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RACF Overview

Main HTCondor pools
o PHENIX—12.2kCPU

> STAR—12.0kCPU
o ATLAS—13.1kCPU

STAR/PHENIX are RHIC detectors
o Loose federation of individual users

Smaller Experiments
ATLAS—tightly controlled, > LBNE
subordinate to PANDA workflow

_ o Dayabay
management, strict structure

o LSST
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Supporting Multicore

Priorities and Requirements
o Keep management workload at a minimum

> No manual re-partitioning
> Needs to be dynamic and/or partitionable
o Support automatic demand-spillover
> Need to retain group-quota system with accept-surplus feature
o Maximize throughput—minimize latency
° Same goals as above
o Attempt to support future developments in same framework
> More than just multicore
o High-Memory already used in this context (with caveat)
° Principle of proportional pain

° Okay to make multicore wait longer—but no starvation is allowed
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Supporting Multicore

STEP 1: PARTITIONABLE SLOTS

STEP 2: POLICY CHANGES

EVERYWHERE
Required change to monitoring Preemption is no longer possible
> Job-count no longer correct metric o OK for now since not needed

for measuring occupancy
Slot-Weight can only be CPUs

Minor script change with SlotID > Needs to change in the future

° Slot<n> = Slot<m>_<n> o
Defragmentation is necessary

Works with no side effects > Detail next slide

Dedicated queues for now

HTCONDORWEEK 2014 4



Defragmentation Policy

DEFRAGMENTATION DAEMON KEY CHANGE: NEGOTIATOR

POLICY
Start Defragmentation Default policy is breadth-first
o (PartitionableSlot && !Offline && filling of equivalent machines
TotalCpus > 12) ° (Kflops — Slotld)
End Defragmentation Depth-first filling preserves
> (Cpus >= 10) continuous blocks longer
> (-Cpus)

Rate: max 4/hr
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Multicore in Dedicated
Queues

Works well now, issues were e
resolved o ATLA? Queue n.1p8 CPU breakdown
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Multicore in common Queue

Works well, no starvation

o Lack of control over strict
allocation of m. vs. n core jobs
within queue

Not currently done in ATLAS

° Issue of allocation control is just
part of reason why

o Structural and not likely to change
soon
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Fixing bugs in HTCondor

Last summer a period of intensive
development/testing in 2
collaboration with HTCondor team

o Built a VM testbed, rapid build &

test of patches from HTCondor
team

Should
Stay Here
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Bugtix Testbed Details

Job Feeder

o Defines groups in config-file with
different random length-ranges and
requirements

Rapid build, test, deploy cycle from
git patches

o Email patch

> Rebuild condor
o Variable workload—keep N jobs idle

o Run test-feeder :
in each queue

| README ﬁ)” report.txt @'” feeder.py EQ'H gueues.cfg 9|
1  # Queue num_1dle avg _runtime:splay> ract welight _string
2 group_atlas.analysis.long 10 1200 300 long 1,1,8,2,4
3 group_atlas.analysis.short 18 300 100 short 1,1,1,2
4  group_atlas.prod.production 49 200 300 prod 1,1,1,2,4,8
5 group_atlas.prod.test 2 200 160 prodtest 1
& group_atlas.prod.mp 7 300 100 mp S 16
7 group_atlas.software 2 120 20 Sw 1,2
8 Igroup_grid 6 300 120 grid 1,1,2
9
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Current Multicore Status

Fully utilize PSlots
o All traditional nodes (x86_64) can have same config

SLOT_TYPE_1 = 100%

NUM_SLOTS = 1

NUM_SLOTS_TYPE_ 1 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SlotWeight=Cpus

Fix works perfectly when accept_surplus is on for any combination of groups

Major Limitation: SlotWeight=Cpus
o High-memory jobs can be accommodated by asking for more CPUs.
> Need ability to partition better and interact with global resource limits
> SlotWeight should be a configurable function of all consumable resources

Other Limitation: No Preemption
° Required to support opportunistic usage
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Issue With High Memory Jobs
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General problem:

° Inefficiencies in heterogeneous jobs
scheduling to granular resources

o Worse as you add dimensions:
imagine GPSs, Disks, CoProcessors,
etc...
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Goals

Need all the same behavior as we have now regarding groups and
accept_surplus

Want to be able to slice by any resource
Sane and configurable defaults/quantization of requests

Defragmentation inefficiencies should be kept to a minimum—we are
mostly there already!

Overall we are something like % of the way to our ideal configuration.
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Problem of Weights and Costs

What does SlotWeight mean with heterogeneous resources?

> Job of administrator to determine how much to “charge” for each requested
resources

> E.g.(cpus+ 1.5(ram exceeding cpus * ram/core))
> Are these weights normalized to what CPU counting would give?

o If not then what does the sum of SlotWeights represent?

Quotas related to sum of SlotWeights, needs to be constant pool-wide
and independent of current job allocation—if specifying static number!

o Cost functions need to be linear?
° Only dynamic quota instead (e.g. 80%X + 20%Y)...
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Implications

A picture is worth 1000 words...

The more barriers between nodes that can be broken down the
better

o MPI-like batch software with NUMA-aware scheduling making other
machines like further away NUMA nodes?

(R (N
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ATLAS Load Balancing

PANDA contains knowledge of upcoming work

Wouldn’t it be nice to adapt the group allocation accordingly
o A few knobs can be tuned—surplus and quota

° Dynamic adjustment based on current pending-work
o Gather heuristics on past behavior to help

Timeframe: Fall 2014—project will be picked up by a summer student
this year
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PHENIX Job Placement

Data stored on PHENIX nodes (dCache)
> New this year is RAW data is placed hot off the DAQ

o Reprocessing no longer requires second read from tape

o Less tape wear, faster—no stage latency

o Analysis continues to read input from dCache

No intelligent placement of jobs
o HDFS-like job placement would be great—but without sacrificing throughput
° Approach:

o Need to know where files are first!

> Need to suggest placement without waiting for the perfect slot
o Started as proof-of-concept for efficacy of non-flat network
o Testing Infiniband fabrics with tree-based topology
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PHENIX Job Placement

File placement harvested from nodes and placed in database
o Database contains map of file->machine
> Also contains machines->rack and rack->rack-group mapping

Machines run a STARTD_CRON to query & advertise their location

Job-RANK statement used to steer jobs towards machines where their
files are

° E.g: (3*(Machine=="a” || Machine==“c”)) + 2*(Rack=="21-6") + (RackGroup == “10”)

° Slight increase in negotiation time, upgraded hardware to compensate

o Several thousand matches/hr with possibly uniqgue RANK statements

Working on modified dCache client to directly read file if on local node
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PHENIX Job Placement Results

We achieved expected results with machine-local jobs
° >80% on an empty farm

° ~10% on a full farm

All localization in rack-group
° >90% empty farm
o ~15% full farm

Argues that great benefit could be gained from utilizing multi-tier
networking

o Without it, only machine-local jobs benefit
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PHENIX Job Placement Results

PHENIX Anatrain Job Localization: Number of Running Jobs vs Time
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PHENIX Job Placement Results

Normalised Number of PHENIX Anatrain Jobs vs Time
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PHENIX Job Placement Results

SIMULATED NO LOCALIZATION RESULTS FROM LOCALIZATION

Machine Level Localized Job Share (1k fillings of the empty farm w/ locality OFF, 23M jobs in total) Localization shares observed (1 month long period, 1 hour time slices, 0.7M PHENIX jobs in total)
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THANK YOU

Questions? Comments?
Stock Photo?
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Configuration Changes

TAKING ADVANTAGE OF CONFIG-
DIR

Since 7.8 Condor supports a
config.d/ directory to read
configuration from

More easily allows
programmatic/automated
management of configuration

Refactored configuration files at
RACF to take advantage

Old Way

Main Config:

LOCAL_CONFIG_FILES = /dir/a, /dir/b

Order:

1. /etc/condor/condor_config (or $CONDOR_CONFIG)
2. /dir/a

3. /dir/b

New Way

Main Config:
LOCAL_CONFIG_DIR = /etc/condor/config.d

LOCAL_CONFIG_FILES = /dir/a, /dir/b

Order:

1. /etc/condor/condor_config (or $CONDOR_CONFIG)
2. /etc/condor/config.d/* (in alphanumeric order)
3. /dir/a

4. /dir/b
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