
What’s new in HTCondor?

What’s coming?

HTCondor Week 2015

Todd Tannenbaum

Center for High Throughput Computing

Department of Computer Sciences

University of Wisconsin-Madison

3

Release Timeline
› Development Series

HTCondor v8.3.6 frozen, in beta test, release to

web 6/9/15.

HTCondor v8.3.7 (final features for v8.3 series,

default settings improvements), release 6/30/15.

HTCondor v8.3.8 (valgrind + Coverity + bug

fixes), v8.4.0 Release Candidate, release 7/21/15.

› Stable Series

HTCondor v8.4.0 – first half of August

v8.2.9 will likely be the last v8.2.x released

Last Year: Condor v8.2.0 (June 24th 2014)

› Since HTCondor Week 2014: 17 releases, 2337

commits by 22 contributors

› EC2 Grid Job Improvements

› Better support for OpenStack

› Google Compute Engine

Jobs

› HTCondor submit jobs into

BOINC

› Scalability over slow links

› GPU Support

› New Configuration File

Constructs including

includes, conditionals, meta-

knobs

HTCondor v8.2 Enhancements

4

› Asynchronous Stage-out of

Job Output

› Ganglia Monitoring via

condor_gangliad

› condor_sos

› Dynamic file transfer

scheduling via disk I/O Load

› Daily pool job run statistics

via condor_job_report

› Monitoring via

BigPanDAmon

› Scalability and stability

 Goal: 200k slots in one pool, 10 schedds managing 400k jobs

 Resolved developer tickets: 240 bug fix issues (v8.2.x tickets),

234 enhancement issues (v8.3 tickets)

› Docker Job Universe

› Tool improvements, esp condor_submit

› IPv6 mixed mode

› Encrypted Job Execute Directory

› Periodic application-layer checkpoint support in Vanilla

Universe

› Submit requirements

› New packaging

Some

HTCondor v8.3 Enhancements

5

Scalability

Enhancement

Examples

6

Elimination of File Locking on

Job and Schedd Event Logs

7

This lock is no

match for the power

of POSIX file

append semantics!

• File lock

requests on

Linux are

not

scheduled

• Schedd

observed

blocked for

minutes!

A condor_shadow spawned for each running

job

Upon spawn, shadow authenticates to

schedd, startd (on execute host)
This authentication uses CPU, Memory

Condor_shadow resources

Solution:

 Shadow Diet!!

 Eliminate Authentication!

8

9

v7.8.7:

860KB/

1860KB

v8.4.0

386KB

› FS (file system) and GSI authentication are

now performed asynchronously

So now a Condor daemon can perform many

authentications in parallel

CMS pool went from 200 execute nodes

(glideins) per collector to 2000

› Can cache mapping of GSI certificate name

to user name

Mapping can be heavyweight, esp if HTCondor

has to contact an external service (LCMAPS…)

Knob name is GSS_ASSIST_GRIDMAP_CACHE_EXPIRATION

Authentication Speedups

10

› Negotiator can ask the schedd for more than one

resource request per network round trip.

NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE = 20

Faster assignment of resources

from central manager to schedd

11

Impact of multiple resource requests

Negotiation times for 1000 slot pool

12

9 32 4 19 4 17
113

1153

40

407

36

370

0

200

400

600

800

1000

1200

1400

100 1000

8.2.8 LAN

8.3.5 LAN 20reqs

8.3.5 LAN 100reqs

8.2.8 WAN

8.3.5 WAN 20reqs

8.3.5 WAN 100reqs

of job autoclusters

› Less CPU

required to

send big

projections

of

ClassAds

ClassAd Projection Improvements

13

"ClassAds. This is the weapon of

sysadmin. Not as clumsy or random

as a grep or regex. A more elegant

weapon for a more civilized age…"

14

15

Eliminate CCB service pauses

› Improvement: Collector will not fork for

queries to small tables

Load Collector with 100k machine ads

Before change: ~4.5 queries/second

After change: ~24.4 queries/second

› Improvement: Schedd condor_q quantum

adjusted (to 100ms)

Load schedd with 100k jobs ads, 40Hz job

throughput

Before change: ~135 seconds per condor_q

After change: ~22 seconds per condor_q

Query Responsiveness

16

17

› HTCondor cgroup support now manages

swap space in addition to CPU, Memory

request_swap = XXXX

› [[Also a lot of progress on “Lark” project to

manage network resources

request_network_bandwidth = XXXX]]

› New job universe to support Docker

Containers

Container Support

(Black Box Applications)

18

This is Docker

Docker manages Linux containers.

 Provides :

• Process space

• NATed network

• Root file

system (image)

• Namespace for

images

• UID space

19

Condor startd detects docker

$ condor_status –l | grep –i docker

HasDocker = true

DockerVersion = "Docker version

1.5.0, build a8a31ef/1.5.0“

$ condor_status –const HasDocker

20

Docker Universe

universe = docker

docker_image = deb7_and_HEP_stack

transfer_input_files = some_input

executable = /bin/my_executable

arguments = arg1

output = out

error = err

log = log

queue

21

Docker Universe Job

Is still a job

› Docker containers have the job-nature
condor_submit

condor_rm

condor_hold

Write entries to the job event log(s)

condor_dagman works with them

Policy expressions work.

Matchmaking works

User prio / job prio / group quotas all work

Stdin, stdout, stderr work

Etc. etc. etc.*

22

Scratch dir == Volume

Means normal file xfer rules apply

 transfer in, transfer out

 subdirectory rule holds

 condor_tail works

Any changes to the container are not xfered

Container is removed when executable exits

23

Docker Resource limiting

RequestCpus = 4

RequestMemory = 1024M

RequestCpus translated into cgroup shares

RequestMemory enforced

 If exceeded, job gets OOM killed

 job goes on hold

24

Surprises with

Docker Universe

Condor_ssh_to_job doesn’t work (yet…)

Condor_chirp doesn’t work (yet…)

Suspend doesn’t work

Can’t access NFS/shared filesystems

Networking is only NAT

25

Many condor_submit

improvements

26

You submit your jobs

with that script??!?

You’re braver than I

thought!

Queue <N> <var> in (<item-list>)

Queue <N> <var> matching (<glob-list>)

Queue <N> <vars> from <filename>

Queue <N> <vars> from <script> |

› Iterate <items>, creating <N> jobs for each item

› In/from/matching keywords control how we get <items>

› There's more. See the manual for details.

More ways to Queue 'foreach'

27

Args = $(Item)

Queue 2 in (alpha, beta delta gamma)

› Produces 8 jobs (2 for each item)

› It unrolls to this submit file:
Item=alpha

Step=0

Queue

Step=1

Queue

Item=beta

Step=0

Queue

 ...

Example: Queue in

28

Queue 3 Item matching (*.dat, m*)

› Produces 3 jobs for each file that matches

.dat or m (or both)

› $(Item) holds each filename in turn

Queue matching files

29

Queue from <filename>

 Read <filename> and treat lines as items

Queue from <script> |

 Execute <script> and treat output lines as items

Queue from

30

› -limit <num>

Show at most <num> records

› -totals

Show only totals

› -dag <dag-id>

Show all jobs in the dag

› -autocluster -long

Group and count jobs that have same

requirements

…perfect for provisioning systems

Condor_q new arguments

31

Tool

improvement

questions?

32

› New in 8.4 is support for “mixed mode,”

using IPv4 and IPv6 simultaneously.

› A mixed-mode pool’s central manager and

submit nodes must each be reachable on

both IPv4 and IPv6.

› Execute nodes and (other) tool-hosting

machines may be IPv4, IPv6, or both.

› ENABLE_IPV4 = TRUE

ENABLE_IPV6 = TRUE

33

IPv6 Support

› Each 8.4 daemon includes its IPv4 and its

IPv6 address in its advertisement.

› Older clients ignore the new information

and just use IPv4. (This was the tricky

part.)

› 8.4 clients decide which address to use

based on their own configuration.

› We Boldly Claim™ that everything will Just

Work™.

How Mixed Mode Works

34

IPv6 questions?

35

› Jobs can request (or admins can require) that

their scratch directory be encrypted in realtime

/tmp and /var/tmp output also encrypted

Put encrypt_execute_directory=True in job

submit file (or condor_config)

› Only the condor_starter and job processes can

see the cleartext

Even a root ssh login / cron job will not see the

cleartext

Batch, interactive, and condor_ssh_to_job works

Encrypted Execute Directory

36

› When making network connections, the

server has to decide if it authorizes the

client:

ALLOW_READ, ALLOW_WRITE, etc.

ALLOW_ADMINISTRATOR = tannenba@cs.wisc.edu

Authorization Propagation

37

› In HTCondor 8.2.X and earlier, if the server

did not authorize the client, it simply closed

the TCP connection

› This caused a lot of frustration for clients,

as commands would fail with cryptic error

messages, or sometimes no error at all!

Authorization Propagation

38

› Send a command:
% condor_restart -master

Sent "Restart" command to local master

› But did it take effect? MasterLog:
05/20/15 06:22:59 PERMISSION DENIED to

unauthenticated@unmapped from host

128.105.121.64 for command 453 (RESTART)

Authorization Propagation

39

› In 8.3.6 and beyond, authorization

information is given back to the client

during the command protocol

› No extra network round trips needed!

% condor_restart –master

SECMAN:2010:Received "DENIED" from server for user

zmiller@cs.wisc.edu using method FS.

Can't send Restart command to local master

Authorization Propagation

40

› Experimental feature!

› If requested, HTCondor periodically sends

the job its checkpoint signal and waits for

the application to exit.

› If it exits with code 0, HTCondor considers

the checkpoint successful and does file

transfer, and re-executes the application.

› Otherwise, the job is requeued.

Periodic Application-Level

Checkpointing in the Vanilla Universe

41

universe = vanilla

executable = self-checkpointing

transfer_executable = true

should_transfer_files = true

when_to_transfer_output = ON_EXIT_OR_EVICT

+WantCheckpointSignal = true

+CheckpointSig = "SIGTERM"

stream_output = true

stream_error = true

Example Submit File

42

› allow administrator to decide which jobs enter

the queue

› are a named set of ClassAd constraints

› each constraint evaluated in the context of

the schedd and job ad; any failure causes the

whole submission to fail

› evaluated in listed order

› rejection (error) message may be customized

44

Submit Requirements

44

SUBMIT_REQUIREMENT_NAMES =

NotStdUniv, MinimalRequestMemory

SUBMIT_REQUIREMENT_NotStdUniv =

JobUniverse != 1

SUBMIT_REQUIREMENT_MinimalRequestMemory =

RequestMemory > 512

SUBMIT_REQUIREMENT_NotStdUniv_REASON =

"This pool doesn’t do standard universe."

Submit Requirements Example

45

Questions on periodic file

transfer or submit requirements?

46

DAGMan changes since last year

 PRE/POST script retry after delay (DEFER

option)

 DAGMan handles submit file “foreach”

syntax

 Configuration:

 Maxpre, maxpost default to 20 (was 0)

 Maxidle defaults to 1000 (was 0)

 Fixed DAGMan entries in param table

47

DAGMan changes (cont)

 Node status file:

 Format is now ClassAds

 More info (retry number,

procs queued and held

for each node)

 Fixed bug: final DAG

status not always

recorded correctly

 ALWAYS-UPDATE

option

 Now works on Windows

Good, good!

Everything is

proceeding as

DAGMan has

foreseen!

48

DAGMan changes (cont)

 dagman.out file:

 Node job hold reason in dagman.out

 DAG_Status in dagman.out

 -DoRecovery command-line option

 Stricter checking of SPLICE syntax

 No (unused) command socket

 Stork no longer supported

49

50

HTCondor RPM Packaging

›More Standard Packaging
Matches OSG and Fedora package layout

Built with rpmbuild

Source RPM is released
•Can rebuild directly from the source RPM

•Build requirements are enforced by rpmbuild

Partitioned into several binary RPMs
•Pick and choose what you need

50

HTCondor Binary RPM Packages
RPM Description

condor Base package

condor-all Includes all the packages in a typical installation

condor-bosco BOSCO – Manage jobs on remote clusters

condor-classads HTCondor classified advertisement language

condor-classads-devel Development support for classads

condor-debuginfo Symbols for libraries and binaries

condor-externals External programs and scripts

condor-externals-libs External libraries

condor-kbdd HTCondor Keyboard Daemon

condor-procd HTCondor Process Tracking Daemon

condor-python Python Bindings for HTCondor

condor-static-shadow Static Shadow (Use 32-bit shadow on 64-bit system)

condor-std-universe Standard Universe Support

condor-vm-gahp VM Universe Support

51

HTCondor Debian Packaging

›More Standard Packaging
Matches debian package layout

Built with pbuilder

Source package is released

deb Description

condor Base Package

condor-dbg Symbols for libraries and programs

condor-dev Development files for HTCondor

condor-doc HTCondor documentation

libclassad-dev Development files for Classads

libclassad7 Classad runtime libaries

52

› Time spent on DNS Lookups

Special counter for ‘slow’ lookups

› Counter for ResourceRequestsSent

› Per-user file transfer stats in Submitter ads

› New knob acts a whitelist for Statistics

publication to the Collector

Statistics

53

54

› Aggregate and send them to Ganglia!

condor_gangliad introduced in v8.2

› In addition (or instead) of sending to

Ganglia, aggregate and make available in

JSON format over HTTP

› View some basic historical usage out-of-

the-box by pointing web browser at central

manager (modern CondorView)…

› ….Or upload JSON to influxdb, couchdb, …

What to do with all these

statistics?

55

› Moving/Caching Job

Input Data

Full session on data

management right after

lunch today!

› Security Credentials

Kerberos Ticket

Management and

Delegation

56

› Late materialization of jobs in the schedd to

enable submission of very large sets of

jobs, e.g.

 queue 1000000

More jobs materialized once number of idle

jobs drops below a threshold (like DAGMan

throttling)

› No “walking” of the job queue

Internally means more indexes, priority

queues, aggregates

More Schedd Scalability

57

› Proposed new default output of condor_q

will show summary of current users jobs.

-- Submitter: adam Schedd: submit-3.chtc.wisc.edu

OWNER IDLE RUNNING HELD SUBMITTED DESCRIPTION JOBIDs

adam - 1 - 3/22 07:20 DAG: 221546 230864.0

 - - 1 3/23 08:57 AtlasAnlysis 263203.0

 - 1 - 3/27 09:37 matlab.exe 307333.0

 133 21 - 3/27 11:46 DAG: 311986 312342.0 ... 313304.0

In the last 20 minutes:

 0 Job(s) were Completed

 5 Job(s) were Started 312690.0 ... 312695.0

 1 Job(s) were Held 263203.0

 263203.0 5/11 07:22 Error from slot1@eee.chtc.wisc.edu: out of disk

New condor_q default output

58

› Speak OpenStack’s NOVA protocol

Better supported than EC2 compatibility

interface

Allows better error handling

Provides richer set of controls on instances

Potential to obtain and manage resources

beyond servers

Native OpenStack Support

59

› Partitionable Slots (Pslots) contains

unclaimed machine resources

› Dynamic slots (Dslots) are created with

enough resources to run a series of jobs;

Dslots can’t be resized, split, or merged

› When the schedd is done using a Dslot, its

resources are returned to the unclaimed

Pslot and the Dslot is destroyed.

› Can easily lead to starvation of larger jobs

60

Partitionable Slots (Pslots)

› condor_drain <machine>

No new jobs may start until all jobs gracefully

evicted from the machine and all resources

returned to pslot

› condor_defrag daemon selects machines

for draining

Doesn’t use job mix for decisions on

• How many machines to drain

• Which machines to drain

• Which users/jobs should get drained machines

Current Solution: Draining

61

› We’re looking for better solutions

› Currently considering two options

Directed Draining

Pslot Claiming

Better options to condor_defrag

62

I am altering the

slot. Pray I don't

alter it any further!

› Negotiator considers all resources of

machine when matching (pslot + dslots)

Publishes information about how many more-

desirable jobs would match each machine if

drained

› condor_defrag daemon can use this

information when deciding how many

machines and which machines to drain

Directed Draining

63

› Whole machines are assigned to users by

negotiator

Pslot is claimed by schedd

› Removes need for condor_defrag, as

schedd divides pslot to run jobs

Can redivide as needed to run different sized

jobs

Can sublet unused resources

Can quickly evict subletters

Pslot Claiming

64

› More scalable to do

matchmaking at the

level of the machine.

› More power to the

schedd, which can

be scaled

horizontally.

Pslot claiming, cont.

65

Now witness the

power of this fully

armed and

operational schedd!

Questions on

Partitionable

Slot Changes?

or OpenStack

support?

66

Thank You!

67

Please help us, high

throughput computing.

You’re our only hope!

