
The Future of HTCondor's

Networking
or:

How I Learned to Stop

Worrying and Love IPv6
Alan De Smet

adesmet@cs.wisc.edu

8.0: The Past

2

 CCB: Condor Connection Broker

3

schedd startd

O
u
tb

o
u

n
d

 f
ir

e
w

a
ll

Internet

CCB

condor_shared_port

4

schedd startd

F
ir
e

 w

a
ll

Internet

starter

shared_port

Internet

Beating the 65,535 limit

5

starter

s
h

a
re

d
_
p

o
rt

CCB

starter

⋮

starter

shadow

shadow

shadow

⋮

› Minimal DNS dependency

Working to reduce!

› Centralized service: condor_collector

› More than addresses; routes!

CCB, shared_port

Do-It-Yourself Name Service

6

› IPv4 by default

›ENABLE_IPV6=TRUE

Disables IPv4

Lots of odd limitations

› Only one interface (sorta)

7

IPv6 support

› IPv4 by default

›ENABLE_IPV6=TRUE

IPv4 stays on!

Lots of odd limitations

› Using IPv6 today? Also do

ENABLE_IPV4=FALSE

8.1 & 8.2: The Present

8

› Mixed mode IPv4 and IPv6!

› Sorta

› Kinda

› Not really

8.1 & 8.2: The Present

9

› Mixed mode IPv4 and IPv6?

› Simple queries

› You might get matchmaking working

No support

› Multiple interfaces are supported, but…

› …only the IPv4 address is advertised

8.1 & 8.2: The Present

10

› Mixed mode IPv4 and IPv6! Really!

› Mixed pools! (Mixed matchmaking?)

› Multiple interfaces that work!

8.3 & 8.4: The Future

11

Mixed mode

hosts
IPv6-only

hosts

IPv4-only

hosts

Mixed mode
central manager

CCB?

› Mixed mode IPv4 and IPv6! Really!

› Mixed pools! (Mixed matchmaking?)

› Multiple interfaces that work!

› Complete overhaul of address representation!

8.3 & 8.4: The Future

12

› Complete overhaul of address

representation!

A complete what now?

13

› Today: Sinful Strings. Simple, elegant

<173.194.46.96:80>

<192.168.1.55:9618?PrivNet=example.com

&PrivAddr=192.168.1.55&sock=1567_808b_

3&CCBID=173.194.46.96:80#381>

Addresses Today

14

› New features bolted on

Backward compatible

Minimal changes / Maximal stability

Fast development

<192.168.1.55:9618?PrivNet=example.com

&PrivAddr=192.168.1.55&sock=1567_808b_

3&CCBID=173.194.46.96:80#381>

› IPv6 would double the complexity

› What about IPv8, or CCB2, or Unix Domain

Sockets, or…

Addresses Today

15

› Making a new way to describe addresses

› Extensible, support complex data structures

› Generalize specific techniques from Sinful

strings

› Backward compatible for one major

version: support both old and new versions

Future Addresses

16

Generalizing Lessons

17

 <192.168.1.55:9618?

 CCBID=173.194.46.96:80#381%3F

 sock%3D917_aa8b_3&

 sock=1567_808b_3>

Multi-Stage Routing

18

schedd shared_port

startd

CCB

shared_port

› Proxies

CCB, shared_port (sorta)

CCB2?, SOCKS?, HTTP CONNECT?

› Special setup

VPNs? SDN dynamic routes? Port knocking?

› Multiple routes simultaneously?

budget channel bonding

Multi-Stage Routing

19

(IPv4, 42.82.111.3, 9618), (SharedPort,

381_382b_3), (CCB, 37349), (SharedPort,

5491_b8c1_1)

1. IPv4: Connect to 42.82.111.3 port 9618

2. shared_port: ask for 381_382b_3

3. CCB: ask for 37349, wait for reverse connection

4. shared_port: ask for 5491_b8c1_1

5. startd!

› Might be a DAG…

Multi-Stage Routing

20

<192.168.1.55:9618?

PrivNet=example.com&

PrivAddr=192.168.1.55&

CCBID=173.194.46.96:80#381>

› We may not be able to use them all

Multiple Routes

21

› Different protocols:

IPv4, IPv6

IPv8?, Unix Domain Sockets?

› Accessibility:

public, private

multiple private networks? fast versus cheap?

Multiple Routes

22

› A list of routes, identified by starting network

example.com, (IPv4, 192.168.1.55, 9618),

(SharedPort, 5491_b8c1_1)

public, (IPv4, 173.194.46.96, 80), (CCB, 381),

(SharedPort, 5491_b8c1_1)

Multiple Routes

23

› Matchmaking

Can the schedd reach the startd?

What if the startd needs to reverse the

connection?

› Today: no support

› Advertise which networks and protocols the

daemon can connect to

Private:UW, IPv4

Internet, IPv6

Internet, IPv4

Bi-directional Routing

24

› A client has a choice of routes, which one?

› RFC 6724: Default Address Selection for

Internet Protocol Version 6 (IPv6)?

We're not

 using DNS

We're way

 weirder than

 DNS

Client Route Selection

25

› Client obtains (from the collector) the list of the endpoint’s inbound
paths.

› Client discards inbound paths which it can not reach.
 Client can reach a path if one of its outbound paths terminates with a

protocol and a network name identical to the protocol and network name
of the inbound path in question.

› Client discards any remaining reversing paths that can not reach it.
 A reversing path can reach the client if the reachable set of each

reversing step includes a protocol and network name pair identical to one
terminating one of the client’s return paths.

› Clientconstructs the complete path corresponding to each remaining
inbound path.

› The client tries one or more of the complete paths, in whatever order
or concurrency it finds appropriate. For each path it tries, the client
interacts with each step appropriately. For a reversing step, this will
include supplying a list of reachable return paths, which the client may
need to configure.

Client Route Selection

26

Toward a bold new

future of glasnost

between

IPv4 and IPv6!

27

