
Lark: Software Defined
Networking Integration with

HTCondor and More
Zhe Zhang

University of Nebraska-Lincoln

1

Physical Switch

WAN

Worker Node 1 Worker Node 2 Worker Node 3

Figure 1: Traditional network topology for a cluster

What’s the problem here for HTCondor?
2

eth0
Physical Network

Device

job 1 job 2 job 3

worker node

Problem & Motivation
• At worker node level, HTCondor

cannot manage networks similarly
like CPU, memory and disk.

• At network layer, HTCondor
cannot see differences among
jobs come from the same host.
Thus the granularity is per-host
but not per-job.

• What we want is to improve this
granularity to be per-job. Figure 2: Zoom in view for a worker node

3

Previous Work
• The Lark project aims to tackle this problem.

• Related Presentations and talks from previous
years’ HTCondor weeks: Todd &
Garhan@HTCondor Week13; Brian@HTCondor
Week12.

• This talk will report our latest progress and
development.

4

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/Gattebury_LARK.pdf
http://research.cs.wisc.edu/htcondor/CondorWeek2012/presentations/bockelman-condor-container.pdf

Partitionable Slot
• Allows HTCondor to use the resources of a slot in a dynamic

way; these slots may be partitioned according to the jobs
running as opposed at configuration time.

• Slots have a fixed set of resources which include the cores,
memory and disk space.

• They spawn a dynamic slot based on the resources the job
needs.

• By partitioning the slot at runtime, we can become more
flexible about resource usage.

5

Partitionable slot examples
• Partitionable slot resource  
cpu = 10  
memory = 10240  
disk = 102400

• Job A allocates to this slot with resource requirement 
cpu = 3  
memory = 1024  
disk = 10240

• After Job A occupies a dynamic slot, remaining resource: 
cpu = 7  
memory = 9216  
disk = 92160

Can we do this for network
bandwidth resource?

• Yes, we can! By using extensible machine
resource mechanism.

• In HTCondor configuration file, add:
MACHINE_RESOURCE_INVENTORY_BANDWIDTH
= /path/to/executable

• Executable to check available bandwidth resource
and attributes are inserted to machine ClassAd.

• Now machine slot broadcasts resource: 
cpu = 10  
memory = 10240  
disk = 102400  
bandwidth = 1000

• How does user request for bandwidth resource? 
 
Universe = vanilla  
Executable = /usr/bin/curl  
Output = test.out  
Error = test.err  
Log = test.log  
request_bandwidth = 10  
Arguments = -4 -O http://hcc-lark03.unl.edu/1GB.zip 
Queue  

http://hcc-lark03.unl.edu/1GB.zip

Not enough…

• We still need to make sure each job can only
use the amount of bandwidth it requests.

• We utilize network namespaces + Open
vSwitch: network namespaces give us
network isolation and Open vSwitch provides
host-level QoS and bandwidth limiting.

Open vSwitch
• A production quality,

multilayer virtual switch (a
piece of software runs in
the kernel which performs
like a hardware switch).

• Enable network automation
through programmatic
extensions.

• We utilize QoS functionality
and OpenFlow support.

10

Figure 3: Open vSwitch

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Initial Configuration

condor_starter

Network namespace with Open vSwitch
Illustration - Step 1

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Starter creates network pipes

condor_starter

Network Pipe
Device

Network Pipe
Device

Network namespace with Open vSwitch
Illustration - Step 2

Network namespace with Open vSwitch
Illustration - Step 3

Worker Node

System Network Namespace

External Network

Physical Network
Device

Create Open vSwitch bridge
Assign IP address from physical device to bridge

condor_starter

Network Pipe
Device

Network Pipe
Device

Open vSwitch
bridge

192.168.0.1

Network namespace with Open vSwitch
Illustration - Step 4

Worker Node

System Network Namespace

External Network

Physical Network
Device

Add physical interface and one end of virtual
Ethernet device pair to bridge

condor_starter

Network Pipe
Device

Network Pipe
Device

Open vSwitch
bridge

192.168.0.1

Network namespace with Open vSwitch
Illustration - Step 5

Worker Node

System Network Namespace

External Network

Physical Network
Device

Starter forks new process with new network namespace

condor_starter

Network Pipe
Device

Network Pipe
Device

Open vSwitch
bridge

192.168.0.1

Job-Private Network
Namespace

condor_starter

Network namespace with Open vSwitch
Illustration - Step 6

Worker Node

System Network Namespace

External Network

Physical Network
Device

Parent starter passes one end of network pipe to network namespace,
Child starter configures IP address via DHCP or static allocation

condor_starter

Network Pipe
Device

Open vSwitch bridge
192.168.0.1

Job-Private Network
Namespace

condor_starter

Network Pipe
Device

192.168.0.2
Network Pipe

Network namespace with Open vSwitch
Illustration - Step 7

Worker Node

System Network Namespace

External Network

Physical Network
Device

Final Configuration

condor_starter

Network Pipe
Device

Open vSwitch bridge
192.168.0.1

Job-Private Network
Namespace

condor_starter

Network Pipe
Device

192.168.0.2
Network Pipe

Network Calls

Figure 4: Worker node network configurations
with Open vSwitch integration v.s. LAN configuration

Worker Node

System Network Namespace

Private Network
Namespace

Private Network
Namespace

Private Network
Namespace

Open vSwitch

eth0

veth1
external

veth3
external

veth2
external

veth1
internal

veth2
internal

veth3
internal

Job 1 Job 2 Job 3

Physical Switch

WAN

Worker Node 1 Worker Node 2 Worker Node 3

Host level bandwidth
management

• Now each job owns an unique network device, we can
apply Open vSwitch QoS on the port that connects to
the external end of the network pipe.

• Combine these two aspects: extensible machine
resource + Open vSwitch integration, we can have a
basic host level bandwidth management feature for
HTCondor jobs.

• Let’s consider the previous job again.

Test HTCondor job
• Download a file of 1GB from hcc-lark03.unl.edu, job requests

bandwidth 10Mbps. 
request_bandwidth = 10

hcc-lark03

HTCondor Worker Node

Open
vSwitch

Job 1

veth
internal

veth
external

eth0

QoS
applied

Figure 4: Test job network topology

Figure 5: Traffic rate for test HTCondor job

10Mbps

See backup slides for more!

Now What?
• It is nice to have host-level bandwidth management functionality,

but it is only useful at host level.

• Most sites really want to do WAN bandwidth management for
HTCondor, which is more expensive and hence a more common
bottleneck.

• To enable this capability, we need the network hardware to be
able to associate application information (HTCondor) with
network traffic.

• We seek the help from Software Defined Networking (SDN).

What is SDN?
“Software-Defined Networking (SDN) is an emerging architecture
that is dynamic, manageable, cost-effective, and adaptable, making it

ideal for the high-bandwidth, dynamic nature of today's
applications. This architecture decouples the network control and

forwarding functions enabling the network control to become
directly programmable and the underlying infrastructure to be

abstracted for applications and network services. The OpenFlow™
protocol is a foundational element for building SDN solutions.”	

!
— Definition from Open Network Foundation (ONF)!

Figure 8: Regular switch v.s. OpenFlow enabled switch

Control Plane

Data Plane

Regular Switch

• Control Plane becomes a software runs on commodity hardware as a controller.

• There are flow table on switch, which stores the OpenFlow rules used for packet forwarding.

• When packet hits switch, first iterate flow table for match; otherwise it is sent to controller.

• Controller determines what to do with the packet according to the controller program and
then installs rule for this packet match to the flow table on switch.

Control Plane (SDN Controller)

Data Plane

OpenFlow enabled switch

OpenFlow
protocol

App App App

Figure 9: SDN-enabled cluster network topology

HTCondor Worker Node

Open
vSwitch

OpenFlow
Controller

Job 1 Job 2

veth1
internal

veth2
internal

veth1
external

veth2
external

eth0

Core Switch

HTCondor Worker Node

Open
vSwitch

Job 1 Job 2

veth1
internal

veth2
internal

veth1
external

veth2
external

eth0

WAN

HTCondor + SDN
• A condor_starter plugin sends job and machine ClassAd

(which includes the job IP address) to an OpenFlow controller
before the job executes.

• This uniquely identifies the traffic coming from a job.

• The controller classifies observed network traffic using this
information; for example, it may classify the traffic by the job’s
Owner attribute.

• The controller applies policy to the packet by installing an
OpenFlow rule in the correspond switch.

Hardware Switch
• On the network, we usually don’t care about individual users

- but what groups or projects they work on.

• Hence, we create a QoS queue with different bandwidth
allocations (prioritization) for different projects on the WAN
port.

• The controller classifies the network traffic by project
associated with that job and writes a new hardware rule.

• The switch enqueues packets into the correct QoS queue.
26

Core Switch Level - Example
• Two HTCondor jobs, each of

which uploads a file of 200MB
to FTP servers.

• Belong to different projects,
e.g. CMS vs NonCMS, with
different WAN bandwidth
allocated. (8Mbps vs 4Mbps)

• OpenFlow controller associates
project with HTCondor traffic
and do project-based QoS at
core switch.

27

FTP
Server 1

FTP
Server 2

HTCondor Worker Node 1

Open
vSwitch

OpenFlow
Controller

CMS
job

veth1
internal

veth1
external

eth0

Core Switch

HTCondor Worker Node 2

Open
vSwitch

NonCMS
job

veth1
internal

veth1
external

eth0

Figure 10: Network setup for HTCondor jobs

28

Figure 11: WAN bandwidth management for HTCondor jobs

8Mbps

4Mbps

Experiment result

OpenFlow-enabled GridFTP
• There are other users of WAN bandwidth besides

HTCondor jobs - GridFTP is often a culprit!

• We have implemented a GridFTP callout to provide the
controller with an association of application-level file
transfer info (such as transfer type, filename, username)
with a TCP flow.

• The controller can then prioritize GridFTP traffic in a
manner similar to HTCondor traffic.

29

GridFTP example
•Take three GridFTP clients,
each downloading a file of
200MB from the GridFTP server.
!

•Client1 -> /test1/200MB 
Client2 -> /test2/200MB 
Client3 -> /test3/200MB
!

•We prioritize different access
based on directory: 
/test1/* -> 4Mbps  
/test2/* -> 2Mbps  
/test3/* -> 1Mbps

OpenFlow
Controller

WAN

GridFTP Client 3

Core Switch

GridFTP
Server

GridFTP Client 1 GridFTP Client 2

Figure 12: GridFTP experiment setup

Experiment Result

Figure 13: GridFTP file transfers when downloading
files in different directories.

31

4Mbps

2Mbps

1Mbps

Combining the examples
• Each project likely has network traffic from multiple

applications (HTCondor + GridFTP).

• We want to direct network traffic for all the supported
applications in one project to its associated QoS
queue.

• Traffic competes according to normal TCP rules
intra-project but bandwidth is protected inter-project.

32

Figure 14: HTCondor jobs + GridFTP file transfer
33

FTP
Server 1 FTP

Server 2

HTCondor Worker Node 1

Open
vSwitch

OpenFlow
Controller

CMS
job

veth1
internal

veth1
external

eth0

Core Switch

HTCondor Worker Node 2

Open
vSwitch

NonCMS
job

veth1
internal

veth1
external

eth0

GridFTP
CMS Client

GridFTP
NonCMS Client

WAN

GridFTP
Sever

• We combine
previous HTCondor
and GridFTP
example together.

• HTCondor job:
upload 200MB file to
FTP server in WAN.
(CMS and NonCMS)

• GridFTP clients
download file of
200MB from
GridFTP server in
cluster. (also CMS
and NonCMS users)

• CMS project has a
queue with bandwidth
8Mbps.

• NonCMS project has a
queue with bandwidth
4Mbps.

• Within each project,
GridFTP traffic grabs
most of the bandwidth
when both of the two
applications are running.

• Across projects, their
assigned total
bandwidth are reserved.

34

8Mbps

4Mbps

Figure 15: WAN bandwidth management for multiple applications

Conclusion

• HTCondor has no mechanism to do network
resource management. With network namespace,
extensible machine resource and Open vSwitch,
we can manage network at host level.

• Further by integrating SDN with this framework,
we can manage WAN bandwidth resource for
HTCondor and other applications.

35

Future Work

• Support more cluster computing softwares
to investigate network traffic characteristics
within project and across project.

• Get current work deployed in production
cluster and do real-world measurements.

36

Acknowledgement

• Nebraska: Brian Bockelman, Garhan
Attebury

• Wisconsin: Alan DeSmet, Dale W. Carder,
Todd Tannenbaum

• NSF Funding ACI-1245864

37

Thanks!
Questions?

38

Backup Slides

A more complicated example for host-
level bandwidth management

• Enforce total bandwidth
resource at a worker node
to be 10Mbps.

• Two users submit several
curl jobs. Each of them
downloads a 200MB file
with bandwidth
requirement.

• User A requests for 1Mbps;
User B requests for 9Mbps.

40

Figure : Worker node network topology
for multiple jobs

HTTP
Server 1

HTTP
Server 2

HTCondor Worker Node

Open
vSwitch

Job 1 Job 2

veth1
internal

veth2
internal

veth1
external

veth2
external

eth0

1Mbps
9Mbps

• Due to host-level bandwidth
management, two jobs can
run at the same time (to
saturate the total bandwidth
resource), and jobs get their
requested bandwidth.

• Without bandwidth resource
requirement, when two jobs
from different users are
running, each of the job is
expected to get 5Mbps
bandwidth on average
(equal competition).

41

Figure : HTCondor job traffic for two users

1Mbps

9Mbps

Attributes Meaning
in_port Switch port number packet arrives
dl_src Ethernet source address
dl_dst Ethernet destination address
dl_vlan VLAN ID

dl_vlan_pcp VLAN priority
dl_type Ethertype/length (e.g. 0x0800=IPv4)
nw_tos IP TOS/DS bits

nw_proto IP protocol (e.g., 6=TCP)
nw_src IP source address
nw_dst IP destination address
tp_src TCP/UDP source port
tp_dst TCP/UDP destination port

Table 1: Packet match field

OpenFlow Actions Class

Output ofp_action_output

Enqueue ofp_action_enqueue

Set VLAN ID ofp_action_vlan_vid

Set VLAN priority ofp_action_vlan_pcp

Set Ethernet src or dst address ofp_action_dl_addr

Set IP src or dst address ofp_action_nw_addr

Set IP Type of Service ofp_action_nw_tos

Set TCP/UDP src or dst port ofp_action_tp_port

Table 2: Available OpenFlow actions (1.0)

Example Network Policies for
HTCondor

• Block network traffic from specific HTCondor users.

• Isolate network traffic among HTCondor users.

• Block specific HTCondor users to communicate
with outside network.

• And, of course, manage WAN traffic!

44

