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Why workflows?
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My jobs have 
dependencies…

Can HTCondor help solve my 
dependency problems?

Yes!

Workflows are the answer
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What are workflows?

› General: a sequence of connected steps

› Our case
 Steps are HTCondor jobs
 Sequence defined at higher level
 Controlled by a Workflow Management System 

(WMS), not just a script



Example workflow

...10k...

Preparation

Simulation

Analysis
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Workflows – launch and forget

› Automates tasks user could perform manually 
(for example, the previous slide)…
– But WMS takes care of automatically

› A workflow can take days, weeks or even 
months

› The result: one user action can utilize many 
resources while maintaining complex job inter-
dependencies and data flows



Workflow management systems
 DAGMan (Directed Acyclic Graph 

Manager)
 HTCondor's WMS
 Introduction/basic features in this talk
 Advanced/new features in later talk

 Pegasus
 A higher level on top of DAGMan

 Data- and grid-aware
 A talk tomorrow with more details
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DAG (directed acyclic graph) 
definitions

› DAGs have one or more 
nodes  (or vertices)

› Dependencies are 
represented by arcs (or 
edges). These are arrows 
that go from parent to 
child)

› No cycles!

A

B C

D

No!
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HTCondor and DAGs

› Each node 
represents an 
HTCondor job (or 
cluster)

› Dependencies define 
possible orders of job 
execution

A

B C

D
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Charlie learns DAGMan

› Directed Acyclic Graph Manager

› DAGMan allows Charlie to specify the 
dependencies between his HTCondor jobs, 
so DAGMan manages the jobs 
automatically

› Dependency example:  do not get married 
until rehab has completed successfully
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Defining a DAG to DAGMan

A  DAG input file defines a DAG:

# file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D



Basic DAG commands

 Job command defines a name, associates 
that name with an HTCondor submit file

 The name is used in many other DAG 
commands

 “Job” should really be “node”
 Parent...child command creates a 

dependency between nodes
 Child cannot run until parent completes 

successfully
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Submit description files

For node B:
# file name: 
#    b.submit
universe   = vanilla
executable = B
input      = B.in
output     = B.out
error      = B.err
log        = B.log
queue

For node C:
# file name:
#    c.submit
universe   = standard
executable = C
input      = C.in1
output     = C.out
error      = C.err
log        = C.log
queue
Input = C.in2
queue
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Jobs/clusters

› Submit description files used in a DAG can 
create multiple jobs,
but they must all be in a single cluster.
– A submit file that creates >1 cluster 

causes node failure

› The failure of any job means the entire 
cluster fails. Other jobs in the cluster are 
removed.
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Node success or failure

› A node either succeeds or 
fails

› Based on the return 
value of the job(s)
0: success
not 0: failure

› This example: C fails
› Failed nodes block 

execution; DAG fails

A

B C

D
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PRE and POST scripts
 DAGMan allows optional PRE and/or POST scripts 

for any node
 Not necessarily a script: any executable
 Run before (PRE) or after (POST) job

PRE script

HTCondor
job

POST script

A Scripts run on submit machine 
(not execute machine)

 In the DAG input file:
 Job A a.submit
 Script PRE A before-script 

arguments
 Script POST A after-script 

arguments
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DAG node with scripts

› DAGMan treats the node as a 
unit (e.g., dependencies are 
between nodes)

› PRE script, Job, or POST 
script determines node 
success or failure (table in 
manual gives details)

› If PRE script fails, job is not 
run. The POST script is run.

PRE script

HTCondor
job

POST script

Node



Why PRE/POST scripts?

› Set up input

› Check output

› Dynamically create submit file or sub-DAG 
(more later today)

› Probably lots of other reasons…

› Should be lightweight (run on submit 
machine)

21
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Script argument 
variables

›  $JOB: node name
›  $JOBID: Condor ID (cluster.proc) (POST only)
›  $RETRY: current retry
›  $MAX_RETRIES: max # of retries
›  $RETURN: exit code of HTCondor/Stork job (POST only)
›  $PRE_SCRIPT_RETURN: PRE script return value (POST 

only)
›  $DAG_STATUS: A number indicating the state of  

DAGMan.  See the manual for details.
›  $FAILED_COUNT: the number of nodes that have failed 

in the DAG
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Rescue DAGs

 We want to re-try without 
duplicating work

 Rescue DAGs do this – 
details in later talk

 Generated automatically 
when DAG fails

 Run automatically

A

B1

D

B2

C1 C2 C3

B3

 What if things don't complete perfectly?
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Submitting a DAG to HTCondor

› To submit an entire DAG, run

condor_submit_dag DagFile

› condor_submit_dag  creates a submit 
description file for DAGMan, and DAGMan itself 
is submitted as an HTCondor job (in the 
scheduler universe)

› -f(orce) option forces overwriting of existing 
files (to re-run a previously-run DAG)

› Don't try to run duplicate DAG instances!



Controlling running DAGs: 
remove

 condor_rm dagman_id
 Removes entire workflow

 Removes all queued node jobs
 Kills PRE/POST scripts

 Creates rescue DAG (more on this on later 
today)

 Work done by partially-completed node jobs 
is lost
• Relatively small jobs are good



Controlling running DAGs: 
hold/release

 condor_hold dagman_id
 “Pauses” the DAG

 Queued node jobs continue
 No new node jobs submitted
 No PRE or POST scripts are run

 DAGMan stays in queue if not released

 condor_release dagman_id
 DAGMan “catches up”, starts submitting jobs



Controlling running DAGs: the 
halt file

 “Pauses” the DAG (different semantics than 
hold)

 Queued node jobs continue
 POST scripts are run as jobs finish
 No new jobs will be submitted and no PRE 

scripts will be run
 When all submitted jobs complete, DAGMan 

creates a rescue DAG and exits (if not un-halted)

29



The halt file (cont)
› Create a file named DagFile.halt in the same 

directory as your DAG file.
› Remove halt file to resume normal operation
› Should be noticed w/in 5 sec 

(DAGMAN_USER_LOG_SCAN_INTERVAL)

› Good if load on submit machine is very high
› Avoids hold/release problem of possible duplicate 

PRE/POST script instances

30
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Monitoring running DAGs:
condor_q -dag

› Shows current workflow state

› The -dag option associates DAG node 
jobs with the parent DAGMan job

> condor_q -dag

-- Submitter: nwp@llunet.cs.wisc.edu : <128.105.14.28:51264> : llunet.cs.wisc.edu 

    ID      OWNER/NODENAME   SUBMITTED     RUN_TIME ST PRI SIZE CMD

    392.0   nwp             4/25 13:27   0+00:00:50 R  0   1.7  condor_dagman -f – 

    393.0    |-1            4/25 13:27   0+00:00:23 R  0   0.0  1281.sh 393        

    395.0    |-0            4/25 13:27   0+00:00:30 R  0   1.7  condor_dagman -f – 

    399.0     |-A           4/25 13:28   0+00:00:03 R  0   0.0  1281.sh 399        

4 jobs; 0 completed, 0 removed, 0 idle, 4 running, 0 held, 0 suspended
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Monitoring a DAG: dagman.out 
file

›  Logs detailed workflow history
›  Mostly for debugging – first place to look if 

something goes wrong!

› DagFile.dagman.out
›  Verbosity controlled by the 
DAGMAN_VERBOSITY configuration macro and 
–debug n on the condor_submit_dag 
command line

• 0: least verbose
• 7: most verbose

› Don’t decrease verbosity unless really needed
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Dagman.out contents

...

04/17/11 13:11:26 Submitting Condor Node A job(s)...

04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '=' 
'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a 
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.

04/17/11 13:11:27       assigned Condor ID (180224.0.0)

04/17/11 13:11:27 Just submitted 1 job this cycle...

04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)

04/17/11 13:11:27 Number of idle job procs: 1

04/17/11 13:11:27 Of 4 nodes total:

04/17/11 13:11:27  Done     Pre   Queued    Post   Ready   Un-Ready   Failed

04/17/11 13:11:27   ===     ===      ===     ===     ===        ===      ===

04/17/11 13:11:27     0       0        1       0       0          3        0

04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.
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More information

› More in later talk!

› There’s much more detail, as well as 
examples, in the DAGMan section of the 
online HTCondor manual.

› DAGMan: 
http://research.cs.wisc.edu/htcondor/
dagman/dagman.html

› For more questions: htcondor-
admin@cs.wisc.edu
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