
What’s new in HTCondor?

What’s coming?

HTCondor Week 2014

Todd Tannenbaum

Center for High Throughput Computing

Department of Computer Sciences

University of Wisconsin-Madison

2

3

Release Situation
› Development Series

HTCondor v8.1.6 frozen (release candidate for

v8.2.0), in beta test, release to web 5/20/14.

Development on series v8.1.x over, v8.3.x release

scheduled for 7/1/14.

› Stable Series

June 5th: HTCondor v8.2.0

 v8.0.6 will likely be the last v8.0.x released

 Last Year: Condor v8.0.0 (June 6th 2013)

› Since HTCondor Week 2012: 14 releases,

3375 commits by 32 contributors, resolved

tickets: 170 stable series, 397 dev series

New RPM

Packaging!

4

Platforms tested with v8.2.0

› Continue to push into distro repositories

32bit Debian 6

32bit Scientific Linux 5

32bit Scientific Linux 6

64Bit Debian 6 (squeeze),

64Bit Debian 7 (wheezy),

64Bit Fedora 19

64Bit Fedora 20

64Bit MacOSX 8

64Bit MacOSX 9

64Bit Red Hat 5

64Bit Red Hat 6

64Bit Red Hat 7

64Bit Scientific Linux 5

64Bit Scientific Linux 6

(and 7 when it becomes

available)

64Bit Ubuntu 12.04 LTS

64Bit Ubuntu 14.04 LTS

64Bit Windows 7 SP1

64Bit Windows 8.1

› HTCondor-CE

› Bosco

› DAGMan additions

› EC2 Spot, OpenStack

› Several new tools

› ClassAd Compression

› Generic Slot Resources

› Python Interfaces

› Job Sandboxing

New goodies with v8.0

5

› Interactive jobs

› Open development

process progress

› Security policy

maturation

› Many more…

“...we have identified six key challenge areas that we believe

will drive HTC technologies innovation in the next five

years.”

• Evolving resource acquisition models

• Hardware complexity

• Widely disparate use cases

• Data intensive computing

• Black-box applications

• Scalability

Challenge Areas

6

› Hardening, better failure handling

Especially for spot instances

Errors used to result in orphaned instances

Reduced calls to service EC2 jobs

› Better support for OpenStack

Recognize and handle protocol changes

Recognize API differences from Amazon

› condor_ssh_to_job supports EC2 jobs

7

EC2 Grid job improvements

8

› New grid-type “gce”

› Similar to EC2 support

› Basic instance parameters

GCE zone

Machine type

VM Image

Instance-specific data

Google Compute Engine Jobs

9

› Berkeley Open Infrastructure for Network

Computing

› Grew out of SETI@Home, began in 2002

› Middleware system for volunteer computing

10

A Brief History of BOINC

› Previous work

Backfill state and Work-Fetch Hooks

HTCondor execute machine becomes a

BOINC client when otherwise idle

› Now, we’re doing the reverse…

Previous Work

11

› New grid universe type: boinc

Submit file format very similar to other job

types

Application must be described to BOINC

server first

• Manual step at present

› Why?

Easy accessibility for campus users, OSG VOs

“Submit locally, run globally”

Use in workflows

HTCondor submitting jobs to

BOINC

12

Scalability

13

› “…CMS has stood up a new submit

machine in Switzerland, trying to connect to

a central manager in the US. Round trip

ping time is on the order of 200 ms, and

they see that the negotiation is much

slower to those schedds, topping at 5Hz”

Improve matchmaking protocol

esp over slow links

14

Improve matchmaking protocol

esp over slow links, cont

15

› Currently in production with ~50k slots

› Testing now for a target of 250k slots

› Glidein nodes around the world

Network latency

CCB / shared_port

Strong security (GSI)

› Knocking over bottlenecks

“Collector only handling 100 updates/sec!”

US CMS Scale Work

16

“Collector only

handling 100

updates/sec!”

17

Collector Update Rate

18

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445

udp 1k

udp 1k

Update w/ jumbo UDP datagrams

19

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445

udp 1k

udp 16k

› Schedd restart time improved

› Reduced max time to detect a disappeared

node now 6 minutes, was 2 hours.

› Non-blocking I/O

› Do not fork schedd to process condor_q

Why? Observed schedd child process grow at

~500MB/sec

› Do not fork to process incoming

connections to condor_shared_port

More scalability changes

21

› Backward

compatible

› Less surprising

› Small

› More powerful

22

HTCondor Configuration File

› New configuration language constructs

$(<knob>:<default>)

include

if, else, elif, endif

use <category>:<option>

› Use meta-knobs

See categories and options with condor_config_val

Examples:
use role:execute

use policy:always_run_jobs

use feature:gpus

More power

23

› HTCondor can now automatically

Discover, Bind, Sandbox, Monitor, and Manage GPUs

› CUDA and OpenCL

› Both static slots and partitionable slots supported!

› How?

Add to config file
use feature:gpus

Sample submit file
request_cpus = 1

request_gpus = 1

executable = hola_gpus.exe

queue

GPU Support

24

Data Intensive Computing

25

› What is it?

Allows the execution of a job to be overlaid

with the transfer of output files of a different job

Conditions apply:

• Both jobs must be from the same user

• Submitted from the same submit point

• Jobs must explicitly choose to participate

26

ASYNC_STAGEOUT

› Normal HTCondor operation for a single

compute slot has three phases. Several

consecutive jobs look like this:

ASYNC_STAGEOUT, cont

27

time

job2

execute output input job1

job3

execute output input

execute output input

› The “input/execute” phase and the “output”

phase can be done concurrently, also

known as “pipelining”:

ASYNC_TRANSFER

28

time

job2

output input / execute job1

job3

output input / execute

output input / execute

› How does it work?

› The schedd can now tell a startd to move a job

from one slot to another.

› The execute node is configured to create

dedicated “transfer slots” for each traditional

execute slot.

The transfer slot will not run jobs

Jobs are moved into the transfer slot when they signal

the phase transition, but only if the transfer slot is idle.

Typically, transfer slots are not visible, but like

everything in HTCondor, there’s a knob for that!

ASYNC_STAGEOUT

29

› A single core machine (with the transfer slot

configured to be visible):

ASYNC_STAGEOUT

30

% condor_status

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@ingwe.cs.wis LINUX X86_64 Unclaimed Idle 0.250 15816 0+00:00:11

xfer2@ingwe.cs.wis LINUX X86_64 Unclaimed Idle 0.000 124 0+00:00:10

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 X86_64/LINUX 2 0 0 2 0 0 0

 Total 2 0 0 2 0 0 0

› To work, the submit node, execute node,

and the job itself must participate.

› If any party does not participate, normal job

execution results. (i.e. no overlay)

› The job explicitly signals the transition to

output phase using a chirp command:

 condor_chirp phase output

31

ASYNC_STAGEOUT

› What does it look like from the user

perspective?

› Example executable file:

32

ASYNC_STAGEOUT

#!/bin/sh

echo “Executing...”

sleep 120

echo “Transferring...”

condor_chirp phase output

sleep 120

› What does it look like from the user

perspective?

› Normal job execution for first 120 seconds:

33

ASYNC_STAGEOUT

% condor_q

-- Submitter: ingwe.cs.wisc.edu : <128.105.121.64:56450> : ingwe.cs.wisc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1255.0 zmiller 4/29 11:26 0+00:01:29 R 0 0.0 async.sh 120

1255.1 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.2 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.3 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.4 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

5 jobs; 0 completed, 0 removed, 4 idle, 1 running, 0 held, 0 suspended

› What does it look like from the user

perspective?

› After 120 seconds another job starts:

34

ASYNC_STAGEOUT

% condor_q

-- Submitter: ingwe.cs.wisc.edu : <128.105.121.64:56450> : ingwe.cs.wisc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1255.0 zmiller 4/29 11:26 0+00:02:09 R 0 0.0 async.sh 120

1255.1 zmiller 4/29 11:26 0+00:00:03 R 0 0.0 async.sh 120

1255.2 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.3 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.4 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

5 jobs; 0 completed, 0 removed, 3 idle, 2 running, 0 held, 0 suspended

› What does it look like from the user

perspective?

› You can see the first job has moved:

35

ASYNC_STAGEOUT

% condor_q -run

-- Submitter: ingwe.cs.wisc.edu : <128.105.121.64:56450> : ingwe.cs.wisc.edu

 ID OWNER . SUBMITTED RUN_TIME HOST(S)

1255.0 zmiller 4/29 11:26 0+00:02:44 xfer2@ingwe.cs.wisc.edu

1255.1 zmiller 4/29 11:26 0+00:00:38 slot1@ingwe.cs.wisc.edu

› What does it look like from the user

perspective?

› Eventually first job finishes:

36

ASYNC_STAGEOUT

% condor_q

-- Submitter: ingwe.cs.wisc.edu : <128.105.121.64:56450> : ingwe.cs.wisc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1255.1 zmiller 4/29 11:26 0+00:02:01 R 0 0.0 async.sh 120

1255.2 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.3 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.4 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

› What does it look like from the user

perspective?

› And another job starts… and so on…

37

ASYNC_STAGEOUT

% condor_q

-- Submitter: ingwe.cs.wisc.edu : <128.105.121.64:56450> : ingwe.cs.wisc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

1255.1 zmiller 4/29 11:26 0+00:02:07 R 0 17.1 async.sh 120

1255.2 zmiller 4/29 11:26 0+00:00:05 R 0 0.0 async.sh 120

1255.3 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

1255.4 zmiller 4/29 11:26 0+00:00:00 I 0 0.0 async.sh 120

4 jobs; 0 completed, 0 removed, 2 idle, 2 running, 0 held, 0 suspended

› To enable on your cluster, just use the

meta-knob:

 use EXPERIMENTAL:ASYNC_STAGEOUT

› See ticket #4291

38

ASYNC_STAGEOUT

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=4291

Is my pool healthy?

39

We added a lot of metrics in HTCondor

v7.9.x, but how to spot trends?

› Monitor your cluster with familiar tools

› Measure utilization

› Diagnose problems

› View usage over time

› Easy to configure

Esp if already using ganglia

Operational monitoring over time

with condor_gangliad

40

41

42

43

› Could always configure max # of

concurrent file uploads and downloads.

File Transfer Management

44

› Could always configure max # of

concurrent file uploads and downloads.

› New configuration variable

FILE_TRANSFER_DISK_LOAD_THROTTLE

 enables dynamic adjustment of the level of

file transfer concurrency in order to keep the

disk load generated by transfers below a

specified level.

File Transfer Management

45

› condor_sos <whatever….>, eg

condor_sos condor_q

condor_sos condor_hold toddt

condor_sos –schedd –direct my_schedd

› Every superuser command is an SOS

Schedd overloaded, now what?

46

› New script in ~condor/bin

› Email report shows preempted jobs:
The following users have run vanilla jobs without

+is_resumable = true, that have hit the

MaxJobRetirementTime yesterday.

of User Jobs

---- ----

3 wbrooks2@submit.chtc.wisc.edu

6 quefeng@submit.chtc.wisc.edu

7 davisa@submit.chtc.wisc.edu

44 asiahpirani@discovery.wisc.edu

condor_job_report script

47

mailto:wbrooks2@submit.chtc.wisc.edu
mailto:quefeng@submit.chtc.wisc.edu
mailto:davisa@submit.chtc.wisc.edu
mailto:asiahpirani@discovery.wisc.edu

Shows statistics about job runtimes

 Short jobs

 Quartiles

 mean runtime

 restarts of same job

condor_job_report script

48

› Monitoring jobs via BigPanDAmon

› Publication of useful metrics, such as

Number of job preemptions (by startd)

Number of autoclusters (by schedd)

› condor_status -defrag

More monitoring

49

New DAGMan features
 More info and improved structure in node status

file

 Metrics reporting (used by Pegasus)

 DAG files can now be > 2.2 GB

 DAGMAN_DEFAULT_NODE_LOG has been

made more powerful, so that it can be defined in

HTCondor configuration files

 Non-workflow log mode is now deprecated

 Node retry number is now available as VARS

macro

› Startd RANK expressions for pslots now

works

› Pslot slot ads now have info about dslots

› In new classad arrays:

› If startds has four dslots running, looks like
childCpus = { 1,1,4,1 }

childCurrentRank = { 0.0,0.0,0.0,0.0 }

childState = {"Claimed","Claimed","Claimed","Claimed“

› But not user prio yet

› Future work: no dslots in collector!

startd RANK for pslots

51

52

› Test a VM on start-up.

(#3789)

› Test VM networking on

start-up. (#3960)

› And periodically re-check

both.

› Advertise health of VMU

on a host. (#3976)

Include testing results and

job attempts.

53

VM Universe enhancements for

admins

› Clean up submission problems

vm_memory vs RequestMemory (#3907)

file transfer

• spurious (?) warnings (#3908)

• doesn’t play well with file-transfer plugins (#4167)

• interaction with vm_no_output_vm (#2556)

› Support an exit status code (#3961)

54

VM Universe enhancements for

users

› Swap standard universe’s constraints for

the constraints of VMs

Moves some burdens from user to admin

› Transparent to application and user?

Admin could set default VM to one that looks

like the host OS

› Combine vanilla and VM universe

KVM-Enabled Checkpointing

of vanilla universe jobs

Original Plan
VM

shared folder starter

user job

starter

› Speak OpenStack’s NOVA protocol

Better supported than EC2 compatibility

interface

Allows better error handling

Provides richer set of controls on instances

Potential to obtain and manage resources

beyond servers

Native OpenStack Support

57

› Network enhancements

 Zhe Zhang’s talk yesterday (LARK)

 Alan DeSmet’s talk tomorrow (source routing, IPv6)

› First-class facility in HTCondor for caching job input data

sets on execute nodes

 Give feedback on our design! See http://goo.gl/8sxQJb

› HTPC scheduling mechanisms

 Built-in vs expressions

› Less tuning out of the box (think Skype…)

 shared_port and collector hierarchy on by default, …

› Grouping of jobs (and machines?)

› Horizontal scaling

› Provide operators more visibility into their pool

Continue to push on…

58

http://goo.gl/8sxQJb

Thank You!

59

