
One Pool To Rule Them All	

The CMS HTCondor/glideinWMS Global Pool

D. Mason for CMS Software & Computing

1

• Going to try to give you a picture of the CMS HTCondor/
glideinWMS global pool	

• What’s the use case — what problem are we trying to solve	

• How we’re solving it — i.e. the global pool	

• Building the thing, how well its working	

• Obligatory prognostication

2

CMS

• CMS

3

CMS

Lake Geneva

Alps

Geneva Airport

CERN Meyrin

Geneva

France

LHC

Gran Sasso

C
N

G
S
ν’s

CMS is a particle physics  
experiment at the CERN LHC

Millions of protons 
at very high energy 
collide every second

Our detector records  
collisions we think are interesting	

These are “events”

Here.

4

We keep billions of 	

independent events like these

Disentangling what happened
in EACH event takes

~minutes of CPU

5

We keep billions of 	

independent events like these

Disentangling what happened
in EACH event takes

~minutes of CPU HT

How We Handled This in the First LHC Run

6

Strictly Tiered	

Infrastructure.	

Tasks 	

Constrained 	

To Class of 
Resource

And then subdivided depending on grid

7

Analysis	

& Production

Analysis Pool

Production Pool

LHC Run 1: Hard partitioned resources
with multiple submission methods

• But in this upcoming run

• Beam energy is two times higher	

• We’ll record two times the rate of data	

• The machine will collide many more protons together at the same time	

➡ Need many more resources than we did for Run 1 O(100k’s cores)	

✓ Choose a submission method: +glideinWMS	

✓ Need to pool resources — be flexible  
where to run	

✓ Need to be able to rebalance  
priorities globally

8

(E. Fajardo’s talk tomorrow AM)

The Unifier — glideIn WMS

• Independent of the underlying batch system of a site, from the VO
perspective glideinWMS constructs a uniform HTCondor pool — essential
for making a global pool.

9

CMS Drivers & Implementation

• The analysis and central production use cases rely on agents (ultimately daemons written
in python) collecting, building and submitting jobs.	

• CRAB3 collects user jobs and handles job submission, retries, data stage out	

• WMAgent handles requests from physics groups for simulation or data reprocessing.	

• Agents sit with the schedd’s, all schedd’s talk to the common global pool Frontend	

• In the absence of other requirements, site whitelists, memory # core requirements, a global
priority determines who runs first.	

• Frontend calls up factories to send pilots to the requisite sites — pilots have a “pilot” or
“production” role.	

• Use gLExec to take on the central production or analysis user’s credentials.

10

Overall Design Characteristics

• We have agents/schedd’s distributed at CERN, FNAL, UCSD and UNL.	

• About a dozen active at any given time	

• With the help of OSG Factory Ops we use factories at CERN, FNAL, UCSD, GOC	

• We’ve as much as possible tried to configure the glideinWMS components as HA between
CERN and FNAL.	

• With the latest glideinWMS now all components, Frontend, Collectors, can run HA	

• Important when you don’t have a 24 hour team at your disposal (FNAL does, used as a
last resort) but need 24 hour availability.	

• Worked hard to move from patched up custom built infrastructure of a year ago to all
release RPM’s, deployed via puppet.	

• Much easier to scale up when needed, replace failed nodes, make test instances !

11

Global Pool Timeline

~May 2014 	

 	

 Global Pool begins with analysis use case	

June-July 2014:	

 Analysis pool scale testing in “CSA14” exercise	

Aug. 2014:	

 	

 Begin adding test production jobs to the mix	

Sep 2014: 	

 	

 50k test production jobs reached in global pool	

Nov 2014: 	

	

 Production officially joins analysis in global pool	

Jan 2015:	

	

 	

 >100k analysis and production jobs reached 	

Mar 2015:	

 	

 CMS Tier 0 begins flocking to global pool

12

Production	
 dives	
 into	
 the	
 	

global	
 pool

• A year ago we suffered from long negotiation cycles, schedd
crashes, Frontends shedding jobs.	

• Certainly thanks to close cooperation with the HTCondor
and glideInWMS developers, the global pool now reliably
handles ~100k jobs.

Global Prioritization

• The global priority now allows us to better control use of the resources
depending on the need

13

Tier 0 and the global pool

• In Run 1 the Tier 0, the first line of prompt processing after data leaves the detector ran
in the local LSF queue at CERN.	

• This time around, with the move to the Agile Infrastructure cloud CMS decided to build
a dedicated condor pool for the Tier 0 at CERN.	

• The Tier 0 is tied to the data-taking stream, so reliability is key	

• Because of length of time to provision OpenStack AI resources, we carve off VM’s
running month long pilots.	

• There were concerns during machine down times, lower activity, etc. that having
large numbers of long lived idle pilots would have adverse effects on the global pool	

• But also given the high data rate * more complicated events we know the CERN
resources will not be sufficient to run all the Tier 0 workflows.	

• Overflow processing to Tier 1’s	

• I.e. flock to the global pool

14

Tier 0 pool to Global Pool Flocking

• Allows the Tier 0 to expand out to take advantage of the Tier 1 resources 	

• Inherently set a high priority for the flocked jobs, there is a ~few day
requirement for T0 job completion.	

• Input data already distributed to Tier 1 sites by the time the jobs needing it
as input run. 	

• Though can use xrootd as a fallback to read direct from CERN

15

Successful Flocking of T0 Jobs

16

CMS Milestone

T0 Cores/ T1 site

What Next?

• As the intensity of the LHC increases the focus will be gaining access to and
utilizing additional resources.	

• Opportunistic use of spare cycles in OSG	

• Making use of allocations at HPC centers — accessing via Bosco and
Parrot	

• CMS High Level Trigger farm between LHC fills	

• Gambling on getting cheap resources on commercial clouds	

• All of this of course you saw in Tony T’s talk this morning… Sanjay’s talk
just a bit ago…	

• Providing easy and appropriate access to local resources, “my campus
cluster”

17

• Fuzzy thing at the left is what the
global pool really looks like! 
http://condor.cse.nd.edu/condor_matrix.cgi	

• In time for the new physics run CMS
has converted its submission
infrastructure into a single coherent
global HTCondor/glideinWMS pool.	

• It will allow us to be more flexible, use
resources more efficiently, and be
better able to exploit the science of
LHC Run 2!	

• As we move forward, as the machine
intensity increases, so will the need for
more and more varied resources 	

• HTCondor & glideinWMS has more
than met the challenge so far! We
look forward to continue working with
the HTCondor & glideInWMS teams
to meet the challenges to come!

18
Monitoring by Notre Dame, 	

adapted to global pool by  
B. Holzman and T. Tiradani

A picture is worth  
100k jobs…

Acknowledgements

• James Letts (UCSD) co CMS Submission Infrastructure lead  
Brian Bockelman (UNL) as Bockelman-at-Large	

• FNAL and CERN operations teams —K. Larson, T. Tiradani, A. Malta, F. Khan, A. McCrea, M.
Mascheroni, B. Holzman, M. Saiz-Santos, S. Belaforte, D. Hufnagel, V. Verguilov, J. Silva, J. Barcas	

• Jeff Dost (UCSD) & the OSG Factory Ops Team	

• HTCondor development team	

• glideInWMS development team

19

