing in time for JWST launch

e HTCondor was the right choice for our workflow management needs,
but we did have to supplement, as most other sites likely do as well

We are VERY appreciative to the HTCondor staff, and our consultant Scott
Koranda, for helpful responses to our queries and questions as we

continue to spin-up on this powerful, complex system (“...I KNOW there
must be a knob for that... “)

STScI | scince st

34

Thanks for listening!

STScI | scince st

