HTCondor at the RACF

SEAMLESSLY INTEGRATING MULTICORE JOBS
AND OTHER DEVELOPMENTS William Strecker-Kellog

April 2014

RACF Overview

Main HTCondor pools
o PHENIX—12.2kCPU

> STAR—12.0kCPU
o ATLAS—13.1kCPU

STAR/PHENIX are RHIC detectors
o Loose federation of individual users

Smaller Experiments
ATLAS—tightly controlled, > LBNE
subordinate to PANDA workflow

_ o Dayabay
management, strict structure

o LSST

HTCONDORWEEK 2014 2

Supporting Multicore

Priorities and Requirements
o Keep management workload at a minimum

> No manual re-partitioning
> Needs to be dynamic and/or partitionable
o Support automatic demand-spillover
> Need to retain group-quota system with accept-surplus feature
o Maximize throughput—minimize latency
° Same goals as above
o Attempt to support future developments in same framework
> More than just multicore
o High-Memory already used in this context (with caveat)
° Principle of proportional pain

° Okay to make multicore wait longer—but no starvation is allowed

HTCONDORWEEK 2014 3

Supporting Multicore

STEP 1: PARTITIONABLE SLOTS

STEP 2: POLICY CHANGES

EVERYWHERE
Required change to monitoring Preemption is no longer possible
> Job-count no longer correct metric o OK for now since not needed

for measuring occupancy
Slot-Weight can only be CPUs

Minor script change with SlotID > Needs to change in the future

° Slot<n> = Slot<m>_<n> o
Defragmentation is necessary

Works with no side effects > Detail next slide

Dedicated queues for now

HTCONDORWEEK 2014 4

Defragmentation Policy

DEFRAGMENTATION DAEMON KEY CHANGE: NEGOTIATOR

POLICY
Start Defragmentation Default policy is breadth-first
o (PartitionableSlot && !Offline && filling of equivalent machines
TotalCpus > 12) ° (Kflops — Slotld)
End Defragmentation Depth-first filling preserves
> (Cpus >= 10) continuous blocks longer
> (-Cpus)

Rate: max 4/hr

HTCONDORWEEK 2014 5

Multicore in Dedicated
Queues

Works well now, issues were e
resolved o ATLA? Queue n.1p8 CPU breakdown

5.5k ERRE R - -

> Allocation is handled by group

4.5k

quota and surplus-share o,

3.0k

2.5k

Dedicated queue per species of o

1.0k

job

0.8

o Currently two—high-memory (6Gb) | ===

Generated Fri Apr 18 14:11:16 EDT 2014 (plot from B4/09/14 14:11:82 to B4/12/14 14:11:08)

a n d 8 - CO re “*Only one que ue i sakctad. you can click the picture for a CPU-count breakdown for mps

Thu 06: 00 Thu 12: 060 Fri 06:00 Fri 12:00 Sat 00:00 Sat 12:00

Select Timerange to Graph

. . .
© C h a ngl ng req u I re m e nts req u I re Start Time: 04-09-2014 02:11:02PM & End Time: 04-12-2014 02:11:08PM =
. Time format can be RRD sty -- like *now-1week® or "now-1h*.a time in unix epoch seconds. or can be sakcted using the cakndar tooltip above
manual action

Alter Parameters Plot only selected fields:
On Show Usage-Hours prod prod_old long short
On Show CPU Count pmover grid prodtest
mapr
Submit

HTCONDORWEEK 2014 6

Multicore in common Queue

Works well, no starvation

o Lack of control over strict
allocation of m. vs. n core jobs
within queue

Not currently done in ATLAS

° Issue of allocation control is just
part of reason why

o Structural and not likely to change
soon

s httpsfjweb.rac...test_pool htrml 2¢]I s Condor Pool Statistics * H?l

ATLAS Queue prod CPU breakdown
4004
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60 BALEW u i
20 {1

20
I

0

Wed 18:00 Thu 08: 80 Thu 06: 88

O lcore [E2core M 4core M Bcore

Generated Wed Oct 23 15:12:32 EDT 2013

*+Only one quene is selected, you can click the picture for a CPU-count breakdown for prod
Select Timsrange to Craph
Start Time: july 31 [F End Time: aug 1 | @

Time format can be RRD style -- like "now- lweek" or "now-1h", a time in unix epoch seconds, or can be selected using the

Alter Parameters Plot only selected fields:

On (@l Show long short
Usage-Hours

prodtest

grid software mp8
On 8§ Show CPU Count

| Submit |

e calendar tooltip above.

HTCONDORWEEK 2014

Fixing bugs in HTCondor

Last summer a period of intensive
development/testing in 2
collaboration with HTCondor team

o Built a VM testbed, rapid build &

test of patches from HTCondor
team

Should
Stay Here

Mon 18: 08 Tue 00: 080 Tue 06:00 Tue 12:00

o Built neW monito rin inte rfa Ce @ long M short Oprod M prodtest B cvmfs [0 dg2test [grid [wiscgroup M usatlas M bnl-local M mp8 O mapr
g Generated Tue Apr 23 14:47:20 EDT 2013

o After many iterations had working |,
config with Partitionable slots and | | |
Hierarchical Group Quotas with
accept_surplus

ERGEGRRESEGR
A E R R R A A

17: 00 18: 00 19: 00 20:00 21:00 22:00 23:00 060: 60 01: 00

Htong M short O prod_old M prodtest Bprod Oprover Oarid Onps M napr

Generated Fri Apr 18 13:56:42 EDT 2014 (plot from 04/17/14 16:00:48 to 04/18/14 04:00:59)

HTCONDORWEEK 2014 8

Bugtix Testbed Details

Job Feeder

o Defines groups in config-file with
different random length-ranges and
requirements

Rapid build, test, deploy cycle from
git patches

o Email patch

> Rebuild condor
o Variable workload—keep N jobs idle

o Run test-feeder :
in each queue

| README ﬁ)” report.txt @'” feeder.py EQ'H gueues.cfg 9|
1 # Queue num_1dle avg _runtime:splay> ract welight _string
2 group_atlas.analysis.long 10 1200 300 long 1,1,8,2,4
3 group_atlas.analysis.short 18 300 100 short 1,1,1,2
4 group_atlas.prod.production 49 200 300 prod 1,1,1,2,4,8
5 group_atlas.prod.test 2 200 160 prodtest 1
& group_atlas.prod.mp 7 300 100 mp S 16
7 group_atlas.software 2 120 20 Sw 1,2
8 Igroup_grid 6 300 120 grid 1,1,2
9

HTCONDORWEEK 2014 9

Current Multicore Status

Fully utilize PSlots
o All traditional nodes (x86_64) can have same config

SLOT_TYPE_1 = 100%

NUM_SLOTS = 1

NUM_SLOTS_TYPE_ 1 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SlotWeight=Cpus

Fix works perfectly when accept_surplus is on for any combination of groups

Major Limitation: SlotWeight=Cpus
o High-memory jobs can be accommodated by asking for more CPUs.
> Need ability to partition better and interact with global resource limits
> SlotWeight should be a configurable function of all consumable resources

Other Limitation: No Preemption
° Required to support opportunistic usage

HTCONDORWEEK 2014

10

Issue With High Memory Jobs

RAM (16Gb
1 ()

I
I
I

==

T T T T
["1core ! ! !
1 1 1 1

CPUs (8 core)

RAM (16Gb)

High Memory
Job

CPUs (8 core)

RAM (16Gb)
2

T
| 26b |! 1
I U

1 core ! 1 I I 1 1
1 i

CPUs (8 core)

1...0k, 2...0k, 3...not ok!

General problem:

° Inefficiencies in heterogeneous jobs
scheduling to granular resources

o Worse as you add dimensions:
imagine GPSs, Disks, CoProcessors,
etc...

HTCONDORWEEK 2014 11

Goals

Need all the same behavior as we have now regarding groups and
accept_surplus

Want to be able to slice by any resource
Sane and configurable defaults/quantization of requests

Defragmentation inefficiencies should be kept to a minimum—we are
mostly there already!

Overall we are something like % of the way to our ideal configuration.

HTCONDORWEEK 2014 12

Problem of Weights and Costs

What does SlotWeight mean with heterogeneous resources?

> Job of administrator to determine how much to “charge” for each requested
resources

> E.g.(cpus+ 1.5(ram exceeding cpus * ram/core))
> Are these weights normalized to what CPU counting would give?

o If not then what does the sum of SlotWeights represent?

Quotas related to sum of SlotWeights, needs to be constant pool-wide
and independent of current job allocation—if specifying static number!

o Cost functions need to be linear?
° Only dynamic quota instead (e.g. 80%X + 20%Y)...

HTCONDORWEEK 2014 13

Implications

A picture is worth 1000 words...

The more barriers between nodes that can be broken down the
better

o MPI-like batch software with NUMA-aware scheduling making other
machines like further away NUMA nodes?

(R (N

HTCONDORWEEK 2014 14

ATLAS Load Balancing

PANDA contains knowledge of upcoming work

Wouldn’t it be nice to adapt the group allocation accordingly
o A few knobs can be tuned—surplus and quota

° Dynamic adjustment based on current pending-work
o Gather heuristics on past behavior to help

Timeframe: Fall 2014—project will be picked up by a summer student
this year

HTCONDORWEEK 2014 15

PHENIX Job Placement

Data stored on PHENIX nodes (dCache)
> New this year is RAW data is placed hot off the DAQ

o Reprocessing no longer requires second read from tape

o Less tape wear, faster—no stage latency

o Analysis continues to read input from dCache

No intelligent placement of jobs
o HDFS-like job placement would be great—but without sacrificing throughput
° Approach:

o Need to know where files are first!

> Need to suggest placement without waiting for the perfect slot
o Started as proof-of-concept for efficacy of non-flat network
o Testing Infiniband fabrics with tree-based topology

HTCONDORWEEK 2014 16

PHENIX Job Placement

File placement harvested from nodes and placed in database
o Database contains map of file->machine
> Also contains machines->rack and rack->rack-group mapping

Machines run a STARTD_CRON to query & advertise their location

Job-RANK statement used to steer jobs towards machines where their
files are

° E.g: (3*(Machine=="a” || Machine==“c”)) + 2*(Rack=="21-6") + (RackGroup == “10”)

° Slight increase in negotiation time, upgraded hardware to compensate

o Several thousand matches/hr with possibly uniqgue RANK statements

Working on modified dCache client to directly read file if on local node

HTCONDORWEEK 2014 17

PHENIX Job Placement Results

We achieved expected results with machine-local jobs
° >80% on an empty farm

° ~10% on a full farm

All localization in rack-group
° >90% empty farm
o ~15% full farm

Argues that great benefit could be gained from utilizing multi-tier
networking

o Without it, only machine-local jobs benefit

HTCONDORWEEK 2014 18

PHENIX Job Placement Results

PHENIX Anatrain Job Localization: Number of Running Jobs vs Time

14000

Njobs

12000 |-

10000

8000 |

6000 |-

4000 - ‘ Aﬂ\
- I I

2000 |

o)

520 540 560 580 600 620 640 660 680 700 720 740 70 780 800 820 840 860
Hours since 00:00 Jan 1, 2014 (bin size: 1 hour)

I
p—

Machine-Local

Rack-Local (exclusive of Machine-Local)
All Localized (Sum 1. + 2.)

All Jobs

b S

HTCONDORWEEK 2014

PHENIX Job Placement Results

Normalised Number of PHENIX Anatrain Jobs vs Time

Nloc.jobS/NaII jobs

0.8

0.6

0.4

0.2

520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860
Hours since 00:00 Jan 1, 2014 (bin size: 1 hour)
1. Machine-Local

2. Rack-Local (exclusive of Machine-Local)
3. All Localized (Sum 1. + 2.)

HTCONDORWEEK 2014

PHENIX Job Placement Results

SIMULATED NO LOCALIZATION RESULTS FROM LOCALIZATION

Machine Level Localized Job Share (1k fillings of the empty farm w/ locality OFF, 23M jobs in total) Localization shares observed (1 month long period, 1 hour time slices, 0.7M PHENIX jobs in total)
i C P of
g L 3 -
Z | z T
107 401
i 30—
10 — 20—
T 10[
1L s L L . L d i ol
0 0.2 0.4 0.6 0.8 1 0.6 0.8 1
Share of a particular job localization type Share of a particular job localization type
Machine-Local Histogram of portion of jobs in each state
Rack-Local (exclusive of Machine-Local) taken in 1 hour intervals
Non-Local

*Plots generated by Alexandr Zaytsev

HTCONDORWEEK 2014

THANK YOU

Questions? Comments?
Stock Photo?

HTCONDORWEEK 2014 22

Configuration Changes

TAKING ADVANTAGE OF CONFIG-
DIR

Since 7.8 Condor supports a
config.d/ directory to read
configuration from

More easily allows
programmatic/automated
management of configuration

Refactored configuration files at
RACF to take advantage

Old Way

Main Config:

LOCAL_CONFIG_FILES = /dir/a, /dir/b

Order:

1. /etc/condor/condor_config (or $CONDOR_CONFIG)
2. /dir/a

3. /dir/b

New Way

Main Config:
LOCAL_CONFIG_DIR = /etc/condor/config.d

LOCAL_CONFIG_FILES = /dir/a, /dir/b

Order:

1. /etc/condor/condor_config (or $CONDOR_CONFIG)
2. /etc/condor/config.d/* (in alphanumeric order)
3. /dir/a

4. /dir/b

HTCONDORWEEK 2014 23

