
1

Consumption Policies
and

Unifying Heterogeneous Resource
Constraints

Erik J. Erlandson
Red Hat, Inc.

eje@redhat.com

2

Agenda
● Goals

– Introduce the new Consumption Policy feature
● Available as of HTCondor 8.1.2

– Describe how it can aid in thinking about:
● accounting group quotas
● match costs
● slot weights

● Topics
– Partitionable Slots

– Scheduler splitting (CLAIM_PARTITIONABLE_LEFTOVERS)

– Consumption Policies

– Examples

– Unit analysis for slot weights and match costs

3

In the Beginning: Partitionable Slots

● “p-slots” for short
● Present aggregate compute resources
● Designed to service multiple jobs
● Negotiator matches one job per p-slot per cycle
● Consequences

– p-slots required multiple cycles to load

– SlotWeight expressions make p-slots expensive
● Accounting group starvation

4

Accounting Group Starvation

● Default: SlotWeight = Cpus
● SlotWeight on a 32-core machine = 32

– Therefore cost to match = SlotWeight = 32

● An accounting group with quota < 32 can never
match that resource

● This problem becomes more exaggerated as
cores increase

● gittrac #3013

5

CLAIM_PARTITIONABLE_LEFTOVERS

● AKA “scheduler splitting”
● Side-step negotiator cycle bottleneck
● Enable scheduler to match multiple jobs against a p-slot

matched in the negotiator
● Limitations

– P-slot matches still expensive to the negotiator
● Accounting group starvation still possible

– Doesn't play well with globally-accounted resources
● Concurrency limits disrespected

– Matched resources not accessible to jobs from other schedulers
● p-slot unavailable to negotiator until startd updates -> collector

● Advantages:
– Improved scalability, especially with multiple schedulers

6

A Unit Analysis Question
● Suppose I have a pool where execute nodes

advertise a mixture of slot weights:
– SLOT_WEIGHT = Cpus

– SLOT_WEIGHT = Memory

– SLOT_WEIGHT = Disk

● When the negotiator computes the available
resources by summing slot weights for all slots,
what unit does that sum have?

● What unit do group quotas have?
● What does it mean to compare the cost of

matching against one slot versus another?

7

Consumption Policies

● Resources consumed by a match between a job and a
p-slot become a configurable policy

– Expressions evaluated in context of p-slot resource
classad

– Special 'target' scope refers to candidate job classad
● Consumption Policy expressions reside on the p-slot

classad

– Available to startd claiming logic and negotiator matching
logic

● Enable the negotiator to match multiple jobs against
each p-slot in a single negotiation cycle

8

schedd startdnegotiator

Matchmaking Flows

collector

match
Job to
p-slot

deduct
resources

deduct
resources

match
Job to
p-slot

updated p-slot

p-slot

claim

job

new claim

claim

claim

Consumption
Policy

Claim
Leftovers

9

A Simple Consumption Policy

Assumes a partitionable slot configuration

Enable use of consumption policies
CONSUMPTION_POLICY = True

Define a simple consumption policy:
"target" refers to the scope of the
candidate job classad
CONSUMPTION_CPUS = target.RequestCpus
CONSUMPTION_MEMORY = target.RequestMemory
CONSUMPTION_DISK = target.RequestDisk

Traditional CPU-centric match cost
SLOT_WEIGHT = Cpus

10

Match Cost With Consumption Policies

Recall: the legacy match cost = SlotWeight

Match cost for a p-slot with a consumption policy is defined as
reduction in slot weight after deducting resources used by a match:

1. Evaluate SlotWeight (W)
1.W <-- SlotWeight = Cpus = 8

2. Evaluate ConsumptionXXX expressions for each resource
1.UsedCpus <-- ConsumptionCpus = target.RequestCpus = 1

3. Subtract consumed resources from p-slot resources
1.Cpus <-- (Cpus – UsedCpus) = (8 – 1) = 7

4. Re-evaluate SlotWeight (W')
1.W' <-- SlotWeight = Cpus = 7

5. Match cost = W – W'
1.Cost <-- (W-W') = (8 – 7) = 1

11

Reusing P-Slots in the Negotiator
● Evaluate candidate match cost w.r.t. consumption policy

expressions on the p-slot

● If resource consumption is not feasible, match fails:
remove p-slot from the list

– Insufficient resources

– Failed to evaluate to integer values >= zero

– All consumption policies evaluated to zero
● If candidate match succeeds, subtract its resources and

keep p-slot on the list

– P-slot stays at front of list (depth-first loading)
● When slot weight drops to zero, remove from list

12

Pros and Cons
● Advantages

– Negotiator can load p-slots in a single cycle

– Concurrency limits respected

– Jobs from multiple schedulers can match against a p-
slot

– Matches charged only for portion of resources used
● Avoids accounting group starvation due to expensive p-slots

● Limitations
– Negotiator bears cost of p-slot loading

● Cannot scale out, as with scheduler splitting

13

Compatibility

● P-slots advertising a Consumption Policy can coexist with other
slot flavors
– P-slots having no consumption policy

– Static slots
– startds configured for CLAIM_PARTITIONABLE_LEFTOVERS

● A startd cannot simultaneously enable consumption policies and leftovers

● Consumption Policies operate with extensible resources
– A Consumption Policy expression must be declared for every

resource, including extensible resources
● All resources (including extensible) have default consumption policies

– Not integrated with named (non-fungible) resources

14

Memory Centric Policy

CONSUMPTION_POLICY = True

CONSUMPTION_CPUS = target.RequestCpus
CONSUMPTION_MEMORY = quantize(target.RequestMemory, {128})
CONSUMPTION_DISK = quantize(target.RequestDisk, {1024})

use of quantize() similar to MODIFY_REQUEST_EXPR_*

synced with consumption expression
SLOT_WEIGHT = floor(Memory / 128)

If total memory available is 1GB, then this
slot + policy can support up to 8 matches, and
total weight (prior to matching) is 8

15

Static Slot Policy

CONSUMPTION_POLICY = True

consume all resources - emulate static slot
CONSUMPTION_CPUS = TotalSlotCpus
CONSUMPTION_MEMORY = TotalSlotMemory
CONSUMPTION_DISK = floor(0.9 * TotalSlotDisk)
TotalSlotDisk != Disk even on an unused p-slot

Slot supports exactly one match
SLOT_WEIGHT = 1

16

Multi-Centric Policy

CONSUMPTION_POLICY = True

Either Cpus or Memory might be limiting
CONSUMPTION_CPUS = target.RequestCpus
CONSUMPTION_MEMORY = quantize(target.RequestMemory, {256})
CONSUMPTION_DISK = quantize(target.RequestDisk, {128})

Define slot weight as minimum of remaining-match
estimate based on either cpus or memory:
SLOT_WEIGHT = ifThenElse(Cpus < floor(Memory/256), Cpus,
floor(Memory/256))

Behaves a bit like Dominant Resource Fairness, due
to submitter being effectively charged for the resource
that most reduced the available matches against the p-slot
(“Dominant Resource Fairshare”)

17

Observations
● Match cost is defined as: reduction of slot weight after

deducting resources used for a match
● The slot weight expression governs the orientation of

the policy
– SLOT_WEIGHT = Cpus

– SLOT_WEIGHT = floor(Memory / 128)

– SLOT_WEIGHT = floor(Disk / 1024)

● It also embodies a definition of how many matches the
p-slot supports
– If total memory available is 1 GB, then slot can support up to

8 matches

– equivalent to number of jobs serviceable

18

Unifying Heterogeneous Policies
● A p-slot's total slot weight is equivalent to the maximum number of

matches it can support
– i.e. Slot weights are in units of “matches”

– This is true regardless of policy orientation: cpu-centric, memory-centric, etc

● Match cost = “reduction of slot weight” and is therefore in the same
units: matches

● Assuming slot weights are enabled for matchmaking, then total
resource assessment, and therefore accounting group quotas, are
also in these same units
– Particularly when configuring dynamic quotas

● Therefore: Slot weights, match cost and group quotas can be
modeled in the same unit: matches (aka jobs, aka claims)
– Furthermore, this unit analysis holds for pools combining p-slots having

heterogeneous policy orientations

19

Future Development

● Non-integer resources
– Model concepts such as sub-core jobs

● Integration with named (non-fungible) resources
– GPUs

● Support breadth first p-slot loading
– Currently, slots are loaded depth first

20

References

● http://research.cs.wisc.edu/htcondor/manual/v8.1/3_3Configuration.html#20322

● https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=ConsumptionPolicies

● http://erikerlandson.github.io/blog/categories/slot-weights/

http://research.cs.wisc.edu/htcondor/manual/v8.1/3_3Configuration.html#20322
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=ConsumptionPolicies
http://erikerlandson.github.io/blog/categories/slot-weights/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

