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Release Timeline 
› Development Series 

HTCondor v8.3.6 frozen, in beta test, release to 

web 6/9/15. 

HTCondor v8.3.7 (final features for v8.3 series, 

default settings improvements), release 6/30/15. 

HTCondor v8.3.8 (valgrind + Coverity + bug 

fixes), v8.4.0 Release Candidate, release 7/21/15. 

› Stable Series 

HTCondor v8.4.0 – first half of August 

v8.2.9 will likely be the last v8.2.x released 

Last Year: Condor v8.2.0 (June 24th 2014) 

› Since HTCondor Week 2014: 17 releases, 2337 

commits by 22 contributors 



› EC2 Grid Job Improvements 

› Better support for OpenStack 

› Google Compute Engine 

Jobs 

› HTCondor submit jobs into 

BOINC  

› Scalability over slow links 

› GPU Support 

› New Configuration File 

Constructs including 

includes, conditionals, meta-

knobs 

HTCondor v8.2 Enhancements 

4 

› Asynchronous Stage-out of 

Job Output 

› Ganglia Monitoring via 

condor_gangliad 

› condor_sos 

› Dynamic file transfer 

scheduling via disk I/O Load 

› Daily pool job run statistics 

via condor_job_report 

› Monitoring via 

BigPanDAmon 



› Scalability and stability 

 Goal: 200k slots in one pool, 10 schedds managing 400k jobs 

 Resolved developer tickets: 240 bug fix issues (v8.2.x tickets), 

234 enhancement issues (v8.3 tickets) 

› Docker Job Universe 

› Tool improvements, esp condor_submit 

› IPv6 mixed mode 

› Encrypted Job Execute Directory 

› Periodic application-layer checkpoint support in Vanilla 

Universe 

› Submit requirements 

› New packaging  

 

 

 

 

 

 

 

 

Some  

HTCondor v8.3 Enhancements 
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Scalability 

Enhancement 

Examples 
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Elimination of File Locking on 

Job and Schedd Event Logs 
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This lock is no 

match for the power 

of POSIX file 

append semantics! 

• File lock 

requests on 

Linux are 

not 

scheduled 

• Schedd 

observed 

blocked for 

minutes! 

 



A condor_shadow spawned for each running 

job 

Upon spawn, shadow authenticates to 

schedd, startd (on execute host) 
This authentication uses CPU, Memory 

Condor_shadow resources 

Solution: 

  Shadow Diet!! 

  Eliminate Authentication! 
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v7.8.7: 

860KB/ 

1860KB 

 

v8.4.0 

386KB 



› FS (file system) and GSI authentication are 

now performed asynchronously 

So now a Condor daemon can perform many 

authentications in parallel 

CMS pool went from 200 execute nodes 

(glideins) per collector to 2000  

› Can cache mapping of GSI certificate name 

to user name 

Mapping can be heavyweight, esp if HTCondor 

has to contact an external service (LCMAPS…) 

Knob name is GSS_ASSIST_GRIDMAP_CACHE_EXPIRATION 

 

 

Authentication Speedups 

10 



› Negotiator can ask the schedd for more than one 

resource request per network round trip. 

 

NEGOTIATOR_RESOURCE_REQUEST_LIST_SIZE = 20 

 

 

Faster assignment of resources 

from central manager to schedd 
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Impact of multiple resource requests 

Negotiation times for 1000 slot pool 
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› Less CPU 

required to 

send big 

projections 

of 

ClassAds  

ClassAd Projection Improvements 
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"ClassAds. This is the weapon of 

sysadmin. Not as clumsy or random 

as a grep or regex. A more elegant 

weapon for a more civilized age…" 
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Eliminate CCB service pauses  



› Improvement: Collector will not fork for 

queries to small tables 

Load Collector with 100k machine ads 

Before change: ~4.5 queries/second  

After change: ~24.4 queries/second 

› Improvement: Schedd condor_q quantum 

adjusted (to 100ms) 

Load schedd with 100k jobs ads, 40Hz job 

throughput 

Before change: ~135 seconds per condor_q 

After change: ~22 seconds per condor_q 

Query Responsiveness 
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› HTCondor cgroup support now manages 

swap space in addition to CPU, Memory 

request_swap = XXXX 

› [[Also a lot of progress on “Lark” project to 

manage network resources 

request_network_bandwidth = XXXX ]] 

› New job universe to support Docker 

Containers 

 

 

Container Support  

(Black Box Applications) 
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This is Docker 

Docker manages Linux containers. 

                                 Provides : 

• Process space 

• NATed network 

• Root file 

system (image) 

• Namespace for 

images 

• UID space 
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Condor startd detects docker 

$ condor_status –l | grep –i docker 

HasDocker = true 

DockerVersion = "Docker version 

1.5.0, build a8a31ef/1.5.0“ 

 

$ condor_status –const HasDocker 
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Docker Universe 

universe = docker 

docker_image = deb7_and_HEP_stack 

transfer_input_files = some_input 

executable = /bin/my_executable 

arguments = arg1 

output = out 

error = err 

log = log 

queue 
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Docker Universe Job 

Is still a job 

› Docker containers have the job-nature 
condor_submit 

condor_rm 

condor_hold 

Write entries to the job event log(s) 

condor_dagman works with them 

Policy expressions work. 

Matchmaking works 

User prio / job prio / group quotas all work 

Stdin, stdout, stderr work 

Etc. etc. etc.* 
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Scratch dir == Volume 

Means normal file xfer rules apply 

 transfer in, transfer out 

 subdirectory rule holds 

 condor_tail works 

 

Any changes to the container are not xfered 

Container is removed when executable exits 
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Docker Resource limiting 

RequestCpus = 4 

RequestMemory = 1024M 

 

RequestCpus translated into cgroup shares 

RequestMemory enforced 

 If exceeded, job gets OOM killed 

 job goes on hold 
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Surprises with  

Docker Universe 

Condor_ssh_to_job doesn’t work (yet…) 

Condor_chirp doesn’t work (yet…) 

Suspend doesn’t work 

Can’t access NFS/shared filesystems 

Networking is only NAT 
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Many condor_submit 

improvements 
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You submit your jobs 

with that script??!? 

You’re braver than I 

thought! 



Queue <N> <var> in (<item-list>) 

Queue <N> <var> matching (<glob-list>) 

Queue <N> <vars> from <filename> 

Queue <N> <vars> from <script> | 

› Iterate <items>, creating <N> jobs for each item 

› In/from/matching keywords control how we get <items> 

› There's more. See the manual for details. 

More ways to Queue 'foreach' 
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Args = $(Item) 

Queue 2 in ( alpha, beta delta gamma ) 

› Produces 8 jobs (2 for each item) 

› It unrolls to this submit file: 
Item=alpha 

Step=0 

Queue 

Step=1 

Queue 

Item=beta 

Step=0 

Queue 

 ... 

Example: Queue in 
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Queue 3 Item matching (*.dat, m*) 

 

› Produces 3 jobs for each file that matches 

*.dat or m* (or both) 

› $(Item) holds each filename in turn 

Queue matching files 
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Queue from <filename> 

 Read <filename> and treat lines as items 

Queue from <script> | 

 Execute <script> and treat output lines as items 

Queue from 
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› -limit <num> 

Show at most <num> records  

› -totals 

Show only totals 

› -dag <dag-id> 

Show all jobs in the dag 

› -autocluster -long 

Group and count jobs that have same 

requirements 

…perfect for provisioning systems  

Condor_q new arguments 
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Tool 

improvement 

questions? 
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› New in 8.4 is support for “mixed mode,” 

using IPv4 and IPv6 simultaneously. 

› A mixed-mode pool’s central manager and 

submit nodes must each be reachable on 

both IPv4 and IPv6. 

› Execute nodes and (other) tool-hosting 

machines may be IPv4, IPv6, or both. 

› ENABLE_IPV4 = TRUE 

ENABLE_IPV6 = TRUE 
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IPv6 Support 



› Each 8.4 daemon includes its IPv4 and its 

IPv6 address in its advertisement. 

› Older clients ignore the new information 

and just use IPv4.  (This was the tricky 

part.) 

› 8.4 clients decide which address to use 

based on their own configuration. 

› We Boldly Claim™ that everything will Just 

Work™. 

 

How Mixed Mode Works 
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IPv6 questions? 
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› Jobs can request (or admins can require) that 

their scratch directory be encrypted in realtime 

/tmp and /var/tmp output also encrypted 

Put encrypt_execute_directory=True in job 

submit file (or condor_config)  

› Only the condor_starter and job processes can 

see the cleartext 

Even a root ssh login / cron job will not see the 

cleartext  

Batch, interactive, and condor_ssh_to_job works 

Encrypted Execute Directory 
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› When making network connections, the 

server has to decide if it authorizes the 

client: 

ALLOW_READ, ALLOW_WRITE, etc. 

 

ALLOW_ADMINISTRATOR = tannenba@cs.wisc.edu 

Authorization Propagation 

37 



› In HTCondor 8.2.X and earlier, if the server 

did not authorize the client, it simply closed 

the TCP connection 

› This caused a lot of frustration for clients, 

as commands would fail with cryptic error 

messages, or sometimes no error at all! 

Authorization Propagation 
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› Send a command: 
% condor_restart -master 

Sent "Restart" command to local master 

 

› But did it take effect?  MasterLog: 
05/20/15 06:22:59 PERMISSION DENIED to 

unauthenticated@unmapped from host 

128.105.121.64 for command 453 (RESTART) 

Authorization Propagation 
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› In 8.3.6 and beyond, authorization 

information is given back to the client 

during the command protocol 

› No extra network round trips needed! 

 
% condor_restart –master 

SECMAN:2010:Received "DENIED" from server for user 

zmiller@cs.wisc.edu using method FS. 

Can't send Restart command to local master 

Authorization Propagation 
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› Experimental feature! 

› If requested, HTCondor periodically sends 

the job its checkpoint signal and waits for 

the application to exit. 

› If it exits with code 0, HTCondor considers 

the checkpoint successful and does file 

transfer, and re-executes the application. 

› Otherwise, the job is requeued. 

Periodic Application-Level 

Checkpointing in the Vanilla Universe 
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universe                = vanilla 

executable              = self-checkpointing 

transfer_executable     = true 

should_transfer_files   = true 

when_to_transfer_output = ON_EXIT_OR_EVICT 

+WantCheckpointSignal   = true 

+CheckpointSig          = "SIGTERM" 

stream_output           = true 

stream_error            = true 

Example Submit File 
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› allow administrator to decide which jobs enter 

the queue 

› are a named set of ClassAd constraints 

› each constraint evaluated in the context of 

the schedd and job ad; any failure causes the 

whole submission to fail 

› evaluated in listed order 

› rejection (error) message may be customized 
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Submit Requirements 

44 



SUBMIT_REQUIREMENT_NAMES =  

NotStdUniv, MinimalRequestMemory 

SUBMIT_REQUIREMENT_NotStdUniv = 

JobUniverse != 1 

SUBMIT_REQUIREMENT_MinimalRequestMemory =  

RequestMemory > 512 

SUBMIT_REQUIREMENT_NotStdUniv_REASON = 

"This pool doesn’t do standard universe." 

Submit Requirements Example 
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Questions on periodic file 

transfer or submit requirements? 
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DAGMan changes since last year 

 PRE/POST script retry after delay (DEFER 

option) 

 DAGMan handles submit file “foreach” 

syntax 

 Configuration: 

 Maxpre, maxpost default to 20 (was 0) 

 Maxidle defaults to 1000 (was 0) 

 Fixed DAGMan entries in param table 
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DAGMan changes (cont) 

 Node status file: 

 Format is now ClassAds 

 More info (retry number, 

procs queued and held 

for each node) 

 Fixed bug: final DAG 

status not always 

recorded correctly 

 ALWAYS-UPDATE 

option 

 Now works on Windows 

Good, good! 

Everything is 

proceeding as 

DAGMan has 

foreseen! 
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DAGMan changes (cont) 

 dagman.out file: 

 Node job hold reason in dagman.out 

 DAG_Status in dagman.out 

 -DoRecovery command-line option 

 Stricter checking of SPLICE syntax 

 No (unused) command socket 

 Stork no longer supported 
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HTCondor RPM Packaging 

›More Standard Packaging 
Matches OSG and Fedora package layout 

Built with rpmbuild 

Source RPM is released 
•Can rebuild directly from the source RPM 

•Build requirements are enforced by rpmbuild 

Partitioned into several binary RPMs 
•Pick and choose what you need 
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HTCondor Binary RPM Packages 
RPM Description 

condor Base package 

condor-all Includes all the packages in a typical installation 

condor-bosco BOSCO – Manage jobs on remote clusters 

condor-classads HTCondor classified advertisement language 

condor-classads-devel Development support for classads 

condor-debuginfo Symbols for libraries and binaries 

condor-externals External programs and scripts 

condor-externals-libs External libraries 

condor-kbdd HTCondor Keyboard Daemon 

condor-procd HTCondor Process Tracking Daemon 

condor-python Python Bindings for HTCondor 

condor-static-shadow Static Shadow (Use 32-bit shadow on 64-bit system) 

condor-std-universe Standard Universe Support 

condor-vm-gahp VM Universe Support 
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HTCondor Debian Packaging 

›More Standard Packaging 
Matches debian package layout 

Built with pbuilder 

Source package is released 

deb Description 

condor Base Package 

condor-dbg Symbols for libraries and programs 

condor-dev Development files for HTCondor 

condor-doc HTCondor documentation 

libclassad-dev Development files for Classads 

libclassad7 Classad runtime libaries 
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› Time spent on DNS Lookups 

Special counter for ‘slow’ lookups 

› Counter for ResourceRequestsSent 

› Per-user file transfer stats in Submitter ads 

› New knob acts a whitelist for Statistics 

publication to the Collector 

Statistics 
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› Aggregate and send them to Ganglia!  

condor_gangliad introduced in v8.2 

› In addition (or instead) of sending to 

Ganglia, aggregate and make available in 

JSON format over HTTP 

› View some basic historical usage out-of-

the-box by pointing web browser at central 

manager (modern CondorView)… 

› ….Or upload JSON to influxdb, couchdb, … 

 

 

What to do with all these 

statistics? 
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› Moving/Caching Job 

Input Data 

Full session on data 

management right after 

lunch today!  

 

› Security Credentials 

Kerberos Ticket 

Management and 

Delegation 
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› Late materialization of jobs in the schedd to 

enable submission of very large sets of 

jobs, e.g. 

  queue 1000000 

More jobs materialized once number of idle 

jobs drops below a threshold (like DAGMan 

throttling) 

› No “walking” of the job queue 

Internally means more indexes, priority 

queues, aggregates 

More Schedd Scalability 
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› Proposed new default output of condor_q 

will show summary of current users jobs. 
 

-- Submitter: adam      Schedd: submit-3.chtc.wisc.edu 

OWNER      IDLE RUNNING   HELD  SUBMITTED  DESCRIPTION  JOBIDs 

adam          -       1      -  3/22 07:20 DAG: 221546  230864.0 

              -       -      1  3/23 08:57 AtlasAnlysis 263203.0 

              -       1      -  3/27 09:37 matlab.exe   307333.0 

            133      21      -  3/27 11:46 DAG: 311986  312342.0 ... 313304.0 

 

In the last 20 minutes: 

    0 Job(s) were Completed 

    5 Job(s) were Started                               312690.0 ... 312695.0 

    1 Job(s) were Held                                  263203.0 

        263203.0  5/11 07:22 Error from slot1@eee.chtc.wisc.edu: out of disk  

New condor_q default output 
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› Speak OpenStack’s NOVA protocol 

Better supported than EC2 compatibility 

interface 

Allows better error handling 

Provides richer set of controls on instances 

Potential to obtain and manage resources 

beyond servers 

Native OpenStack Support 
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› Partitionable Slots (Pslots) contains 

unclaimed machine resources 

› Dynamic slots (Dslots) are created with 

enough resources to run a series of jobs; 

Dslots can’t be resized, split, or merged 

› When the schedd is done using a Dslot, its 

resources are returned to the unclaimed 

Pslot and the Dslot is destroyed. 

› Can easily lead to starvation of larger jobs 
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Partitionable Slots (Pslots) 



› condor_drain <machine> 

No new jobs may start until all jobs gracefully 

evicted from the machine and all resources 

returned to pslot 

› condor_defrag daemon selects machines 

for draining 

Doesn’t use job mix for decisions on 

• How many machines to drain 

• Which machines to drain 

• Which users/jobs should get drained machines 

Current Solution: Draining 
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› We’re looking for better solutions 

› Currently considering two options 

Directed Draining 

Pslot Claiming 

Better options to condor_defrag 
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I am altering the 

slot. Pray I don't 

alter it any further! 



› Negotiator considers all resources of 

machine when matching (pslot + dslots) 

Publishes information about how many more-

desirable jobs would match each machine if 

drained 

› condor_defrag daemon can use this 

information when deciding how many 

machines and which machines to drain 

Directed Draining 
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› Whole machines are assigned to users by 

negotiator 

Pslot is claimed by schedd 

› Removes need for condor_defrag, as 

schedd divides pslot to run jobs 

Can redivide as needed to run different sized 

jobs 

Can sublet unused resources 

Can quickly evict subletters 

Pslot Claiming 
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› More scalable to do 

matchmaking at the 

level of the machine. 

› More power to the 

schedd, which can 

be scaled 

horizontally. 

Pslot claiming, cont. 
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Now witness the 

power of this fully 

armed and 

operational schedd!  



Questions on 

Partitionable 

Slot Changes? 

 

or OpenStack 

support? 
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Thank You! 
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Please help us, high 

throughput computing. 

You’re our only hope! 


