
HTCondor at the RAL Tier-1

Andrew Lahiff,
Alastair Dewhurst, John Kelly, Ian Collier, James Adams

STFC Rutherford Appleton Laboratory

HTCondor Week 2014

Outline

•  Overview of HTCondor at RAL
•  Monitoring
•  Multi-core jobs
•  Dynamically-provisioned worker nodes

2

Introduction

•  RAL is a Tier-1 for all 4 LHC experiments
–  Provide computing & disk resources, and tape for custodial storage of

data
–  In terms of Tier-1 computing requirements, RAL provides

•  2% ALICE
•  13% ATLAS
•  8% CMS
•  32% LHCb

–  Also support ~12 non-LHC experiments, including non-HEP
•  Computing resources

–  784 worker nodes, over 14K cores
–  Generally have 40-60K jobs submitted per day

3

Migration to HTCondor

•  Torque/Maui had been used for many years
–  Many issues
–  Severity & number of problems increased as size of farm increased

•  Migration
2012 Aug Started evaluating alternatives to Torque/Maui

 (LSF, Grid Engine, Torque 4, HTCondor, SLURM)

2013 Jun Began testing HTCondor with ATLAS & CMS
2013 Aug Choice of HTCondor approved by management
2013 Sep HTCondor declared production service

 Moved 50% of pledged CPU resources to HTCondor
2013 Nov Migrated remaining resources to HTCondor

4

Experience so far

•  Experience
–  Very stable operation

•  Staff don’t need to spend all their time fire-fighting problems
–  Job start rate much higher than Torque/Maui, even when throttled

•  Farm utilization much better
–  Very good support

5

Status

•  Version
–  Currently 8.0.6
–  Trying to stay up to date with the latest stable release

•  Features
–  Partitionable slots
–  Hierarchical accounting groups
–  HA central managers
–  PID namespaces
–  Python API
–  condor_gangliad

•  In progress
–  CPU affinity being phased in
–  cgroups has been tested, probably will be phased-in next

6

•  All job submission to RAL is via the Grid
–  No local users

•  Currently have 5 CEs, schedd on each:
–  2 CREAM CEs
–  3 ARC CEs

•  CREAM doesn’t currently support HTCondor
–  We developed the missing functionality ourselves
–  Will feed this back so that it can be included in an official release

•  ARC better
–  But didn’t originally handle partitionable slots, passing CPU/memory

requirements to HTCondor, …
–  We wrote lots of patches, all included in upcoming 4.1.0 release

•  Will make it easier for more European sites to move to
HTCondor

Computing elements

7

HTCondor in the UK

•  Increasing usage of HTCondor in WLCG sites in the UK
–  2013-04-01: None
–  2014-04-01: RAL Tier-1, RAL Tier-2, Bristol, Oxford (in progress)

•  The future
–  7 sites currently running Torque/Maui
–  Considering moving to HTCondor or will move if others do

8

Monitoring

9

Jobs monitoring

•  Useful to store details about completed jobs in a database
•  What we currently do

–  Nightly cron reads HTCondor history files, inserts data into MySQL

•  Problems
–  Currently only use subset of content of job ClassAds

•  Could try to put in everything
•  What happens then if jobs have new attributes? Modify DB table?

–  Experience with similar database for Torque
•  As database grew in size, queries took longer & longer
•  Database tuning important

•  Is there a better alternative?

10

Jobs monitoring

•  CASTOR team at RAL have been testing Elasticsearch
–  Why not try using it with HTCondor?

•  Elasticsearch ELK stack
–  Logstash: parses log files
–  Elasticsearch: search & analyze data in real-time
–  Kibana: data visualization

•  Hardware setup
–  Test cluster of 13 servers (old diskservers & worker nodes)

•  But 3 servers could handle 16 GB of CASTOR logs per day

•  Adding HTCondor
–  Wrote config file for Logstash to enable history files to be parsed
–  Add Logstash to machines running schedds 11

HTCondor
history files Logstash

Elastic
search Kibana

Jobs monitoring

•  Can see full job ClassAds

12

Jobs monitoring

13

•  Custom plots
–  E.g. completed jobs by schedd

•  Custom dashboards

Jobs monitoring

14

Jobs monitoring

15

•  Benefits
–  Easy to setup

•  Took less than a day to setup the initial cluster
–  Seems to be able to handle the load from HTCondor

•  For us (so far): < 1 GB, < 100K documents per day
–  Arbitrary queries
–  Queries are faster than using condor_history
–  Horizontal construction

•  Need more capacity? Just add more nodes

Multi-core jobs

16

Multi-core jobs

•  Situation so far
–  ATLAS have been running multi-core jobs at RAL since November
–  CMS submitted a few test jobs, will submit more eventually
–  Interest so far only for multi-core jobs, not whole-node jobs

•  Only 8-core jobs

•  Our aims
–  Fully dynamic

•  No manual partitioning of resources
–  Number of running multi-core jobs determined by group quotas

17

Multi-core jobs

•  Defrag daemon
–  Essential to allow multi-core jobs to run
–  Want to drain 8 cores only. Changed:

DEFRAG_WHOLE_MACHINE_EXPR = Cpus == TotalCpus && Offline=!=True !

 to
DEFRAG_WHOLE_MACHINE_EXPR = (Cpus >= 8) && Offline=!=True!

–  Which machines more desirable to drain? Changed
 DEFRAG_RANK = -ExpectedMachineGracefulDrainingBadput!

 to
DEFRAG_RANK = ifThenElse(Cpus >= 8, -10, (TotalCpus - Cpus)/(8.0 - Cpus))!

–  Why make this change?
•  With default DEFRAG_RANK, only older full 8-core WNs were being

selected for draining
•  Now: (Number of slots that can be freed up)/(Number of needed cores)

–  For us this does a better job of finding the “best” worker nodes to drain

18

Multi-core jobs

•  Effect of changing DEFRAG_RANK

–  No change in the number of concurrent draining machines
–  Rate in increase in number of running multi-core jobs much higher

19

Running multi-core jobs

Multi-core jobs

•  Group quotas
–  Added accounting groups for ATLAS and CMS multi-core jobs
–  Force accounting groups to be specified for jobs using

SUBMIT_EXPRS
•  Easy to include groups for multi-core jobs
AccountingGroup = !
…!
 ifThenElse(regexp("patl",Owner) && RequestCpus > 1, “group_ATLAS.prodatls_multicore", \!
 ifThenElse(regexp("patl",Owner), “group_ATLAS.prodatls", \!
…!
SUBMIT_EXPRS = $(SUBMIT_EXPRS) AccountingGroup!

•  Negotiator
–  Modified GROUP_SORT_EXPR so that the order is:

•  High priority groups (Site Usability Monitor tests)
•  Multi-core groups
•  Remaining groups

–  Helps to ensure multi-core slots not lost too quickly

20

Multi-core jobs

•  Defrag daemon issues
–  No knowledge of demand for multi-core jobs

•  Always drains the same number of nodes, irrespective of demand
•  Can result in large amount of wasted resources

–  Wrote simple cron script which adjusts defrag daemon config based on
demand

–  Currently very simple, considers 3 cases:
•  Many idle multi-core jobs, few running multi-core jobs

–  Need aggressive draining
•  Many idle multi-core jobs, many running multi-core jobs

–  Less agressive draining
•  Otherwise

–  Very little draining

–  May need to make changes when other VOs start submitting multi-core
jobs in bulk

21

•  Recent ATLAS activity

Multi-core jobs

22

Running & idle multi-core jobs

Gaps in submission by ATLAS results
in loss of multi-core slots.

Significantly reduced CPU wastage
due to the cron

Number of “whole” machines
& draining machines

Data from condor_gangliad

Multi-core jobs

•  Other issues
–  Defrag daemon designed for whole-node, not multi-core

•  Won’t drain nodes already running multi-core jobs
•  Ideally may want to run multiple multi-core jobs per worker node

–  Would be good to be able to run “short” jobs while waiting for slots to
become available for multi-core jobs

•  On other batch systems, backfill can do this

23

Time taken for 8 jobs to drain
- lots of opportunity to run short jobs

Multi-core jobs

•  Next step: enabling “backfill”
–  ARC CE adds custom attribute to jobs: JobTimeLimit

•  Can have knowledge of job run times
–  Defrag daemon drains worker nodes

•  Problem: machine can’t run any jobs at this time, including short jobs
–  Alternative idea:

•  Python script (run as a cron) which plays the same role as defrag daemon
–  But doesn’t actually drain machines

•  Have a custom attribute on all startds, e.g. NodeDrain
–  Change this instead

•  START expression set so that:
–  If NodeDrain false: allow any jobs to start
–  If NodeDrain true: allow only short jobs under certain conditions, e.g. for a

limited time after “draining” started

–  Provided (some) VOs submit short jobs, should be able to reduce
wasted resources due to draining

24

Dynamically-provisioned worker nodes

25

Private clouds at RAL

•  Prototype cloud
–  StratusLab (based on OpenNebula)
–  iSCSi & LVM based persistent disk storage (18 TB)
–  800 cores
–  No EC2 interface

•  Production cloud
–  (Very) early stage of deployment
–  OpenNebula
–  900 cores, 3.5 TB RAM, ~1 PB raw storage for Ceph

•  Aims
–  Integrate with batch system, eventually without partitioned resources
–  First step: allow the batch system to expand into the cloud

•  Avoid running additional third-party and/or complex services
•  Use existing functionality in HTCondor as much as possible
•  Should be as simple as possible

26

•  Use HTCondor’s existing power management features
–  Send appropriate offline ClassAd(s) to the collector

•  Hostname used is a random string
•  Represents a type of VM, rather than specific machines

–  condor_rooster
•  Provisions resources
•  Configured to run appropriate command to instantiate a VM

–  When there are idle jobs
•  Negotiator can match jobs to the offline ClassAds
•  condor_rooster daemon notices this match

–  Instantiates a VM
–  Image has HTCondor pre-installed & configured, can join the pool

–  HTCondor on the VM controls the VM’s lifetime
•  START expression

–  New jobs allowed to start only for a limited time after VM instantiated
•  HIBERNATE expression

–  VM is shutdown after machine has been idle for too long

Provisioning worker nodes

27

Testing

•  Testing in production
–  Initial test with production HTCondor pool
–  Ran around 11,000 real jobs, including jobs from all LHC VOs
–  Started with 4-core 12GB VMs, then changed to 3-core 9GB VMs

28

Hypervisors enabled

condor_rooster disabled

Started using 3-core VMs

Summary

•  Due to scalability problems with Torque/Maui, migrated to
HTCondor last year

•  We are happy with the choice we made based on our
requirements
–  Confident that the functionality & scalability of HTCondor will meet our

needs for the foreseeable future

•  Multi-core jobs working well
–  Looking forward to more VOs submitting multi-core jobs

•  Dynamically-provisioned worker nodes
–  Expect to have in production later this year

29

Thank you!

30

