
HTCondor and Workflows:
An Introduction

HTCondor Week 2015
Kent Wenger

2

Outline

› Introduction/motivation

› Basic DAG concepts

› Pre/Post scripts

› Rescue DAGs

› Running and monitoring a DAG

Why workflows?

4

My jobs have
dependencies…

Can HTCondor help solve my
dependency problems?

Yes!

Workflows are the answer

5

What are workflows?

› General: a sequence of connected steps

› Our case
 Steps are HTCondor jobs
 Sequence defined at higher level
 Controlled by a Workflow Management System

(WMS), not just a script

Example workflow

...10k...

Preparation

Simulation

Analysis

7

Workflows – launch and forget

› Automates tasks user could perform manually
(for example, the previous slide)…
– But WMS takes care of automatically

› A workflow can take days, weeks or even
months

› The result: one user action can utilize many
resources while maintaining complex job inter-
dependencies and data flows

Workflow management systems
 DAGMan (Directed Acyclic Graph

Manager)
 HTCondor's WMS
 Introduction/basic features in this talk
 Advanced/new features in later talk

 Pegasus
 A higher level on top of DAGMan

 Data- and grid-aware
 A talk tomorrow with more details

9

Outline

› Introduction/motivation

› Basic DAG concepts

› Pre/Post scripts

› Rescue DAGs

› Running and monitoring a DAG

10

DAG (directed acyclic graph)
definitions

› DAGs have one or more
nodes (or vertices)

› Dependencies are
represented by arcs (or
edges). These are arrows
that go from parent to
child)

› No cycles!

A

B C

D

No!

11

HTCondor and DAGs

› Each node
represents an
HTCondor job (or
cluster)

› Dependencies define
possible orders of job
execution

A

B C

D

12

Charlie learns DAGMan

› Directed Acyclic Graph Manager

› DAGMan allows Charlie to specify the
dependencies between his HTCondor jobs,
so DAGMan manages the jobs
automatically

› Dependency example: do not get married
until rehab has completed successfully

13

Defining a DAG to DAGMan

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

Basic DAG commands

 Job command defines a name, associates
that name with an HTCondor submit file

 The name is used in many other DAG
commands

 “Job” should really be “node”
 Parent...child command creates a

dependency between nodes
 Child cannot run until parent completes

successfully

15

Submit description files

For node B:
file name:
b.submit
universe = vanilla
executable = B
input = B.in
output = B.out
error = B.err
log = B.log
queue

For node C:
file name:
c.submit
universe = standard
executable = C
input = C.in1
output = C.out
error = C.err
log = C.log
queue
Input = C.in2
queue

16

Jobs/clusters

› Submit description files used in a DAG can
create multiple jobs,
but they must all be in a single cluster.
– A submit file that creates >1 cluster

causes node failure

› The failure of any job means the entire
cluster fails. Other jobs in the cluster are
removed.

17

Node success or failure

› A node either succeeds or
fails

› Based on the return
value of the job(s)
0: success
not 0: failure

› This example: C fails
› Failed nodes block

execution; DAG fails

A

B C

D

18

Outline

› Introduction/motivation

› Basic DAG concepts

› Pre/Post scripts

› Rescue DAGs

› Running and monitoring a DAG

PRE and POST scripts
 DAGMan allows optional PRE and/or POST scripts

for any node
 Not necessarily a script: any executable
 Run before (PRE) or after (POST) job

PRE script

HTCondor
job

POST script

A Scripts run on submit machine
(not execute machine)

 In the DAG input file:
 Job A a.submit
 Script PRE A before-script

arguments
 Script POST A after-script

arguments

20

DAG node with scripts

› DAGMan treats the node as a
unit (e.g., dependencies are
between nodes)

› PRE script, Job, or POST
script determines node
success or failure (table in
manual gives details)

› If PRE script fails, job is not
run. The POST script is run.

PRE script

HTCondor
job

POST script

Node

Why PRE/POST scripts?

› Set up input

› Check output

› Dynamically create submit file or sub-DAG
(more later today)

› Probably lots of other reasons…

› Should be lightweight (run on submit
machine)

21

22

Script argument
variables

› $JOB: node name
› $JOBID: Condor ID (cluster.proc) (POST only)
› $RETRY: current retry
› $MAX_RETRIES: max # of retries
› $RETURN: exit code of HTCondor/Stork job (POST only)
› $PRE_SCRIPT_RETURN: PRE script return value (POST

only)
› $DAG_STATUS: A number indicating the state of

DAGMan. See the manual for details.
› $FAILED_COUNT: the number of nodes that have failed

in the DAG

23

Outline

› Introduction/motivation

› Basic DAG concepts

› Pre/Post scripts

› Rescue DAGs

› Running and monitoring a DAG

Rescue DAGs

 We want to re-try without
duplicating work

 Rescue DAGs do this –
details in later talk

 Generated automatically
when DAG fails

 Run automatically

A

B1

D

B2

C1 C2 C3

B3

 What if things don't complete perfectly?

25

Outline

› Introduction/motivation

› Basic DAG concepts

› Pre/Post scripts

› Rescue DAGs

› Running and monitoring a DAG

26

Submitting a DAG to HTCondor

› To submit an entire DAG, run

condor_submit_dag DagFile

› condor_submit_dag creates a submit
description file for DAGMan, and DAGMan itself
is submitted as an HTCondor job (in the
scheduler universe)

› -f(orce) option forces overwriting of existing
files (to re-run a previously-run DAG)

› Don't try to run duplicate DAG instances!

Controlling running DAGs:
remove

 condor_rm dagman_id
 Removes entire workflow

 Removes all queued node jobs
 Kills PRE/POST scripts

 Creates rescue DAG (more on this on later
today)

 Work done by partially-completed node jobs
is lost
• Relatively small jobs are good

Controlling running DAGs:
hold/release

 condor_hold dagman_id
 “Pauses” the DAG

 Queued node jobs continue
 No new node jobs submitted
 No PRE or POST scripts are run

 DAGMan stays in queue if not released

 condor_release dagman_id
 DAGMan “catches up”, starts submitting jobs

Controlling running DAGs: the
halt file

 “Pauses” the DAG (different semantics than
hold)

 Queued node jobs continue
 POST scripts are run as jobs finish
 No new jobs will be submitted and no PRE

scripts will be run
 When all submitted jobs complete, DAGMan

creates a rescue DAG and exits (if not un-halted)

29

The halt file (cont)
› Create a file named DagFile.halt in the same

directory as your DAG file.
› Remove halt file to resume normal operation
› Should be noticed w/in 5 sec

(DAGMAN_USER_LOG_SCAN_INTERVAL)

› Good if load on submit machine is very high
› Avoids hold/release problem of possible duplicate

PRE/POST script instances

30

31

Monitoring running DAGs:
condor_q -dag

› Shows current workflow state

› The -dag option associates DAG node
jobs with the parent DAGMan job

> condor_q -dag

-- Submitter: nwp@llunet.cs.wisc.edu : <128.105.14.28:51264> : llunet.cs.wisc.edu

 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD

 392.0 nwp 4/25 13:27 0+00:00:50 R 0 1.7 condor_dagman -f –

 393.0 |-1 4/25 13:27 0+00:00:23 R 0 0.0 1281.sh 393

 395.0 |-0 4/25 13:27 0+00:00:30 R 0 1.7 condor_dagman -f –

 399.0 |-A 4/25 13:28 0+00:00:03 R 0 0.0 1281.sh 399

4 jobs; 0 completed, 0 removed, 0 idle, 4 running, 0 held, 0 suspended

32

Monitoring a DAG: dagman.out
file

› Logs detailed workflow history
› Mostly for debugging – first place to look if

something goes wrong!

› DagFile.dagman.out
› Verbosity controlled by the
DAGMAN_VERBOSITY configuration macro and
–debug n on the condor_submit_dag
command line

• 0: least verbose
• 7: most verbose

› Don’t decrease verbosity unless really needed

33

Dagman.out contents

...

04/17/11 13:11:26 Submitting Condor Node A job(s)...

04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '='
'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.

04/17/11 13:11:27 assigned Condor ID (180224.0.0)

04/17/11 13:11:27 Just submitted 1 job this cycle...

04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)

04/17/11 13:11:27 Number of idle job procs: 1

04/17/11 13:11:27 Of 4 nodes total:

04/17/11 13:11:27 Done Pre Queued Post Ready Un-Ready Failed

04/17/11 13:11:27 === === === === === === ===

04/17/11 13:11:27 0 0 1 0 0 3 0

04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.

34

More information

› More in later talk!

› There’s much more detail, as well as
examples, in the DAGMan section of the
online HTCondor manual.

› DAGMan:
http://research.cs.wisc.edu/htcondor/
dagman/dagman.html

› For more questions: htcondor-
admin@cs.wisc.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

