
HTCondor at the RACF 
SEAMLESSLY INTEGRATING MULTICORE JOBS  

AND OTHER DEVELOPMENTS William Strecker-Kellogg 
RHIC/ATLAS Computing Facility 
Brookhaven National Laboratory 
April 2014 



RACF Overview 
 Main HTCondor pools 

◦ PHENIX—12.2kCPU 

◦ STAR—12.0kCPU 

◦ ATLAS—13.1kCPU 

 

 STAR/PHENIX are RHIC detectors 
◦ Loose federation of individual users 

 

 ATLAS—tightly controlled, 
subordinate to PANDA workflow 
management, strict structure 

HTCONDORWEEK 2014 2 

 Smaller Experiments 
◦ LBNE 

◦ Dayabay 

◦ LSST 



Supporting Multicore 
 Priorities and Requirements 

◦ Keep management workload at a minimum 
◦ No manual re-partitioning 

◦ Needs to be dynamic and/or partitionable 

◦ Support automatic demand-spillover 

◦ Need to retain group-quota system with accept-surplus feature 

◦ Maximize throughput—minimize latency 
◦ Same goals as above 

◦ Attempt to support future developments in same framework 
◦ More than just multicore 

◦ High-Memory already used in this context (with caveat) 

◦ Principle of proportional pain 
◦ Okay to make multicore wait longer—but no starvation is allowed 

  
 

  HTCONDORWEEK 2014 3 



Supporting Multicore 
STEP 1: PARTITIONABLE SLOTS 
EVERYWHERE 

 Required change to monitoring 
◦ Job-count no longer correct metric 

for measuring occupancy 

 Minor script change with SlotID 
◦ Slot<n>  Slot<m>_<n> 

 Works with no side effects 

STEP 2: POLICY CHANGES 

 Preemption is no longer possible 
◦ OK for now since not needed 

 Slot-Weight can only be CPUs 
◦ Needs to change in the future 

 Defragmentation is necessary 
◦ Detail next slide 

 Dedicated queues for now 

  

HTCONDORWEEK 2014 4 



Defragmentation Policy 
DEFRAGMENTATION DAEMON 

 Start Defragmentation 
◦ (PartitionableSlot && !Offline && 

TotalCpus > 12) 

 End Defragmentation 
◦ (Cpus >= 10) 

 Rate: max 4/hr  

KEY CHANGE: NEGOTIATOR 
POLICY 

 Default policy is breadth-first 
filling of equivalent machines 

◦ (Kflops – SlotId) 

 Depth-first filling preserves 
continuous blocks longer 

◦ (-Cpus) 

 

HTCONDORWEEK 2014 5 



Multicore in Dedicated 
Queues 

 Works well now, issues were 
resolved 

◦ Allocation is handled by group 
quota and surplus-share 

 Dedicated queue per species of 
job 

◦ Currently two—high-memory (6Gb) 
and 8-core 

◦ Changing requirements require 
manual action 

HTCONDORWEEK 2014 6 



Multicore in common Queue 
 Works well, no starvation 

◦ Lack of control over strict 
allocation of m. vs. n core jobs 
within queue 

 Not currently done in ATLAS  
◦ Issue of allocation control is just 

part of reason why 

◦ Structural and not likely to change 
soon 

HTCONDORWEEK 2014 7 



Fixing bugs in HTCondor 
 Last summer a period of intensive 
development/testing in 
collaboration with HTCondor team 

◦ Built a VM testbed, rapid build & 
test of patches from HTCondor 
team 

◦ Built new monitoring interface 

◦ After many iterations had working 
config with Partitionable slots and 
Hierarchical Group Quotas with 
accept_surplus 

Should 
Stay Here 

Now it 
does! 

HTCONDORWEEK 2014 8 



Bugfix Testbed Details 
 Rapid build, test, deploy cycle from 
git patches 

◦ Email patch 

◦ Rebuild condor 

◦ Run test-feeder 

 Job Feeder 
◦ Defines groups in config-file with 

different random length-ranges and 
requirements 

◦ Variable workload—keep N jobs idle 
in each queue 

 

HTCONDORWEEK 2014 9 



Current Multicore Status 
 Fully utilize PSlots 

◦ All traditional nodes (x86_64) can have same config 

 

 

 

 

 

 Fix works perfectly when accept_surplus is on for any combination of groups 

 Major Limitation: SlotWeight=Cpus 
◦ High-memory jobs can be accommodated by asking for more CPUs. 

◦ Need ability to partition better and interact with global resource limits 

◦ SlotWeight should be a configurable function of all consumable resources 

 Other Limitation: No Preemption 
◦ Required to support opportunistic usage 

SLOT_TYPE_1 = 100% 
NUM_SLOTS = 1 
NUM_SLOTS_TYPE_1 = 1 
SLOT_TYPE_1_PARTITIONABLE = True 
SlotWeight=Cpus 

HTCONDORWEEK 2014 10 



Issue With High Memory Jobs 

 1…ok, 2…ok, 3…not ok! 

 General problem: 
◦ Inefficiencies in heterogeneous jobs 

scheduling to granular resources 

◦ Worse as you add dimensions: 
imagine GPSs, Disks, CoProcessors, 
etc… 

1 2 

3 

HTCONDORWEEK 2014 11 



Goals 
 Need all the same behavior as we have now regarding groups and 
accept_surplus 

 Want to be able to slice by any resource 

 Sane and configurable defaults/quantization of requests 

 Defragmentation inefficiencies should be kept to a minimum—we are 
mostly there already! 

 Overall we are something like ¾ of the way to our ideal configuration. 

 

  

HTCONDORWEEK 2014 12 



Problem of Weights and Costs 
 What does SlotWeight mean with heterogeneous resources? 

◦ Job of administrator to determine how much to “charge” for each requested 
resources 
◦ E.g. (cpus +  1.5(ram exceeding cpus * ram/core)) 

◦ Are these weights normalized to what CPU counting would give? 
◦ If not then what does the sum of SlotWeights represent? 

 Quotas related to sum of SlotWeights, needs to be constant pool-wide 
and independent of current job allocation—if specifying static number! 

◦ Cost functions need to be linear? 

◦ Only dynamic quota instead (e.g. 80%X + 20%Y)… 

HTCONDORWEEK 2014 13 



Implications 
 A picture is worth 1000 words… 

 The more barriers between nodes that can be broken down the 
better 

◦ MPI-like batch software with NUMA-aware scheduling making other 
machines like further away NUMA nodes? 

  

HTCONDORWEEK 2014 14 



ATLAS Load Balancing 
 PANDA contains knowledge of upcoming work 

 Wouldn’t it be nice to adapt the group allocation accordingly 
◦ A few knobs can be tuned—surplus and quota 

◦ Dynamic adjustment based on current pending-work 

◦ Gather heuristics on past behavior to help 

 Timeframe: Fall 2014—project will be picked up by a summer student 
this year 

HTCONDORWEEK 2014 15 



PHENIX Job Placement 
 Data stored on PHENIX nodes (dCache) 

◦ New this year is RAW data is placed hot off the DAQ 

◦ Reprocessing no longer requires second read from tape 
◦ Less tape wear, faster—no stage latency 

◦ Analysis continues to read input from dCache 

 No intelligent placement of jobs 
◦ HDFS-like job placement would be great—but without sacrificing throughput 

◦ Approach: 
◦ Need to know where files are first! 

◦ Need to suggest placement without waiting for the perfect slot 

◦ Started as proof-of-concept for efficacy of non-flat network 
◦ Testing Infiniband fabrics with tree-based topology 

 

HTCONDORWEEK 2014 16 



PHENIX Job Placement 
 File placement harvested from nodes and placed in database 

◦ Database contains map of file->machine 

◦ Also contains machines->rack and rack->rack-group mapping 

 Machines run a STARTD_CRON to query & advertise their location 

 Job-RANK statement used to steer jobs towards machines where their 
files are 

◦ E.g: (3*(Machine==“a” || Machine==“c”)) + 2*(Rack==“21-6”) + (RackGroup == “10”) 

◦ Slight increase in negotiation time, upgraded hardware to compensate 

◦ Several thousand matches/hr with possibly unique RANK statements 

 

 Working on modified dCache client to directly read file if on local node 
 

 

  HTCONDORWEEK 2014 17 



PHENIX Job Placement Results 
 We achieved expected results with machine-local jobs 

◦ >80% on an empty farm 

◦ ~10% on a full farm 

 All localization in rack-group 
◦ >90% empty farm 

◦ ~15% full farm 

 Argues that great benefit could be gained from utilizing multi-tier 
networking 

◦ Without it, only machine-local jobs benefit 

 

  

HTCONDORWEEK 2014 18 



PHENIX Job Placement Results 

1. Machine-Local 
2. Rack-Local (exclusive of Machine-Local) 
3. All Localized (Sum 1. + 2.) 
4. All Jobs 

HTCONDORWEEK 2014 19 



PHENIX Job Placement Results 

1. Machine-Local 
2. Rack-Local (exclusive of Machine-Local) 
3. All Localized (Sum 1. + 2.) 

HTCONDORWEEK 2014 20 



PHENIX Job Placement Results 
SIMULATED NO LOCALIZATION RESULTS FROM LOCALIZATION 

1. Machine-Local 
2. Rack-Local (exclusive of Machine-Local) 
3. Non-Local 

*Plots generated by Alexandr Zaytsev 

Histogram of portion of jobs in each state 
taken in 1 hour intervals 

HTCONDORWEEK 2014 21 



THANK YOU 
Questions? Comments? 
Stock Photo? 

HTCONDORWEEK 2014 22 



Configuration Changes 
TAKING ADVANTAGE OF CONFIG-
DIR 

 Since 7.8 Condor supports a 
config.d/ directory to read 
configuration from 

 More easily allows 
programmatic/automated 
management of configuration 

 Refactored configuration files at 
RACF to take advantage 

Main Config: 

LOCAL_CONFIG_DIR = /etc/condor/config.d 

LOCAL_CONFIG_FILES = /dir/a, /dir/b 

Order: 

1. /etc/condor/condor_config (or $CONDOR_CONFIG) 

2. /etc/condor/config.d/* (in alphanumeric order) 

3. /dir/a 

4. /dir/b 

 

 

Old Way  

New Way  

Main Config: 

LOCAL_CONFIG_FILES = /dir/a, /dir/b 

Order: 

1. /etc/condor/condor_config (or $CONDOR_CONFIG) 

2. /dir/a 

3. /dir/b 

 

 

HTCONDORWEEK 2014 23 


