HTCondor and macromolecular structure validation

Vincent Chen

John Markley/Eldon Ulrich, NMRFAM/BMRB, UW@Madison

David & Jane Richardson, Duke University

Macromolecules

3

David S. Goodsell 1999

43

Two questions of structural biology

Sequence

IVGGTSASAGDFPFI VSISRNGGPWCGGSL **LNANTVLTAAHCVSG** YAQSGFQIRAGSLSR TSGGITSSLSSVRVH PSYSGNNNDLAILKL STSIPSGGNIGYARL AASGSDPVAGSSATV AGWGATSEGGSSTPV **NLLKVTVPIVSRATC** RAQYGTSAITNOMFC AGVSSGGKDSCQGDS GGPIVDSSNTLIGAV SWGNGCARPNYSGVY ASVGALRSFIDTYA

3D structure

Function

Trypsin sequence

Trypsin structure PDB: 1pq7 Trypsin reaction Hydrolysis of peptide bond

How do we solve structures?

X-ray crystallography

- X-ray diffraction of crystals
- Provides a picture of the electron density of a macromolecular structure
- Overall shape, but no atom identities
- Lower numbers on resolution means more data

NMR Spectroscopy

- NMR spectra of solutions
- Provides relationships (distances, angles, dihedral angles) between atoms
- Information about specific atoms, but no overall shape

Protein Data Bank (PDB)

- Repository for 3D structures and data
- Also refers to the file format
- 88,247 X-ray structures vs 10,451 NMR structures deposited
- 92,283 protein structures vs 2,557 nucleic acid structures (~4600 protein-nucleic acid complexes)
- We make extensive use of the structures deposited in the PDB

Building high-quality models is difficult

- No way to directly see atom positions
- X-ray crystallography and NMR spectroscopy provide *models* of structures
 - Structural biologists should build the highest quality models possible
 - Data is limited
 - Have to use other knowledge (chemistry, algorithms, etc) to fill in for lack of data
 - Subjectivity in interpreting data

Photosystem I, 3.40 Å (2001) Thr 51 2Fo-Fc map

Errors in models

- Steric clashes, Ramachandran outliers, poor sidechain rotamers, bad bond geometry
- Sequence register shifts, underpacking
- Structural validation is needed!
- Users and scientists should filter (i.e. remove errors) from models before use
- MolProbity website for structure validation (i.e. finding errors)
- Errors presented in visual and tabular formats

Validation report table

All-Atom	Clashscore, all atoms:	123.51	0 th percentile* (N=1784, all resolutions)			
Contacts	Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms.					
	Poor rotamers	50.00%	Goal: <1%			
	Ramachandran outliers	6.82%	Goal: <0.2%			
	Ramachandran favored	70.45%	Goal: >98%			
Protein	Cβ deviations >0.25Å	0	Goal: 0			
Geometry	MolProbity score	4.68	0 th percentile [*] (N=27675, 0Å - 99Å)			
	Residues with bad bonds:	0.00%	Goal: 0%			
	Residues with bad angles:	0.00%	Goal: <0.1%			
	Probably wrong sugar puckers:	0	Goal: 0			
Nucleic Acid	Bad backbone conformations#:	2	Goal: 0			
Geometry	Residues with bad bonds:	0.00%	Goal: 0%			
	Residues with bad angles:	0.00%	Goal: <0.1%			

* 100th percentile is the best among structures of comparable resolution; 0th percentile is the worst.

[#] RNA backbone was recently shown to be rotameric. Outliers are RNA suites that don't fall into recognized rotamers.

^ MolProbity score is defined as the following: 0.42574*log(1+clashscore) + 0.32996*log(1+max(0,pctRotOut-1)) + 0.24979*log(1+max(0,100-pctRamaFavored-2)) + 0.5

#	Res	High B	Clash > 0.4Å	Ramachandran	Rotamer	Cβ deviation	Base-P perp. dist.	RNA suite conf.	Bond lengths.	Bond angles.
		Avg: 0.00	Clashscore: 123.51	Outliers: 6 of 88	Poor rotamers: 36 of 72	Outliers: 0 of 82	Outliers: 0 of 32	Outliers: 2 of 32	Outliers: 0 of 122	Outliers: 0 of 122
A 1	G	0	0.509Å O2' with A 2 G O5'	-	-	-	-	conformer: δδγ none (incomplete)	æ	-
A 2	G	0	0.597Å C6 with A 3 G C5	-	-	-	÷	conformer: 1a δδγ 33 p, suiteness = 0.062	-	7 -
A 3	G	0	0.674Å O2' with A 4 A C5'	151	171	171	2 0	conformer: 1a δδγ 33 p, suiteness = 0.048	10	51

MolProbity at BMRB/NMRFAM

- Biological Magnetic Resonance Data Bank archives and disseminates NMR data on biological molecules
- National Magnetic Resonance Facility at Madison developing software to facilitate biomolecular NMR spectroscopy
- Incorporate MolProbity validation software into the BMRB/NMRFAM software
 - Improve compatibility of MolProbity with NMR PDB files

MolProbity on large datasets

- Command-line tools available:
 - Add hydrogens to files
 - Scripts for generating summary scores for models
- Analyzing 10,000 NMR PDB files
 - 10 batches
 - 2 weeks to analyze
 - Numerous bugs
- High-throughput computing?

HTCondor @ BMRB

- Pool of 66 slots
- Experience running CS-Rosetta on HTCondor
- Thanks Jon!

This page has BMRB entries with corresponding CS-Rosetta runs.

Site statistics:								
Runs	2010	2011	2012	2013	2014	Total		
Complete	7	500	309	387	283	1486		
Total	9	621	571	676	489	2366		

Current status: No queue. Submitted jobs should start immediately.

Select files to upload and then click Continue.

Chemical shift file in STAR or TALOS format, 2M bytes maximum file size:

Choose File No file chosen

Submissions may be either a star file or a talos file. There is a format help page located here.

MolProbity = many programs/languages

- C, C++, Java, PHP, shell, Perl, AWK...
 - Reduce addition of hydrogens
 - Probe calculates and draws clashes
 - Chiropraxis calculates rotamer and Ramachandran outliers
 - Dangle calculates bond geometry outliers
 - Suitename calculates RNA backbone conformers

....

MolProbity runs each program on each PDB file one at a time

HTCondor + MolProbity?

- HTCondor distributes software/input files to available machines
- Runs the jobs, then returns the results
- Impractical to send whole MolProbity package (30 MB)
- Rewrote analysis as a Python script
 - HTCondor sends individual programs/pdb files to compute nodes

HTCondor novice pitfalls

- Things which are easy to do with HTCondor, and are bad:
 - Spawning 100s of local compute jobs within a few seconds on one machine
 - Trying to write output to directories that don't exist
 - Having multiple jobs trying to write to the same log file at the same time
 - Storing 100,000+ PDB/result/log files in one directory

MolProbity + PDB files pitfalls

- Multiple model PDB files
 - NMR structures are typically ensembles of models that are most consistent with data
- PDB format doesn't have many constraints
 - Calpha only models and models missing sidechains
 - Structures with no standard protein or nucleic acid residues

HTCondor + MolProbity

- Python script input: directory of PDB files
 - Divides up PDB files into separate directories
 - Prepares output directories
 - Writes dag and submit files
- Uses DAGMan to manage jobs
- Output:
 - MolProbity overall summary scores for models
 - Scores for residue-level in models

Results of HTCondor + MolProbity

- Running MolProbity analysis on 10,000 NMR PDBs (170,000 models)
- Before condor:
 - ~240 hours over 2 weeks
- After condor:
 - 8 hours
- How do NMR and X-ray structures compare overall?

Score

Year

Percent outlier

Year

Odd PDBs

- 2 homologous domains in 1 model, superimposed
- ~280
 clashscore

Conclusions for high-throughput MolProbity

- High-throughput version of MolProbity is powerful!
 - Deals with NMR ensembles
 - Allows analysis of large structural datasets
 - Allows us to test different methods of validation
- Check your structures before you use them!

Acknowledgements

Duke University David and Jane Richardson Bryan Arendall Jeremy Block Ian Davis Lindsay Deis Jeff Headd **Bradley Hintze Bob** Immormino Swati Jain Gary Kapral Daniel Keedy Laura Murray Michael Prisant Lizbeth Videau **Christopher Williams** J. Michael Word

<u>UW Madison</u> John Markley Eldon Ulrich Miron Livny Dimitri Maziuk Jon Wedell R. Kent Wenger Hongyang Yao