
High-Energy Physics workloads
on 10k non-dedicated opportunistic

cores
with Lobster

Anna Woodard, Matthias Wolf, et.al.
presented by Benjamin Tovar
Cooperative Computing Lab

http://ccl.cse.nd.edu

Analyzing Data from the LHC

The High Energy Physics (HEP) community relies
upon a global network of dedicated resources to
analyze data from the Large Hadron Collider.

HEP analysis Task

CVMFS over FUSE

linux kernel

Analysis software is
distributed via
CVMFS, a read-only
filesystem over
HTTP.

With FUSE, the
remote software is
local as far as the
task is concerned.

Notre Dame's happy
opportunistic situation

• ~21k cores at Notre Dame's Center for
Research Computing (CRC)

• They belong to different individual PIs, but they
are available through condor when not used by
their owners.

condor.cse.nd.edu

from dedicated to opportunistic

HEP analysis Task

CVMFS over FUSE

linux kernel

For efficiency with
several tasks running
on the same node,
CVMFS caches files.

If we are not careful,
our bandwidth and
disk space are no
more...

A FUSE module
requires installation
by the system
administrator.

The biggest hurdle
when going
opportunistic.

Tasks running on
opportunistic
resources should be
prepared for constant
eviction.

preview of the results

ND CMS + CCTools + libCVMFS + CRC = Lobster

Lobster is a system for deploying data
intensive high-throughput application

on non-dedicated resources

Anna Woodard
Matthias Wolf
Charles Mueller

Nil Valls
Kevin Lannon

Michael Hildreth

Ben Tovar
Patrick Donnelly

Peter Ivie
Douglas Thain

Paul Brenner
Serguei Fedorov

Jakob Blomer
Dan Bradley
Rene Meusel

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational node

and managed?
4. How should tasks be decomposed to efficiently

deal with eviction?
5. How the results of several tasks should be

synthesized?

•

•

•

•
…

•

•
•
• …
•

– …
•

–
–
–
–

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational node

and managed?
4. How should tasks be decomposed to efficiently

deal with eviction?
5. How the results of several tasks should be

synthesized?

How a task may access CERN resources?

We use parrot

Parrot intercepts system calls and transforms them
according to the requested service:

% parrot_run vi /anonftp/ftp.gnu.org/pub/README
% parrot_run ls /cvmfs/cms.cern.ch

parrot's dream use

a whole, unmodified
workflow

parrot_run

a whole workflow
parrot_run
parrot_run
parrot_run

parrot's practical use

parrot has to mimic the kernel and de facto
behaviour of glibc. It is a good way to discover the
skeletons in the closet of the kernel, and thus it is
better to restrict its use.

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational node

and managed?
4. How should tasks be decomposed to efficiently

deal with eviction?
5. How the results of several tasks should be

synthesized?

How can several tasks efficiently access
the same data on a node?

We use pilot jobs (called workers) with condor,
and libcvmfs' alien cache with parrot.

(ETXTBSY issue recently fixed!)

Measuring overheads

(a maximum of 4 tasks per worker/condor job)

Measuring overheads

few tasks,
overhead
mostly from
parrot.

many tasks,
overhead
from other
parts of
lobster

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational

node and managed?
4. How should tasks be decomposed to efficiently

deal with eviction?
5. How the results of several tasks should be

synthesized?

How tasks can be sent to a
computational node?

We use Work Queue, a master-worker lightweight execution system part of
CCTools.

Condor jobs are
work queue
workers. The
Lobster master
sends tasks to
those workers.

cvmfs via parrot

WQ master

The Lobster master

The master is written using Work Queue's python bindings.

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational node

and managed?
4. How should tasks be decomposed to

efficiently deal with eviction?
5. How the results of several tasks should be

synthesized?

How should tasks be decomposed
to efficiently deal with eviction?

Our pool's
sweet
spot is
2 to 5
hours.

from dedicated to opportunistic
1. How a task may access CVMFS resources?
2. How can several tasks efficiently access the

same data on a node?
3. How tasks can be sent to a computational node

and managed?
4. How should tasks be decomposed to efficiently

deal with eviction?
5. How the results of several tasks should be

synthesized?

the whole lobster enchilada

Phase Time (hours) Fraction (%)

Processing CPU 171036 53.4

Other Non-CPU 65356 20.4

Failed jobs 44830 14.0

WQ startup 22056 6.9

WQ Output transfer wait 8954 2.8

Total 320462

about 20 CPU
years in two days.

bottlenecks
current bottleneck for O(10k) is bandwidth

next bottleneck for O(20k) is the squid proxy servers

summary

• Lobster is designed to run millions of data intensive tasks
on tens of thousands of non-dedicated cores over a time
scale of weeks.

• Every component runs with a minimum of privilege.
• A single user has available performance comparable to a

whole Tier 2 site.
• Running on the scale of 10k cores.

• 9 gigabits/s input.

• 150 gigabits/s output.

docker, condor and auto-builds

